
✎The AI Driving OlympicsThe AI Driving Olympics

ContContentsents

PPartart AA -- IntrIntroductionoduction.. 33

PPartart BB -- The ChallengThe Challengeses .. 1717

PPartart CC -- GetGetting Startting Starteded.. 3636

PPartart DD -- TTemplatemplate Solutionse Solutions.. 5757

PPartart EE -- Baseline AlgBaseline Algorithmsorithms .. 7474

PPartart FF -- RRefereference manualence manual .. 109109

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/00_book_AIDO.md

PPartart GG -- RRefereferencesences.. 116116

2

✎

✎

✎

✎

PPARARTT AA

IntrIntroductionoduction

ContContentsents
Subsection 0.0.1 - Quick links
Subsection 0.0.2 - AI-DO 6 Urban League Challenges
Subsection 0.0.3 - Computational resources
Subsection 0.0.4 - Evaluation metrics
UnitUnit AA-1-1 - The AI Driving OlympicsThe AI Driving Olympics.. 55
UnitUnit AA-2-2 - The DuckietThe Duckietown Platformown Platform .. 1010

For a detailed description of the scientific objectives and outcomes please see our pa-
per about the AI-DO at NeurIPS.

1)1) Quick linksQuick links

There are different challenges, different computational resource regimes and different
performance categories in this competition.
• Get started with your code submission

2)2) AI-DO 6 Urban League ChallengAI-DO 6 Urban League Challengeses

• Lane following (LF)
• Lane following with vehicles (LFV)
• Lane following with intersections (LFVI)
• Lane following with multiple vehicles and intersections where state information is
given (LFVI–multi-stateful)

3)3) Computational rComputational resouresourcesces

• Purist option - RaspberryPi 3B+ (discontinued from AI-DO 6)
• Purist option - Jetson Nano (2 GB and 4 GB version)
• Remote option
Note that during the AI-DO 6 finals, the submissions will be run remotely.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/10_part_motivation.md
https://arxiv.org/pdf/1903.02503.pdf
https://arxiv.org/pdf/1903.02503.pdf
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/10_part_motivation.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/10_part_motivation.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/10_part_motivation.md

✎4)4) EEvvaluation metricsaluation metrics

For details about the evaluation metrics please refer to the performance metrics

4 INTRODUCTION

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/10_part_motivation.md

✎

✎

UUNITNIT AA-1-1

The AI Driving OlympicsThe AI Driving Olympics

The AI Driving Olympics (AI-DO) is a set of competitions with the objective of evalu-
ating the state of the art in machine learning and artificial intelligence for mobile ro-
botics.
For a detailed description of the scientific objectives and outcomes please see our pa-
per about the AI-DO at NeurIPS.

Figure 1.1. The AI Driving Olympics at ICRA 2020

ContContentsents
Figure 1.1 - The AI Driving Olympics at ICRA 2020
Section 1.1 - History.. 55
Section 1.2 - Leagues .. 66
Section 1.3 - What’s new in the Urban League in AI-DO 6 .. 77
Section 1.4 - How to use this documentation .. 77
How to get help .. 77

1.1.1.1. HistHistoryory
• AI-DO 1AI-DO 1 was in conjunction with NNeurIPS 2018eurIPS 2018.
• AI-DO 2AI-DO 2 was in conjunction with ICRA 2019ICRA 2019.
• AI-DO 3AI-DO 3 was in conjunction with NNeurIPS 2019eurIPS 2019.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/15_welcome.md
https://driving-olympics.ai/
https://arxiv.org/pdf/1903.02503.pdf
https://arxiv.org/pdf/1903.02503.pdf
https://vimeo.com/629305710
https://vimeo.com/629305710
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/15_welcome.md

✎

• AI-DO 4AI-DO 4 was supposed to be in conjunction with ICRA 2020ICRA 2020, but was canceled due
to COVID-19.
• AI-DO 5AI-DO 5 was in conjunction with NNeurIPS 2020eurIPS 2020.
• AI-DO 6AI-DO 6 is in conjunction with NNeurIPS 2021eurIPS 2021.

Figure 1.2. Where it all started: AI-DO 1 at NeurIPS 2018 in Montreal.

1.2.1.2. LeaguesLeagues
There are currently three leagues in the AI Driving Olympics.
The Urban LeagueUrban League is based on the Duckietown platform, and includes a series of tasks
of increasing complexity. For each task, we provide tools for competitors to use in the
form of simulators, logs, code templates, baseline implementations and low-cost ac-
cess to robotic hardware. We evaluate submissions in simulation online, on standard-
ized hardware environments, and finally at the competition event.
Participants will not need to be physically present at any stage of the competition —
they will just need to send their source code.
There will be qualifying rounds in simulation, similar to recent DARPA Robotics Chal-
lenges, and, for evaluation, we make available the use of “Duckietown Autolabs (un-(un-
known rknown ref opmanual_autef opmanual_autolab/book)olab/book)

wwarningarning next (1 of 18) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_autolab/book'.

6 THE AI DRIVING OLYMPICS

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/15_welcome.md
https://duckietown.org/
https://www.subtchallenge.com/
https://www.subtchallenge.com/
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html

✎

✎

✎

Location not known more precisely.
Created by function n/a in module n/a.

” which are facilities that allow remote experimentation in a reproducible setting.
See the leaderboards and many other things at the challenges site.
The AAdvdvanced Panced Pererception Leagueception League is organized by Motional (ex nuTonomy, Aptiv Mo-
bility).
All information about the Advanced Perception League is at nuScenes.org.
The Racing LeagueRacing League is organized by the AWS Deepracer team. All information about
the racing league is available on aicrowd.com.

1.3.1.3. What’What’s new in the Urban League in AI-DO 6s new in the Urban League in AI-DO 6
There have been cool new improvements for the 6th edition of the AI-DO Urban
League:
• The challenges are now compatible the new DB21 Duckiebots that have Jetson
Nanos with GPUs and were used for the Self-Driving Cars with Duckietown MOOC
on EdX.

1.4.1.4. How tHow to use this documentationo use this documentation
If you would like to compete in the AI-DO Urban League, you will want to:
• Read the brief introduction to the competition.
• Find the challenge that you would like to try.
• Get started and make a submission.
At this point you are all set up: your environment is operational, and you can make
a submission. But you should want to make your submission perform better than the
provided baselines.
To do this the following tools might prove useful:
• The AIDO API so that your workflow is efficient using the available tools.
• The reference algorithms where we have implemented some different approaches
to approach the challenges.

How tHow to go get helpet help

THE AI DRIVING OLYMPICS 7

https://challenges.duckietown.org/
https://motional.com/
https://nuscenes.org/
https://www.aicrowd.com/challenges/neurips-2021-aws-deepracer-ai-driving-olympics-challenge
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/15_welcome.md
https://get.duckietown.com/products/duckiebot-db21-m
https://www.edx.org/course/self-driving-cars-with-duckietown
https://www.edx.org/course/self-driving-cars-with-duckietown
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/15_welcome.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/15_welcome.md

✎

If you are stuck try one of the following things:
• Look through the contents of this documentation using the links on the left. Note
that the “Parts” have many “Chapters” that you can see when you click on the Part
title,
• Join our slack community,
• Look on the Duckietown Stack Overflow to see if someone already answered your
question (you can ask to be invited in the Slack channel #help-accounts)
• If you are sure you actually found a bug, file a Github issue in the appropriate repo.

How tHow to cito citee
If you use the AI-DO platform in your work and want to cite it please use:

@article{zilly2019ai,
title={The AI Driving Olympics at NeurIPS 2018},
author={Julian Zilly and Jacopo Tani and Breandan Considine and

Bhairav Mehta and Andrea F. Daniele and Manfred Diaz and Gianmarco
Bernasconi and Claudio Ruch and Jan Hakenberg and Florian Golemo and A.
Kirsten Bowser and Matthew R. Walter and Ruslan Hristov and Sunil
Mallya and Emilio Frazzoli and Andrea Censi and Liam Paull},

journal={arXiv preprint arXiv:1903.02503},
year={2019}

}

If you use the Duckietown platform in your work and want to cite it please use:

8 THE AI DRIVING OLYMPICS

https://join.slack.com/t/duckietown/shared_invite/enQtNTU0Njk4NzU2NTY1LWM2YzdlNmJmOTg4MzAyODc2YTI3YTc5MzE2MThkZGUwYTFkZWQ4M2ZlZGU1YTZhYjg5YTgzNDkyMzI2ZjNhZWE
https://stackoverflow.com/c/duckietown/
https://duckietown.slack.com/archives/C70CR8TAS
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/15_welcome.md

@INPROCEEDINGS{PaullICRA2017,
author={Paull, Liam and Tani, Jacopo and Ahn, Heejin and Alonso-Mo-

ra, Javier and Carlone, Luca and Cap, Michal and Chen, Yu Fan and Choi,
Changhyun and Dusek, Jeff and Fang, Yajun and Hoehener, Daniel and Liu,
Shih-Yuan and Novitzky, Michael and Okuyama, Igor Franzoni and Pazis,
Jason and Rosman, Guy and Varricchio, Valerio and Wang, Hsueh-Cheng and
Yershov, Dmitry and Zhao, Hang and Benjamin, Michael and Carr, Christo-
pher and Zuber, Maria and Karaman, Sertac and Frazzoli, Emilio and Del
Vecchio, Domitilla and Rus, Daniela and How, Jonathan and Leonard, John
and Censi, Andrea},

booktitle={2017 IEEE International Conference on Robotics and Au-
tomation (ICRA)}, title={Duckietown: An open, inexpensive and flexible
platform for autonomy education and research},

year={2017},
volume=,
number=,
pages={1497-1504},

THE AI DRIVING OLYMPICS 9

✎

✎

UUNITNIT AA-2-2

The DuckietThe Duckietown Platformown Platform

The Duckietown platform has many components.
This section focuses on the physical platform used for the embodied robotic chal-
lenges.
For examples of Duckiebot driving see a set of demo videos of Duckiebots driving in
Duckietown (unknown r(unknown ref opmanual_duckiebot/demos)ef opmanual_duckiebot/demos)

previous wwarningarning next (2 of 18) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/demos'.

Location not known more precisely.
Created by function n/a in module n/a.

.
The actual embodied challenges will be described in more detail in LF, LFV, LFI.

NNotote:e: the sequence of the challenges was chosen to gradually increase the difficulty,
by extending previous challenge solutions to more general situations. We recom-
mend you tackle the challenges in this same order.

ContContentsents
Section 2.1 - The Duckietown Platform.. 1010
Section 2.2 - Duckiebots and Duckietowns .. 1212

2.1.2.1. The DuckietThe Duckietown Platformown Platform
There are three main parts of the platform with which you will interact:
1. Simulation and trSimulation and trainingaining environment, which allows testing in simulation before
trying on the real robots.

10

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/35_embodied_tasks.md
https://www.duckietown.org/platform
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/35_embodied_tasks.md

2. DuckietDuckietown Aown Aututolabsolabs in which to try the code in controlled and reproducible con-
ditions.
3. PhPhysical Duckietysical Duckietown platformown platform: miniature autonomous vehicles and smart-cities
in which the vehicles drive. The Duckiebots (unknown r(unknown ref opmanual_duckiebot/duckiebotef opmanual_duckiebot/duckiebot--
confconfigurigurations)ations)

previous wwarningarning next (3 of 18) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/duckiebot-configurations'.

Location not known more precisely.
Created by function n/a in module n/a .

(robot hardware) and Duckietown (environment) are rigorously specified (unknown r(unknown refef
opmanual_duckietopmanual_duckietown/dtown/dt-ops-ops-appear-appearanceance-specif-specifications)ications)

previous wwarningarning next (4 of 18) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckietown/dt-ops-appearance-specifications'.

Location not known more precisely.
Created by function n/a in module n/a .

, which makes the development extremely repeatable. If you have a Duckiebot you can
refer to the Duckiebot operational manual (unknown r(unknown ref opmanual_duckiebot/book)ef opmanual_duckiebot/book)

previous wwarningarning next (5 of 18) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/book'.

Location not known more precisely.
Created by function n/a in module n/a .

THE DUCKIETOWN PLATFORM 11

/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html

✎

✎

for step-by-step instructions on how to assemble, maintain, calibrate and operate your
robot. If you would like to acquire a Duckiebot please go to the Duckietown project
store.
The Duckiebots officially supported for AI-DO 6 (2021) are the DB21 Duckiebots. We
recommend you build your Duckietowns according to the specifications, too. The nec-
essary materials can be sourced locally pretty much globally - but if you want compli-
ant “one-click” AI-DO kits for each challenge you can get them from here:
• LF AI-DO 6 hardware kit
• LFV AI-DO 6 hardware kit
• LFI AI-DO 6 hardware kit
For any questions regarding Duckietown hardware you can reach out to hard-
ware@duckietown.com .

2.2.2.2. Duckiebots and DuckietDuckiebots and Duckietownsowns
We briefly describe the physical Duckietown platform, which comprises autonomous
vehicles (Duckiebots) and a customizable model urban environment (Duckietown).

1)1) The DuckiebotThe Duckiebot

Duckiebots are designed with the objectives of affordability, modularity and ease of
construction. They are equipped with: a front viewing camera with 160 degrees fish-
eye lens capable of streaming resolution images reliably at 30 fps, and wheel
encoders on the motors. DB21 Duckiebots are equipped with IMUs and front facing
time of flight sensors too.
Actuation is provided through two DC motors that independently drive the front
wheels (differential drive configuration), while the rear end of the Duckiebot is
equipped with a passive omnidirectional wheel.
All the computation is done onboard on a: - DB19 : Raspberry Pi 3B+ computer, - DB21 :
Jetson Nano 2 GB (DB21M) or Jetson Nano 4 GB (DB21J).
Power is provided by a mAh Duckiebattery (unknown r(unknown ref opmanual_duckiebot/dbef opmanual_duckiebot/db-op--op-
manual-prmanual-preliminarieseliminaries-electr-electronics)onics)

previous wwarningarning next (6 of 18) index
warning

12 THE DUCKIETOWN PLATFORM

https://get.duckietown.com/
https://get.duckietown.com/
https://get.duckietown.com/collections/dt-robots/products/duckiebot-db21-m
https://docs.duckietown.org/daffy/opmanual_duckietown/out/index.html
https://get.duckietown.com/collections/ai-do-kits/products/ai-do-lane-following-lf-challenge-kit
https://get.duckietown.com/collections/ai-do-kits/products/ai-do-lane-following-lf-challenge-kit
https://get.duckietown.com/collections/ai-do-kits/products/ai-do-lane-following-with-vehicles-lfv-challenge-kit
https://get.duckietown.com/collections/ai-do-kits/products/ai-do-lane-following-with-vehicles-lfv-challenge-kit
https://get.duckietown.com/collections/starter-kits/products/db-mooc-kit
https://get.duckietown.com/collections/starter-kits/products/db-mooc-kit
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/35_embodied_tasks.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/35_embodied_tasks.md
https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
https://developer.nvidia.com/embedded/jetson-nano-2gb-developer-kit
https://developer.nvidia.com/embedded/jetson-nano
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html

✎

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/db-opmanual-preliminaries-electron-
ics'.

Location not known more precisely.
Created by function n/a in module n/a.

which provides several hours of operation.

2)2) The DuckietThe Duckietownown

Duckietowns are modular, structured environments built on two layers: the road and
the signal layers (Figure 2.2). Detailed specifications can be found here (unknown r(unknown ref op-ef op-
manual_duckietmanual_duckietown/dtown/dt-ops-ops-appear-appearanceance-specif-specifications)ications)

previous wwarningarning next (7 of 18) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckietown/dt-ops-appearance-specifications'.

Location not known more precisely.
Created by function n/a in module n/a.

.
There are six well-defined road segments: straight, left and right 90 deg turns, 3-way
intersection, 4-way intersection, and empty tile. Each is built on individual tiles, and
their interlocking enables customizable city sizes and topographies. The appearance
specifications detail the color and size of the lines as well as the geometry of the roads.
The signal layer comprises street signs and traffic lights. Street signs enable global lo-
calization (knowing where they are within a predefined map) of Duckiebots in the
city and interpretation of intersection topologies. They are defined as the union of an
AprilTag [1] in addition to the typical road sign symbol. Their size, height and relative
positioning with respect to the road are specified. Many signs are supported, including
intersection type (3- or 4-way), stop signs, road names, and pedestrian crossings.

THE DUCKIETOWN PLATFORM 13

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/35_embodied_tasks.md
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html

✎

The Duckietown environment is rigorously defined at road and signal level. When the appearance
specifications are met, Duckiebots are guaranteed to navigate cities of any topology.

Figure 2.2

3)3) SimulationSimulation

We provide a cloud simulation environment for training.
In a way similar to the last DARPA Robotics Challenge, we use the simulation as a first
screening of the participant’s submissions. It will be necessary for the submitted agent
code to run in simulation and be sufficiently performant to gain access to the Auto-
labs.
Simulation environments for each of the individual challenges are provided as Docker
containers with clearly specified APIs. The baseline solutions for each challenge is
provided as separate containers. When both containers (the simulation and corre-
sponding solution) are loaded and configured correctly, the simulation will effectively
replace the real robot(s). A proposed solution can be uploaded to our cloud servers, at
which point it will be automatically run against our pristine version of the simulation
environment (on a cluster) and a score will be assigned and returned to the partici-
pant.
Examples of the simulators provided are shown on the Duckietown Challenges server.
E.g., here is a LF evaluated submission example from AI-DO 5.
This simulator is also integrated with the OpenAI Gym environment for reinforcement
learning agent training. An API for designing reward functions or tweaking domain
randomization will be provided.

14 THE DUCKIETOWN PLATFORM

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/35_embodied_tasks.md
https://challenges.duckietown.org/v4/
https://challenges.duckietown.org/v4/humans/submissions/13502

✎4)4) DuckietDuckietown Aown Aututolabsolabs

The Duckietown Autolab at ETH Zürich

Figure 2.4

The idea of an Autolab is inspired by Georgia Tech’s Robotarium (contraction of robot
and aquarium) [2].
The use of an Autolab has two main advantages:
1. Convenience: It allows convenient access to a complete robot setup.
2. Reproducibility: It allows for multiple people to run the experiments in repeatable
controlled conditions.
You can find detailed information on Duckietown Autolabs in our paper: Integrated
Benchmarking and Design for Reproducible and Accessible Evaluation of Robotic
Agents.
If you would like to cite Duckietown Autolabs, please use:

THE DUCKIETOWN PLATFORM 15

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/35_embodied_tasks.md
https://tinyurl.com/duckienet
https://tinyurl.com/duckienet
https://tinyurl.com/duckienet

@INPROCEEDINGS{tani2020duckienet,
author={Tani, Jacopo and Daniele, Andrea F. and Bernasconi, Gianmarco

and Camus, Amaury and Petrov, Aleksandar and Courchesne, Anthony and
Mehta, Bhairav and Suri, Rohit and Zaluska, Tomasz and Walter, Matthew
R. and Frazzoli, Emilio and Paull, Liam and Censi, Andrea},

booktitle={2020 IEEE/RSJ International Conference on Intelligent Ro-
bots and Systems (IROS)},

title={Integrated Benchmarking and Design for Reproducible and Acces-
sible Evaluation of Robotic Agents},

year={2020},
volume=,
number=,
pages={6229-6236},
doi={10.1109/IROS45743.2020.9341677}}

For the competition we will several options for computational power.
1. The “purist” computational substrate option: where processing is done onboard
Duckiebots.
2. The images are streamed to a base-station with a powerful GPU. This will increase
computational power but also increase the latency in the control loop.

16 THE DUCKIETOWN PLATFORM

✎

PPARARTT BB

The ChallengThe Challengeses

This section precisely defines the general rules and performance metrics and explains
AI-DO Urban league challenges.

ContContentsents
UnitUnit BB-1-1 - GenerGeneral rulesal rules .. 1818
UnitUnit BB-2-2 - PPerformance metricserformance metrics.. 2121
UnitUnit BB-3-3 - ChallengChallengee LF .. 2323
UnitUnit BB-4-4 - ChallengChallengee LFV .. 2727
UnitUnit BB-5-5 - ChallengChallengee LFI .. 3030
UnitUnit BB-6-6 - ChallengChallengee LFVI-multi-full .. 3333

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/00_part_rules.md

✎

✎

✎

UUNITNIT BB-1-1

GenerGeneral rulesal rules

ContContentsents
Section 1.1 - Protocol .. 1818
Section 1.2 - Eligibility.. 2020
Section 1.3 - Intellectual property .. 2020

1.1.1.1. PrPrototocolocol

1)1) Deployment tDeployment techniqueechnique

We use Docker containers to package, deploy, and run the applications on the physical
Duckietown platform as well as on the cloud for simulation. Base Docker container
images are provided and distributed via Docker HUB.
A challengchallenges serves serverer is used to collect and queue all submitted agents. The simulationsimulation
evevaluationsaluations execute each queued agents as they become available. Submissions that
pass the simulation environment will be queued for execution in the Autolab.

Figure 1.1. The AI-DO evaluations workflow supports local and remote development, in simulation and
on hardware.

For validation of submitted code and evaluation the competition finals a surprise en-
vironment will be employed. This is to discourage over-fitting to any particular Duck-
ietown configuration.

18

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/05_other.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/05_other.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/05_other.md
https://hub.docker.com/r/duckietown/

✎

✎

2)2) Submission of entriesSubmission of entries

Participants can submit their code in the form of a docker container to a challenge.
Templates are provided for creating the container image in a conforming way.
The system will schedule to run the submitted robot agent on the cloud on the chal-
lenges selected by the user, and, if simulations pass, in the Autolabs.
Participants can submit entries as many times as they would like, which will be
processed on a best effort basis. Access control and prioritization policies are in place
to provide equal opportunities to all participants and prevent monopolization of the
computational and physical resources available.
Participants are required to open source their solutions source code. If auxiliary train-
ing data are used to train the models, that data must be made available.
Submitted code will be evaluated in simulation and if sufficient on physical Autolabs.
Scores and logs generated with submitted code are made available on the challenges
server.
Simulation code is available as open source for everybody to use on computers that
they control. The baselines interact with the simulator through a standardized inter-
faces that mimics the interface with the real robot.

3)3) AAututolab tolab test and vest and validationalidation

When an experiment is run in a trtraining/taining/testingesting Autolab, the participants receive, in
addition to the score, detailed feedback, including logs, telemetry, videos, etc. The sen-
sory data generated by the robots is continuously recorded and becomes available to
the entire community.

Figure 1.2. Autolab LF-challenge evaluation demo.

When an experiment is run in a vvalidationalidation Autolab, the only output to the user is the
test score and minimal statistics (number of collisions, number of rule violations, etc.).

GENERAL RULES 19

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/05_other.md
https://github.com/duckietown/gym-duckietown/
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/05_other.md
https://challenges.duckietown.org/v4/
https://challenges.duckietown.org/v4/
https://vimeo.com/561305335
https://vimeo.com/561305335

✎

✎

✎

Here are some examples.

4)4) LeaderboarLeaderboardsds

After each run in simulation and in Autolabs, the participants can see the metrics sta-
tistics on the competition scoring website. Extended leaderboards are made available
for each challenge.

1.2.1.2. EligibilityEligibility
Employees and affiliates of organizing and sponsoring organizations are ineligible
from participation in the competition, but they are welcome to submit baseline solu-
tions that will be reported in a special leaderboard.
Students of organizing institutions (ETH Zürich, University of Montreal, and TTIC),
are eligible to participate in the competition as part of coursework, if they do not work
in the organization of the competition.

1.3.1.3. IntIntellectual prellectual propertyoperty
Participants of AI-DO are required to provide the source code / data / learning models
of their submission to the organizers before the finals (so that we can check for their
regularity.)
Winners of AI-DO are required to make their submission open source so that it can be
reused later in the next challenges.

20 GENERAL RULES

https://challenges.duckietown.org/v4/humans/challenges/aido5-LF-real-validation/leaderboard
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/05_other.md
https://challenges.duckietown.org/v4/
https://challenges.duckietown.org/v4/humans/challenges/aido5-LF-sim-validation/leaderboard
https://challenges.duckietown.org/v4/humans/challenges
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/05_other.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/05_other.md

✎

✎

UUNITNIT BB-2-2

PPerformance metricserformance metrics

Measuring performance in robotics is less clear cut and more multidimensional than
traditionally encountered in machine learning settings. Nonetheless, to achieve reli-
able performance estimates we assess submitted code on several episodes with differ-
ent initial settings and compute statistics on the outcomes. We denote to be an ob-
jective or cost function to optimize, which we evaluate for every experiment. In the
following formalization, objectives are assumed to be minimized.
In the following we summarize the objectives used to quantify how well an embodied
task is completed. We will produce scores in three different categories.

ContContentsents
Section 2.1 - Performance criteria (P) .. 2121
Section 2.2 - Traffic law objective (T).. 2222
Section 2.3 - Comfort objective (C) .. 2222

2.1.2.1. PPerformance criterformance criteria (P)eria (P)
As a performance indicator for both the “lane following task” and the “lane following
task with other dynamic vehicles”, we choose the integrated speed along the road
(not perpendicular to it) over time of the Duckiebot. This measures the moved dis-
tance along the road per episode, where we fix the time length of an episode. This en-
courages both faster driving as well as algorithms with lower latency. An episode is
used to mean running the code from a particular initial configuration.

The integral of speed is defined over the traveled distance of an episode up to time
, where is the length of an episode.

The way we measure this is in units of “tiles traveled”:

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/07_measuring.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/07_measuring.md

✎

✎

✎

✎

2.2.2.2. TTrraffaffic laic law objectivw objective (T)e (T)
The following shows rule objectives the Duckiebots are supposed to abide by within
Duckietown. These penalties hold for the embodied tasks (LF, LFV).

1)1) Major infrMajor infractionsactions

This objective means to penalize “illegal” driving behavior. As a cover for many un-
desired behaviors, we count the median time spent oustide of the drivable zones. This
also covers the example of driving in the wrong lane.
Metric: The median of the time spent outside of the drivable zones.

where is the list of accumulated time outside of drivable zones per episode.

2.3.2.3. Comfort objectivComfort objective (C)e (C)
In the single robot setting, we encourage “comfortable” driving solutions. We therefore
penalize large angular deviations from the forward lane direction to achieve smoother
driving. This is quantified through changes in Duckiebot angular orientation
with respect to the lane driving direction.
Lateral deviation:
For better driving behavior we measure the median per episode lateral deviation from
the right lane center line.

where is the sequence of lateral distances from the center line.

22 PERFORMANCE METRICS

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/07_measuring.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/07_measuring.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/07_measuring.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/07_measuring.md

✎

UUNITNIT BB-3-3

ChallengChallengee LF

The first challenge of the AI Driving Olympics is “lane following” (LF).
In this challenge, we ask participants to submit code allowing the Duckiebot to drive
on the right-hand side of the street within Duckietown without a specific goal point.
Duckiebots will drive through the Duckietown and will be judged on how fast they
drive, how well they follow the rules and how smooth or “comfortable” their driving
is.

Figure 3.1. Lane following example submission.

A description of the specific rules is provided.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/35_lf.md
https://vimeo.com/492081180
https://vimeo.com/492081180

✎

✎

Figure 3.2. A Duckiebot following a lane.

The challenge is designed in a way that allows for a completely reactive algorithm de-
sign, i.e., to accomplish the challenge it is not strictly necessary to keep past observa-
tions in memory.
In particular intersections will not be part of maps for this challenge.

3.1.3.1. TTemplatemplates and Baselineses and Baselines
To get started, try one of the existing templates, which are minimal setups that do ran-
dom things but are functions, or the baselines which are instantiations of the tem-
plates that implement some algorithms, but not in an optimal way. Additionally, many
of the past AI-DO winners are in the baseline solutions.

3.2.3.2. LF in Simulationin Simulation

24 CHALLENGE LF

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/35_lf.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/35_lf.md

✎

✎

✎

The current versions of the lane following simulation challenges are aido-LF-sim-
testing and aido-LF-sim-validation . These two challenges are identical except for
the output that you are allowed to see. In the case of testing you will be able to see
performance of your agent (Figure 3.3) and you will be able to download the logs and
artifacts.

Figure 3.3. Visual output for a LF submission

1)1) aido-LF-sim-testing DetailsDetails

• Challenge overview
• Leaderboard
• All submissions
The details for “experiment manager”, “simulator”, and “scenario maker” parameters
may be of interest and are available here (Under “Details”).

2)2) aido-LF-sim-validation DetailsDetails

• Challenge overview
• Leaderboard
• All submissions

3.3.3.3. LF in the Duckietin the Duckietown Aown Aututolabolab
The current version of the lane following real robot challenge is aido-LF-real-vali-
dation .
Note that to test the performance of your agent on the real robot yourself, you can fol-
low the instructions to run your agent on your Duckiebot

CHALLENGE LF 25

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/35_lf.md
https://challenges.duckietown.org/v4/humans/challenges/aido-LF-sim-testing
https://challenges.duckietown.org/v4/humans/challenges/aido-LF-sim-testing/leaderboard
https://challenges.duckietown.org/v4/humans/challenges/aido-LF-sim-testing/submissions
https://challenges.duckietown.org/v4/humans/challenges/aido-LF-sim-testing
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/35_lf.md
https://challenges.duckietown.org/v4/humans/challenges/aido-LF-sim-validation
https://challenges.duckietown.org/v4/humans/challenges/aido-LF-sim-validation/leaderboard
https://challenges.duckietown.org/v4/humans/challenges/aido-LF-sim-validation/submissions
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/35_lf.md

✎1)1) aido-LF-real-validation DetailsDetails

• Challenge overview
• Leaderboard
• All submissions

26 CHALLENGE LF

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/35_lf.md
https://challenges.duckietown.org/v4/humans/challenges/aido-LF-real-validation
https://challenges.duckietown.org/v4/humans/challenges/aido-LF-real-validation/leaderboard
https://challenges.duckietown.org/v4/humans/challenges/aido-LF-real-validation/submissions

✎

✎

UUNITNIT BB-4-4

ChallengChallengee LFV

The second challenge of the AI Driving Olympics is “lane following with dynamic ve-
hicles” (LFV). This challenge is an extension of Challenge LF to include additional
rules of the road and other moving vehicles and static obstacles.

Figure 4.1. A Duckiebot doing lane following with other vehicles.

Again we ask participants to submit code allowing the Duckiebot to drive on the right-
hand side of the street within Duckietown. Due to interactions with other Duckiebots,
a successful solution will likely not be completely reactive.

4.1.4.1. LFV in Simulationin Simulation

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/36_lfv.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/36_lfv.md

✎

✎

✎

The current versions of the lane following with vehicles in simulation are aido2-LFV-
sim-testing and aido2-LF-sim-validation . These two challenges are identical ex-
cept for the output that you are allowed to see. In the case of testing you will be able
to see performance of your agent (Figure 4.2) and you will be able to download the
logs and artifacts.

Figure 4.2. Visual output for a LFV submission.

4.2.4.2. TTemplatemplates and Baselineses and Baselines
To get started, try one of the existing templates, which are minimal setups that do ran-
dom things but are functions, or the baselines which are instantiations of the tem-
plates that implement some algorithms, but probably not in an optimal way. Many of
the past AI-DO winners are in the baseline solutions.

1)1) aido-LFV-sim-testing DetailsDetails

• Challenge overview
• Leaderboard
• All submissions
The details for “experiment manager”, “simulator”, and “scenario maker” parameters
may be of interest and are available here (Under “Details”).

2)2) aido-LFV-sim-validation DetailsDetails

• Challenge overview
• Leaderboard
• All submissions

28 CHALLENGE LFV

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/36_lfv.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/36_lfv.md
https://challenges.duckietown.org/v4/humans/challenges/aido-LFV-sim-testing
https://challenges.duckietown.org/v4/humans/challenges/aido-LFV-sim-testing/leaderboard
https://challenges.duckietown.org/v4/humans/challenges/aido-LFV-sim-testing/submissions
https://challenges.duckietown.org/v4/humans/challenges/aido2-LFV-sim-testing
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/36_lfv.md
https://challenges.duckietown.org/v4/humans/challenges/aido-LFV-sim-validation
https://challenges.duckietown.org/v4/humans/challenges/aido-LFV-sim-validation/leaderboard
https://challenges.duckietown.org/v4/humans/challenges/aido-LFV-sim-validation/submissions

✎

✎

4.3.4.3. LFV in the Duckietin the Duckietown Aown Aututolabolab
The current version of the lane following real robot challenge is aido-LFV-real-val-
idation .
Note that to test the performance of your agent on the real robot yourself, you can fol-
low the instructions to run your agent on your Duckiebot

1)1) aido-LFV-real-validation DetailsDetails

• Challenge overview
• Leaderboard
• All submissions

CHALLENGE LFV 29

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/36_lfv.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/36_lfv.md
https://challenges.duckietown.org/v4/humans/challenges/aido-LFV-real-validation
https://challenges.duckietown.org/v4/humans/challenges/aido-LFV-real-validation/leaderboard
https://challenges.duckietown.org/v4/humans/challenges/aido-LFV-real-validation/submissions

✎

UUNITNIT BB-5-5

ChallengChallengee LFI

The third challenge of the AI Driving Olympics is “lane following with intersections”
(LFI). This challenge is an extension of Challenge LF to include map configurations
that are not just loops but now contain intersections which must be traversed.

Figure 5.1. A Duckiebot following a lane in a Duckietown with intersections.

Again we ask participants to submit code allowing the Duckiebot to drive on the right-
hand side of the street within Duckietown, but now it must also successfully navigate
intersections. Due to interactions with other Duckiebots, a successful solution almost
certainly not be completely reactive.

30

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/37_lfi.md

✎

✎

✎

✎

5.1.5.1. LFI in Simulationin Simulation
The current versions of the lane following with vehicles in simulation are aido-LFI-
sim-testing and aido2-LF-sim-validation . These two challenges are identical ex-
cept for the output that you are allowed to see. In the case of testing you will be able
to see performance of your agent (Figure 5.2) and you will be able to download the
logs and artifacts.

Figure 5.2. Visual output for a LFI submission.

5.2.5.2. TTemplatemplates and Baselineses and Baselines
To get started, try one of the existing templates, which are minimal setups that do ran-
dom things but are functions, or the baselines which are instantiations of the tem-
plates that implement some algorithms, but probably not in an optimal way. Many of
the past AI-DO winners are in the baseline solutions.

1)1) aido-LFI-sim-testing DetailsDetails

• Challenge overview
• Leaderboard
• All submissions
The details for “experiment manager”, “simulator”, and “scenario maker” parameters
may be of interest and are available here (Under “Details”).

2)2) aido-LFI-sim-validation DetailsDetails

• Challenge overview
• Leaderboard

CHALLENGE LFI 31

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/37_lfi.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/37_lfi.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/37_lfi.md
https://challenges.duckietown.org/v4/humans/challenges/aido-LFI-sim-testing
https://challenges.duckietown.org/v4/humans/challenges/aido-LFI-sim-testing/leaderboard
https://challenges.duckietown.org/v4/humans/challenges/aido-LFI-sim-testing/submissions
https://challenges.duckietown.org/v4/humans/challenges/aido-LFI-sim-testing
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/37_lfi.md
https://challenges.duckietown.org/v4/humans/challenges/aido2-LFVI-sim-validation
https://challenges.duckietown.org/v4/humans/challenges/aido2-LFVI-sim-validation/leaderboard

✎

✎

• All submissions

5.3.5.3. LFI in the Duckietin the Duckietown Aown Aututolabolab
The current version of the lane following real robot challenge is aido-LFI-real-val-
idation .
Note that to test the performance of your agent on the real robot yourself, you can fol-
low the instructions to run your agent on your Duckiebot

1)1) aido-LFI-real-validation DetailsDetails

• Challenge overview
• Leaderboard
• All submissions

32 CHALLENGE LFI

https://challenges.duckietown.org/v4/humans/challenges/aido2-LFVI-sim-validation/submissions
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/37_lfi.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/37_lfi.md
https://challenges.duckietown.org/v4/humans/challenges/aido-LFI-real-validation
https://challenges.duckietown.org/v4/humans/challenges/aido-LFI-real-validation/leaderboard
https://challenges.duckietown.org/v4/humans/challenges/aido-LFI-real-validation/submissions

✎

UUNITNIT BB-6-6

ChallengChallengee LFVI-multi-full

The fourth challenge of the AI Driving Olympics is “lane following with dynamic ve-
hicles and intersections” (LFVI). This challenge is an extension of Challenge LF to in-
clude map configurations that are not just loops but now contain intersections which
must be negotiated. Your agent will control all the Duckiebots in the map. We make
things somewhat simpler by providing directly the state information of the Duck-
iebots. As a result, this challenge will only be evaluated in simulation

Figure 6.1. A Duckiebot following a lane following in the presence of other vehicles, in a Duckietown
with intersections.

Again we ask participants to submit code allowing the Duckiebot to drive on the right-
hand side of the street within Duckietown, but now it must also successfully navigate
intersections. Due to interactions with other Duckiebots, a successful solution almost

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/38_lfvi.md

✎

✎

✎

certainly not be completely reactive.

6.1.6.1. LFVI_multi_full in Simulationin Simulation
The current versions of the lane following with vehicles in simulation are aido-
LFVI_multi-sim-testing and aido-LFVI_multi-sim-validation . These two chal-
lenges are identical except for the output that you are allowed to see. In the case of
testing you will be able to see performance of your agent (Figure 6.2) and you will be
able to download the logs and artifacts.

Figure 6.2. Visual output for a LFVI submission.

6.2.6.2. TTemplatemplateses

6.3.6.3. TTemplatemplates and Baselineses and Baselines
To get started, try one of the existing templates, which are minimal setups that do ran-
dom things but are functions, or the baselines which are instantiations of the tem-
plates that implement some algorithms, but probably not in an optimal way. Many of
the past AI-DO winners are in the baseline solutions.
Note that in the case of this challenge you will need to update the protocol that is used.

TODO: provide more details.

tasktask next (1 of 2) index
task

34 CHALLENGE LFVI-MULTI-FULL

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/38_lfvi.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/38_lfvi.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/38_lfvi.md
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/tasks.html

✎

✎

The following was marked as "todo".

TODO: provide more details.

Location not known more precisely.
Created by function n/a in module n/a.

You may also look at the minimal agent with full state information for an example of
how to do this.

1)1) aido-LFVI_multi-sim-testing DetailsDetails

• Challenge overview
• Leaderboard
• All submissions
The details for “experiment manager”, “simulator”, and “scenario maker” parameters
may be of interest and are available here (Under “Details”).

2)2) aido-LFVI_multi-sim-validation DetailsDetails

• Challenge overview
• Leaderboard
• All submissions

CHALLENGE LFVI-MULTI-FULL 35

https://github.com/duckietown/challenge-aido_LF-minimal-agent-full
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/38_lfvi.md
https://challenges.duckietown.org/v4/humans/challenges/aido-LFVI_multi-sim-testing
https://challenges.duckietown.org/v4/humans/challenges/aido-LFVI_multi-sim-testing/leaderboard
https://challenges.duckietown.org/v4/humans/challenges/aido-LFVI_multi-sim-testing/submissions
https://challenges.duckietown.org/v4/humans/challenges/aido2-LFVI-sim-testing
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/38_lfvi.md
https://challenges.duckietown.org/v4/humans/challenges/aido-LFVI_multi-sim-validation
https://challenges.duckietown.org/v4/humans/challenges/aido-LFVI_multi-sim-validation/leaderboard
https://challenges.duckietown.org/v4/humans/challenges/aido-LFVI_multi-sim-validation/submissions

✎

PPARARTT CC

GetGetting Startting Starteded

This part describes the necessary steps to get started competing in the AI-DO. It should
take about 5-20 minutes depending on your specific setup. In short, the steps are the
following:
• Get the needed accounts;
• Make sure you meet the software requirements;
• Make a test submission.

Figure 0.3. Getting Started

At this point you have a fully functioning setup, and you can start to build a solution to
the specific challenge that you interested in. In this section, we provide two additional
quickstart guides as entry points:

ContContentsents
Figure 0.3 - Getting Started
UnitUnit C-1C-1 - AAccounts neededccounts needed.. 3838
UnitUnit C-2C-2 - SoftwSoftwarare re requirequirementsements .. 3939
UnitUnit C-3C-3 - MakMake ye your four first submissionirst submission .. 4343
UnitUnit C-4C-4 - NNeext stxt steps teps towowarards winning the AI-DOds winning the AI-DO.. 4646

36

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/00_part_quickstart.md
https://vimeo.com/477294988
https://vimeo.com/477294988

UnitUnit C-5C-5 - RRun an agun an agent on yent on your Duckiebotour Duckiebot .. 4848
UnitUnit C-6C-6 - Object DetObject Detection Datasetection Dataset .. 5353

GETTING STARTED 37

✎

✎

✎

✎

UUNITNIT C-1C-1

AAccounts neededccounts needed

This section describes the accounts that you need before competing.

1.1.1.1. DockDocker Hub accounter Hub account
A Docker Hub account is necessary to submit container images.
Create an account here. Take note of your USERNAME .

1.2.1.2. DuckietDuckietown accountown account
A Duckietown account is necessary to interact with the challenges server.
Create an account here.

1.3.1.3. Stack OvStack Overflow accounterflow account
We have a Stack Overflow for Duckietown. We will send you an invitation when you
register. Otherwise, please ask us on Slack in the #help-accounts channel.

38

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/01_account.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/01_account.md
https://hub.docker.com/
https://hub.docker.com/
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/01_account.md
https://www.duckietown.org/research/ai-driving-olympics/ai-do-register
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/01_account.md
https://stackoverflow.com/c/duckietown/
https://join.slack.com/t/duckietown/shared_invite/zt-72tpbfth-xsfmv5iDAodqJ6eTFhjd4A
https://duckietown.slack.com/archives/C70CR8TAS

✎

✎

✎

✎

✎

✎

✎

UUNITNIT C-2C-2

SoftwSoftwarare re requirequirementsements

This section describes the required software to participate in the competition.

2.1.2.1. SupportSupported Opered Operating Sating Systystemsems

1)1) Ubuntu 20.04Ubuntu 20.04

Ubuntu 20.04 is the best supported environment. Earlier version might work. Note
that we require an environment with Python 3.8 or higher.

2)2) Other GNU/Linux vOther GNU/Linux versionsersions

Any other GNU/Linux OS with Python of at least version 3.8 should work. However,
to streamline assistance, we only support officially Ubuntu.

3)3) Mac OS XMac OS X

OS X is well-supported; however we don’t have full instructions for certain steps.
(There is so much divergence in how OS X environments are configured.)
We suggest to use pyenv to install Python 3.8.

4)4) WindowsWindows

Windows is currently not supported. We are working on it! Please let us know on Slack
if you can help, in the #devel-wsl channel.

2.2.2.2. DockDockerer
Install Docker from these instructions.
If you want to use a GPU for evaluating your submission, edit your /etc/docker/dae-
mon.json to include the following options.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/02_software.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/02_software.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/02_software.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/02_software.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/02_software.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/02_software.md
https://duckietown.slack.com/archives/C015DQZ4BDE
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/02_software.md
https://docs.docker.com/install/

✎

✎

{
"default-runtime": "nvidia",

"runtimes": {
"nvidia": {

"path": "nvidia-container-runtime",
"runtimeArgs": []

}
},

"node-generic-resources": ["NVIDIA-GPU=0"]
}

NNotote:e: Don’t forget that after you install Docker you need to add user to “docker”
group:

$ sudo adduser `whoami` docker

NNotote:e: you likely know about the first two options default-runtime and runtimes .
Be sure to include also the “unusual” option node-generic-resources : this is need-
ed because the evaluation uses Docker Compose.

2.3.2.3. GitGit
We need Git and Git LFS.
On Ubuntu you can install both using

$ apt-get install git git-lfs

2.4.2.4. DuckietDuckietown Shellown Shell
Install the Duckietown Shell using:

$ pip3 install --user -U duckietown-shell

If you encounter problems look at the Duckietown Shell instructions in the README.

40 SOFTWARE REQUIREMENTS

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/02_software.md
https://git-lfs.github.com/
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/02_software.md
https://github.com/duckietown/duckietown-shell
https://github.com/duckietown/duckietown-shell

✎

✎

Make sure it is installed by using:

$ dts version

Set the daffy command branch:

$ dts --set-version daffy

Update the commands using:

$ dts update

1)1) AAuthentication tuthentication tokokenen

Set the Duckietown authentication token using this command:

$ dts tok set

2)2) DockDocker Hub informationer Hub information

Set your Docker Hub username and password using:

read -p "docker username: " docker_username
read -p "docker password: " docker_password
dts challenges config --docker-username $docker_username --docker-pass-
word $docker_password

You can use an access token instead of a password.
Login to Docker Hub:

$ docker login

NNotote:e: Since November 2, 2020 Docker Hub has implemented tight rate limits for
anonymous accounts. If you experience timeouts in Docker or similar problems, it is
likely because you have not logged in recently. Note that docker login needs to be
repeated every 12 hours.

SOFTWARE REQUIREMENTS 41

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/02_software.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/02_software.md

✎3)3) CheckCheck dts confconfigurigurationation

This command checks that you have a good authentication token:

$ dts challenges info

You should expect an output like:

~ You are succesfully authenticated:
~
~ ID: your numeric ID
~ name: your name
~ login: your account name on Duckietown
~ profile: your website
~
~ You can find the list of your submissions at the page:
~
~ https://challenges.duckietown.org/v4/humans/users/1639

42 SOFTWARE REQUIREMENTS

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/02_software.md

✎

✎

✎

UUNITNIT C-3C-3

MakMake ye your four first submissionirst submission

This section describes the steps to make your first submission.

Knowledge and activity graph

RRequirequires:es: You have set up your accounts.
RRequirequires:es: You have the software requirement.
RResults:esults: You have made a submission to the Lane Following AI-DO challenge, and
you know how to try to make it better.

3.1.3.1. CheckCheckout the submission rout the submission repoepo
Check out the competition template challenge-aido_LF-template-random:

$ git clone https://github.com/duckietown/challenge-aido_LF-template-
random

3.2.3.2. SubmitSubmit
Jump into the directory:

$ cd challenge-aido_LF-template-random

Submit using:

$ dts challenges submit --challenge aido-hello-sim-validation

This does the following:
1. Build a Docker container.
2. Push the Docker container.
3. Make contact with the challenge server to send your submission.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/03_make_a_sub.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/03_make_a_sub.md
https://github.com/duckietown/challenge-aido_LF-template-random
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/03_make_a_sub.md
https://challenges.duckietown.org/v4/

✎

✎

✎

The expected output is something along the lines of:

Sending build context to Docker daemon 5.632kB
...
...
Successfully created submission SUBMISSION_NUMBER

You can track the progress at: https://challenges.duckietown.org/v4/hu-
mans/submissions/ SUBMISSION_NUMBER

You can also use the command:

dts challenges follow --submission SUBMISSION_NUMBER

where SUBMISSION_NUMBER is your submission id.
To understand more about the details of what’s happening here see Unit D-1 - Minimal
pure-Python Template.

3.3.3.3. MonitMonitor the submissionor the submission
There are 2 ways to monitor the submission:
The first way is to use the web interface, at the URL indicated in the terminal.
The second way is to use the dts challenges follow command:

$ dts challenges follow --submission SUBMISSION_NUMBER

3.4.3.4. Look at the leaderboarLook at the leaderboardd
The leaderboard for this challenge is available at the URL

https://challenges.duckietown.org/v4/humans/challenges/aido-hello-
sim-validation/leaderboard

In general all the challenge leaderboards can be viewed at the front page the chal-
lenges website.
All available challenges can be viewed in the comprehensive challenges page.

3.5.3.5. Local evLocal evaluationaluation

44 MAKE YOUR FIRST SUBMISSION

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/03_make_a_sub.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/03_make_a_sub.md
https://challenges.duckietown.org/v4/humans/challenges/aido-hello-sim-validation/leaderboard
https://challenges.duckietown.org/v4/humans/challenges/aido-hello-sim-validation/leaderboard
https://challenges.duckietown.org/v4/
https://challenges.duckietown.org/v4/
https://challenges.duckietown.org/v4/humans/challenges
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/03_make_a_sub.md

✎

You can also evaluate the submission locally. This is useful for debugging and devel-
opment.
Use this command:

$ dts challenges evaluate --challenge aido-hello-sim-validation

3.6.3.6. TTrroubleshootingoubleshooting
If any of the commands above don’t work, it is likely that something related to Docker
permissions is to blame.
If you are using Docker Desktop for Mac OS X you might need to try the following:

SSymptymptom:om: dts challenges submit fails with a permission error on Mac OS X using
Docker Desktop.

RResolution:esolution: Disable gRPC FUSE in Docker Desktop by going to “Preferences” and
unchecking the option “Use gRPC Fuse for file sharing”. Select “Apply and Restart” to
save the changes.
For other issues please ask us on Slack in the #help-accounts channel.

MAKE YOUR FIRST SUBMISSION 45

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/03_make_a_sub.md
https://duckietown.slack.com/archives/C70CR8TAS

✎

✎

✎

✎

UUNITNIT C-4C-4

NNeext stxt steps teps towowarards winning the AI-DOds winning the AI-DO

Now that you have made your first submission using the minimal template, you can
now move on to the next steps.

ContContentsents
Section 4.1 - Understand how the minimal template works .. 4646
Section 4.2 - Select the template that you need .. 4646
Section 4.3 - Try the baselines .. 4646
Section 4.4 - Understand the rules .. 4747
Section 4.5 - Try one of the harder challenges .. 4747

4.1.4.1. Understand how the minimal tUnderstand how the minimal templatemplate we worksorks
The anatomy of the minimal template is explained in Unit D-1 - Minimal pure-Python
Template.
You will understand how the Docker infrastructure works and how to create valid sub-
missions.

4.2.4.2. Select the tSelect the templatemplate that ye that you needou need
The minimal template you tried is a pure-Python template. We offer a few more tem-
plates to try if you want to use a framework.
In particular, you could try:
• the TensorFlow template;
• the PyTorch template;
• the ROS template.

4.3.4.3. TTry the baselinesry the baselines
In Part E - Baseline Algorithms we discuss our “baselines”: submissions that do some-

46

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/15_next_steps.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/15_next_steps.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/15_next_steps.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/15_next_steps.md

✎

✎

thing smart.

4.4.4.4. Understand the rulesUnderstand the rules
You might want to read Part B - The Challenges, which describes in detail how your
score is generated for the specific challenges.

4.5.4.5. TTry one of the harry one of the harder challengder challengeses
In addition to the simple LF challenge you can try the the LFV challenge the LFI chal-
lenge or the LFVI-multi challenge where you have access to the state information.

NEXT STEPS TOWARDS WINNING THE AI-DO 47

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/15_next_steps.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/15_next_steps.md

✎

UUNITNIT C-5C-5

RRun an agun an agent on yent on your Duckiebotour Duckiebot

In this page we will describe how to run your submission on your Duckiebot.

Knowledge and activity graph

RRequirequires:es: You have a Duckiebot. See here for how to acquire a Duckiebot.
RRequirequires:es: You have built your DB19 (unknown r(unknown ref opmanual_duckiebot/assemblingef opmanual_duckiebot/assembling-duck--duck-

iebotiebot-db19)-db19)

previous wwarningarning next (8 of 18) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/assembling-duckiebot-db19'.

Location not known more precisely.
Created by function n/a in module n/a.

or (recommended) DB21 (unknown r(unknown ref opmanual_duckiebot/assemblingef opmanual_duckiebot/assembling-duckiebot-duckiebot-db21)-db21)

previous wwarningarning next (9 of 18) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/assembling-duckiebot-db21'.

Location not known more precisely.
Created by function n/a in module n/a.

Duckiebot. Evaluations will be performed using DB21 Duckiebots.
RRequirequires:es: You have built your Duckietown according to the appearance specifica-

tion (unknown r(unknown ref opmanual_duckietef opmanual_duckietown/dtown/dt-ops-ops-appear-appearanceance-specif-specifications)ications)

previous wwarningarning next (10 of 18) index
warning

48

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/16_lanefollowing_duckiebot.md
https://www.duckietown.org/about/hardware
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckietown/dt-ops-appearance-specifications'.

Location not known more precisely.
Created by function n/a in module n/a.

.
RRequirequires:es: You can connect to your robot wirelessly (unknown r(unknown ref opmanual_duckiebot/ef opmanual_duckiebot/

duckiebotduckiebot-netw-network)ork)

previous wwarningarning next (11 of 18) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/duckiebot-network'.

Location not known more precisely.
Created by function n/a in module n/a.

.
RRequirequires:es: You have made a valid AI-DO submission.
RResults:esults: You have run a submission on your physical Duckiebot.

Figure 5.1. Running your agent on your Duckiebot tutorial.

Warning: Running your AI-DO submission on your robot is currently only support-
ed on Ubuntu (not Mac OSX).

RUN AN AGENT ON YOUR DUCKIEBOT 49

/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html
https://vimeo.com/479462039
https://vimeo.com/479462039

✎

Warning: If everything’s setup right, the procedure is very straightforward. But
things can be hard to troubleshoot because they involve networking.

There are two basic modes that you can use to run a submission.
1. From a local submission folder
2. From an existing image (for example one that you submitted to the AI-DO)

5.1.5.1. VVerifying that yerifying that your Duckiebot is operour Duckiebot is operationalational
When you boot your robot it starts to produce camera imagery and wheel encoder data
(if it’s moving) and waits for incoming motor commands. To verify that your Duck-
iebot is fully operational, you should follow (unknown r(unknown ref opmanual_duckiebot/ref opmanual_duckiebot/rc-contrc-control)ol)

previous wwarningarning next (12 of 18) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/rc-control'.

Location not known more precisely.
Created by function n/a in module n/a.

and (unknown r(unknown ref opmanual_duckiebot/ref opmanual_duckiebot/read-cameread-camera-data)a-data)

previous wwarningarning next (13 of 18) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/read-camera-data'.

Location not known more precisely.
Created by function n/a in module n/a.

.
You should also ensure that your Duckiebot is well calibrated, both camera (unknown(unknown
rref opmanual_duckiebot/cameref opmanual_duckiebot/camera-calib)a-calib)

previous wwarningarning next (14 of 18) index
warning

50 RUN AN AGENT ON YOUR DUCKIEBOT

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/16_lanefollowing_duckiebot.md
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html

✎

✎

✎

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/camera-calib'.

Location not known more precisely.
Created by function n/a in module n/a.

and wheels (unknown r(unknown ref opmanual_duckiebot/wheel-calibref opmanual_duckiebot/wheel-calibration)ation)

previous wwarningarning next (15 of 18) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/wheel-calibration'.

Location not known more precisely.
Created by function n/a in module n/a.

.

5.2.5.2. RRun a local submission on the Duckiebotun a local submission on the Duckiebot
Go into any valid submission folder (i.e., one where you could run dts submit and
you would make a submission) and run:

$ dts duckiebot evaluate --duckiebot_name DUCKIEBOT_NAME

5.3.5.3. RRun an imagun an image that is alre that is already built on the Duckieboteady built on the Duckiebot

$ dts duckiebot evaluate --duckiebot_name !{DUCKIEBOT_NAME] --image IM-
AGE_NAME

5.4.5.4. Local wLocal workflow using the Exorkflow using the Exerercises APIcises API
We have also developed a workflow for submitting exercises (unknown r(unknown ref opmanual_duck-ef opmanual_duck-
iebot/runningiebot/running-e-exxerercises)cises)

RUN AN AGENT ON YOUR DUCKIEBOT 51

/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/16_lanefollowing_duckiebot.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/16_lanefollowing_duckiebot.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/16_lanefollowing_duckiebot.md

previous wwarningarning next (16 of 18) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/running-exercises'.

Location not known more precisely.
Created by function n/a in module n/a.

in the Duckietown MOOC on EdX that may be useful for your development workflow.
Several of the AI-DO templates and baselines are also valid “exercises” and can there-
fore follow this workflow.

52 RUN AN AGENT ON YOUR DUCKIEBOT

/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html
https://www.edx.org/course/self-driving-cars-with-duckietown

✎

✎

✎

UUNITNIT C-6C-6

Object DetObject Detection Datasetection Dataset

6.1.6.1. DownloadDownload
The dataset can be downloaded from here. We provide annotations and sample scripts
for loading the annotations.

6.2.6.2. OvOverviewerview
This dataset consists of 3 categories: traffic cones, duckies, and Duckiebots. All the
dataset images were captured with Duckiebot cameras. We use a combination of im-
ages from the Duckietown logs database and our own captured logs. Images were cap-
tured in different lighting conditions, with different versions of Duckiebot models,
and on different Duckietown maps. Below are some statistics and visualizations of our
dataset:

Number of imagNumber of imageses 1956

Number of object catNumber of object categegoriesories 3

Number of objects annotatNumber of objects annotateded 5068

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/21_object_detection_dataset.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/21_object_detection_dataset.md
https://drive.google.com/drive/folders/1cTBoKrXJb0kajBGxhuBxJpbKaotHPX7O
https://github.com/saryazdi/Duckietown-Object-Detection-LFV/tree/master/OD_scripts
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/21_object_detection_dataset.md
http://logs.duckietown.org/

✎

✎

✎

Figure 6.1

6.3.6.3. CatCategegory Detailsory Details

1)1) TTrraffaffic Conesic Cones

CatCategegory nameory name cone

Number of instancesNumber of instances 372

CatCategegory idory id 1

2)2) DuckiesDuckies

CatCategegory nameory name duckie

54 OBJECT DETECTION DATASET

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/21_object_detection_dataset.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/21_object_detection_dataset.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/21_object_detection_dataset.md

✎

✎

✎

✎

Number of instancesNumber of instances 2570

CatCategegory idory id 2

3)3) DuckiebotsDuckiebots

CatCategegory nameory name Duckiebot

Number of instancesNumber of instances 2126

CatCategegory idory id 3

Number of old Duckiebot instancesNumber of old Duckiebot instances 1419

Number of new Duckiebot instancesNumber of new Duckiebot instances 707

6.4.6.4. Data Loading ScriptsData Loading Scripts
We provide some sample scripts for loading in the dataset here.

6.5.6.5. Data Collection PrData Collection Proceduroceduree
In this work, we first identify the most prominent objects that we see on the roads of
Duckietown: duckies, Duckiebots and traffic cones. To begin our data collection pro-
cedure, we first identify all useful logs from the Duckietown logs database which con-
tain the objects of interest. We then download and trim these logs so that the videos
consist only of frames containing our objects of interest. Finally, we convert our videos
to images (frames) while skipping some number of frames between each image to en-
sure that we get a diverse set of images.
In these logs, there are videos of older versions of Duckiebots with lots of wirings on
them (DB17). However, new Duckiebots are much cleaner with only the battery visi-
ble. To ensure robust detections, we needed to capture this intra-class variation. Thus,
we collected our own logs containing the new Duckiebots. In the final dataset, we have
merged old and new Duckiebots to ensure that we can detect both variations.

Figure 6.2

6.6.6.6. Data Annotation PrData Annotation Proceduroceduree
We used OpenCV’s free CVAT tool to annotate the dataset.

OBJECT DETECTION DATASET 55

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/21_object_detection_dataset.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/21_object_detection_dataset.md
https://github.com/saryazdi/Duckietown-Object-Detection-LFV/tree/master/OD_scripts
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/21_object_detection_dataset.md
http://logs.duckietown.org/
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/21_object_detection_dataset.md
https://github.com/opencv/cvat

Figure 6.3

56 OBJECT DETECTION DATASET

✎

PPARARTT DD

TTemplatemplate Solutionse Solutions

We provide a set of templates for solutions. These templates are fully functional so-
lutions that don’t do anything “smart”. They will get you a valid score on the leader-
board, but it’s unlikely that it will be very good.
Specifically, we provide the following templates:
• Minimal agent template is the most minimal feasible solution for LF* challenges,
• TensorFlow template for making a submission with a tensorflow model to the LF*
challenges,
• PyTorch template for making a submission with a Pytorch model to the LF* chal-
lenges,
• ROS template for making a submission using the robot operating system to the LF*
challenges,

ContContentsents
UnitUnit DD-1-1 - Minimal purMinimal puree-Python T-Python Templatemplatee .. 5858
UnitUnit DD-2-2 - RROS TOS Templatemplatee .. 6262
UnitUnit DD-3-3 - TTensorFlow TensorFlow Templatemplatee.. 6868
UnitUnit DD-4-4 - PyTPyTororch Tch Templatemplatee.. 7171

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/00_part_embodied_tasks.md

✎

✎

UUNITNIT DD-1-1

Minimal purMinimal puree-Python T-Python Templatemplatee

This section describes the contents of the simplest template: a “random” agent.
It can be used as a starting point for any of the LF, LFV, and LFI challenges.

Knowledge and activity graph

RRequirequires:es: That you have setup your accounts.
RRequirequires:es: That you meet the software requirement.
RResults:esults: You make a submission to all of the LF* challenges and can view their
status and output.

Figure 1.1. Minimal Template

1.1.1.1. QuickstartQuickstart
Check out the repository:

$ git clone git@github.com:duckietown/challenge-aido_LF-template-ran-
dom.git

Change into the directory:

58

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/03_template_random.md
https://vimeo.com/477294988
https://vimeo.com/477294988
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/03_template_random.md
https://github.com/duckietown/challenge-aido_LF-template-random

✎

✎

✎

$ cd challenge-aido_LF-template-random

Either make a submission with:

$ dts challenges submit --challenge CHALLENGE_NAME

where you can find a list of the open challenges here.
Or, run local evaluation with:

$ dts challenges evaluate --challenge CHALLENGE_NAME

1)1) VVerify yerify your submission(s)our submission(s)

This will make a number of submissions (as described below). You can track the status
of these submissions in the command line with:

$ dts challenges follow --submission SUBMISSION_NUMBER

or through your browser by navigating the webpage: https://challenges.ducki-
etown.org/v4/humans/submissions/ SUBMISSION_NUMBER where SUBMIS-
SION_NUMBER should be replaced with the number of the submission which is re-
ported in the terminal output.

1.2.1.2. AnatAnatomomy of the submissiony of the submission
The submission consists of the following files:

submission.yaml
Dockerfile
Makefile
requirements.txt
solution.py

1)1) submission.yaml
The file submission.yaml contains the configuration for this submission:

MINIMAL PURE-PYTHON TEMPLATE 59

https://challenges.duckietown.org/v4/humans/challenges
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/03_template_random.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/03_template_random.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/03_template_random.md

✎

✎

challenge: [c1,c2]
protocol: aido2_db18_agent-z2
user-label: random_agent
user-payload:

• With challenge you can list the challenges that you want your submission to be
run on.
• The user-label can be changed to your liking
• The protocol and user-payload should probably be left as they are.

2)2) requirements.txt
This file contains any python requirements that are needed by your code.

3)3) solution.py
The solution.py solution file illustrates the protocol interface.
The important parts are:

def on_received_observations(self, context: Context, data: DB20Observa-
tionsWithTimestamp):

profiler = context.get_profiler()
camera: JPGImageWithTimestamp = data.camera
odometry: DB20OdometryWithTimestamp = data.odometry
context.info(f"camera timestamp: {camera.timestamp}")
context.info(f"odometry timestamp: {odometry.timestamp}")
with profiler.prof("jpg2rgb"):

_rgb = jpg2rgb(camera.jpg_data)

which reads an image whenever one becomes available, and

60 MINIMAL PURE-PYTHON TEMPLATE

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/03_template_random.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/03_template_random.md

def on_received_get_commands(self, context: Context, data: GetCommands):
self.n += 1

behavior = 0 # random trajectory
behavior = 1 # primary motions

if behavior == 0:
pwm_left = np.random.uniform(0.5, 1.0)
pwm_right = np.random.uniform(0.5, 1.0)
col = RGB(0.0, 1.0, 1.0)

elif behavior == 1:
t = data.at_time
d = 1.0

phases = [
(+1, -1, RGB(1.0, 0.0, 0.0)),
(-1, +1, RGB(0.0, 1.0, 0.0)),
(+1, +1, RGB(0.0, 0.0, 1.0)),
(-1, -1, RGB(1.0, 1.0, 0.0)),

]
phase = int(t / d) % len(phases)
pwm_right, pwm_left, col = phases[phase]

else:
raise ValueError(behavior)

led_commands = LEDSCommands(col, col, col, col, col)
pwm_commands = PWMCommands(motor_left=pwm_left, mo-

tor_right=pwm_right)
commands = DB20Commands(pwm_commands, led_commands)
context.write("commands", commands)

which asks for wheel commands to be sent to the robot. Your code must finish by send-
ing the commands to the robot with the context.write command.

MINIMAL PURE-PYTHON TEMPLATE 61

✎

✎

UUNITNIT DD-2-2

RROS TOS Templatemplatee

This section describes the basic procedure for making a submission with an agent us-
ing the Robot Operating System. It can be used as a starting point for any of the LF,
LFV, and LFI challenges.

Knowledge and activity graph

RRequirequires:es: That you have setup your accounts.
RRequirequires:es: That you meet the software requirement.
RRequirequires:es: That you have a basic understanding of ROS.
RResults:esults: You make a submission to all of the LF* challenges and can view their
status and output.

Figure 2.1. ROS template

2.1.2.1. QuickstartQuickstart
Clone the template repo:

$ git clone git@github.com:duckietown/challenge-aido_LF-template-ros.git

Change into the directory:

$ cd challenge-aido-LF-template-ros

62

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_5_template_ros.md
http://www.ros.org/
http://www.ros.org/
https://vimeo.com/478452025
https://vimeo.com/478452025
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_5_template_ros.md
https://github.com/duckietown/challenge-aido_LF-template-ros

✎

✎

Either make a submission with:

$ dts challenges submit --challenge CHALLENGE_NAME

where you can find a list of the open challenges here.
Or, run local evaluation with:

$ dts challenges evaluate --challenge CHALLENGE_NAME

1)1) VVerify the submission:erify the submission:

This will make a number of submissions (as described below). You can track the status
of these submissions in the command line with:

$ dts challenges follow --submission SUBMISSION_NUMBER

or through your browser by navigating the webpage: https://challenges.ducki-
etown.org/v4/humans/submissions/ SUBMISSION_NUMBER

where SUBMISSION_NUMBER should be replaced with the number of the submis-
sion which is reported in the terminal output.

2.2.2.2. AnatAnatomomy of the submissiony of the submission
The submission consists of all of the basic files that required for a basic submission.
Below we will highlight the specifics with respect to this template.
There are also a few other newnew files and folders in this submission:

launchers/
submission_ws/

and additionally the solution.py is inside the submission_ws folder and Dockerfile
have changed. We will describe each of these in detail.

NNotote:e: If you don’t care about the details, or just want to get started, you can start by
adding new ROS packages into the submission_ws .

ROS TEMPLATE 63

https://challenges.duckietown.org/v4/humans/challenges
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_5_template_ros.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_5_template_ros.md

✎

✎

1)1) DockDockerferfileile

The main update here is that we build your catkin workspace inside (the submis-
sion_ws folder) in the Dockerfile:

RUN . /opt/ros/${ROS_DISTRO}/setup.sh && \
. ${CATKIN_WS_DIR}/devel/setup.bash && \
catkin build --workspace /code/submission_ws

Also note that instead of just running solution.py when we enter the container, we
now run a “launcher” (in the launchers folder) called run_and_start.sh . For details
see Subsection 2.2.4 - launchers/.
Also note that in this Dockerfile we are not copying the entire directory over, instead
we are copying files individually (this is actually more efficient). So if you add new
files that you are using that are outside of the submission_ws and launchers folders,
you will have to add additional COPY commands.

2)2) solution.py
YYou prou probably donobably don’’t need tt need to chango change this fe this file.ile.
We instantiate a ROSAgent() (see Subsection 2.2.3 - rosagent.py) and this becomes
the object that handles interfacing with the ROS interface. This includes the publish-
ing of imagery and encoder data to ROS:

64 ROS TEMPLATE

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_5_template_ros.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_5_template_ros.md

✎

def on_received_observations(self, data: DB20ObservationsWithTimestamp,
context: Context):

camera = data.camera
odometry = data.odometry
context.info(f'received obs camera {camera.timestamp} odome-

try {odometry.timestamp}')

if camera.timestamp != self.last_camera_timestamp or True:
self.agent.publish_img(camera.jpg_data, camera.timestamp)
self.agent.publish_info(camera.timestamp)
self.last_camera_timestamp = camera.timestamp

if odometry.timestamp != self.last_odometry_timestamp or True:
self.agent.publish_odometry(

odometry.resolution_rad, odometry.axis_left_rad, odome-
try.axis_right_rad, odometry.timestamp

)
self.last_odometry_timestamp = odometry.timestamp

Notice now that the protocol includes timestamps which are used to tag the data,
and that a new camera image is not published if the timestamp does not change.

3)3) rosagent.py
YYou prou probably donobably don’’t need tt need to chango change this fe this file.ile.
rosagent.py sets up a class that can be used to interface with the rest of the ROS
stack. It is for all intents and purposes a fully functional ROS node except that it isn’t
launched through ROS, it is instantiated in code. This class takes care of a few useful
things, such as getting the correct camera calibration files, subscribing to control com-
mands and sending them to your robot (real or simulated), as well as retreiving the
sensor data from the robot and publishing it to ROS.
The main functions are:
• def publish_img(self, obs: bytes, timestamp: float): , which takes the camera
observation from the environment, and publishes it to the topic that you specify in the
constructor of the ROSAgent

• def publish_odometry(self, resolution_rad: float, left_rad: float,
right_rad: float, timestamp: float): , which take the encoder data from the robot,
and publishes it to the topic specified in the constructor of the ROSAgent .

ROS TEMPLATE 65

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_5_template_ros.md

✎

✎

• def _ik_action_cb(self, msg): , listens on the inverse kinematics action topic,
and assigns it to self.action .

4)4) launchers/
The bash scripts in the launchers directory are there to help you get everything start-
ed when you run your container. In this template there is only run_and_start.sh :

#!/bin/bash

source /environment.sh

source /opt/ros/noetic/setup.bash
source /code/catkin_ws/devel/setup.bash --extend
source /code/submission_ws/devel/setup.bash --extend

set -eux

dt-exec-BG roscore

dt-exec-BG roslaunch --wait random_action random_action_node.launch
dt-exec-FG roslaunch --wait agent agent_node.launch || true

copy-ros-logs

You are free to modify this as you see fit, but a few things are important to consider.
1. The order that we source things matters. If we have a package with the same
name in two workspaces, ROS will run whichever one got soursourced lastced last.
2. If you don’t put things in the background (with dt-exec-BG) then if those com-
mands don’t end, subsequent commands will not get run.
3. The --wait flag in the roslaunch command is recommended so that
roslaunch will wait until the roscore has finished initializing.

5)5) submission_ws/
This is a standard ROS catkin workspace. You can populate it with ROS packages. You
will notice that the random_action package is already in the workspace. This can be
used as a template for creating more packages. The main elements are launch files in
the launch folder (you will see the random_action_node.launch which is launched by

66 ROS TEMPLATE

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_5_template_ros.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_5_template_ros.md
http://wiki.ros.org/ROS/Tutorials/CreatingPackage

the run_and_start.sh launcher), the src folder which contains the ROS nodes, and
the include folder which contains your python includes (you can also write nodes in
C++ or other languages if you prefer).

ROS TEMPLATE 67

✎

✎

UUNITNIT DD-3-3

TTensorFlow TensorFlow Templatemplatee

This section describes the basic procedure for making a submission with a model
trained in using TensorFlow. It can be used as a starting point for any of the LF, LFV,
and LFI challenges.

Knowledge and activity graph

RRequirequires:es: That you have setup your accounts.
RRequirequires:es: That you meet the software requirement.
RRequirequires:es: 9 GB free space.
RResults:esults: You make a submission to all of the LF* challenges and can view their
status and output.

Figure 3.1. TensorFlow Template

3.1.3.1. QuickstartQuickstart
Clone the template repo:

$ git clone git@github.com:duckietown/challenge-aido_LF-template-tensor-
flow.git

Change into the directory:

$ cd challenge-aido_LF-template-tensorflow

68

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_template_tensorflow.md
https://www.tensorflow.org/
https://vimeo.com/481632757
https://vimeo.com/481632757
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_template_tensorflow.md
https://github.com/duckietown/challenge-aido_LF-template-tensorflow

✎

✎

✎

Either make a submission with:

$ dts challenges submit --challenge CHALLENGE_NAME

where you can find a list of the open challenges here.
Or, run local evaluation with:

$ dts challenges evaluate --challenge CHALLENGE_NAME

1)1) VVerify yerify your submission(s)our submission(s)

This will make a number of submissions (as described below). You can track the status
of these submissions in the command line with:

$ dts challenges follow --submission SUBMISSION_NUMBER

or through your browser by navigating the webpage: https://challenges.ducki-
etown.org/v4/humans/submissions/ SUBMISSION_NUMBER

where SUBMISSION_NUMBER should be replaced with the number of the submis-
sion which is reported in the terminal output.

3.2.3.2. AnatAnatomomy of the submissiony of the submission
The submission consists of all of the basic files that required for a basic submission.
Below we will highlight the specifics with respect to this template.

1)1) solution.py
The only difference in solution.py is that we are initializing our model:

TENSORFLOW TEMPLATE 69

https://challenges.duckietown.org/v4/humans/challenges
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_template_tensorflow.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_template_tensorflow.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_template_tensorflow.md

✎

from model import TfInference
define observation and output shapes
self.model = TfInference(observation_shape=(1,) + expect_shape,

this is the shape of the image we
get.

action_shape=(1, 2), # we need to out-
put v, omega.

graph_location='tf_models/') # this
is the folder where our models are stored.

self.current_image = np.zeros(expect_shape)

and then we call our model to compute an action with the following code:

def compute_action(self, observation):
action = self.model.predict(observation)
return action.astype(float)

Note that we also can require the presence of a GPU with the environment variable
AIDO_REQUIRE_GPU and then the solution will fail if a GPU is not found.

2)2) Model fModel filesiles

The other additional files are the following:

tf_models/
model.py

The directory tf_models/ contains the Tensorflow learned models (the ones that you
have trained).
The model.py code is the code that runs the Tensorflow model.

70 TENSORFLOW TEMPLATE

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_template_tensorflow.md

✎

✎

UUNITNIT DD-4-4

PyTPyTororch Tch Templatemplatee

This section describes the basic procedure for making a submission with a model
trained in using PyTorch.
It can be used as a starting point for any of the LF, LFV_multi, and LFI challenges.

Knowledge and activity graph

RRequirequires:es: That you have setup your accounts.
RRequirequires:es: That you meet the software requirement.
RResults:esults: You make a submission to all of the LF* challenges and can view their
status and output.

Figure 4.1. PyTorch Template

4.1.4.1. QuickstartQuickstart
Clone the template repo:

$ git clone git://github.com/duckietown/challenge-aido_LF-template-py-
torch.git

Change into the directory:

$ cd challenge-aido_LF-template-pytorch

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/05_template_pytorch.md
https://pytorch.org/
https://vimeo.com/480202594
https://vimeo.com/480202594
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/05_template_pytorch.md
https://github.com/duckietown/challenge-aido_LF-template-pytorch

✎

✎

✎

Run the submission:
Either make a submission with:

$ dts challenges submit --challenge CHALLENGE_NAME

where you can find a list of the open challenges here.
Or, run local evaluation with:

$ dts challenges evaluate --challenge CHALLENGE_NAME

1)1) VVerify the submission(s)erify the submission(s)

This will make a number of submissions (as described below). You can track the status
of these submissions in the command line with:

$ dts challenges follow --submission SUBMISSION_NUMBER

or through your browser by navigating the webpage: https://challenges.ducki-
etown.org/v4/humans/submissions/ SUBMISSION_NUMBER

where SUBMISSION_NUMBER should be replaced with the number of the submis-
sion which is reported in the terminal output.

4.2.4.2. AnatAnatomomy of the submissiony of the submission
The submission consists of all of the basic files that required for a basic submission.
Below we will highlight the specifics with respect to this template.

1)1) solution.py
The only differences in solution.py (the python script that is run by our submission)
are:
• We conditionally load the model in the initializaiton procedure:

72 PYTORCH TEMPLATE

https://challenges.duckietown.org/v4/humans/challenges
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/05_template_pytorch.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/05_template_pytorch.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/05_template_pytorch.md

✎

self.model = DDPG(state_dim=self.preprocessor.shape, action_dim=2,
max_action=1, net_type="cnn")
self.current_image = np.zeros((640, 480, 3))

if load_model:
logger.info('PytorchRLTemplateAgent loading models')
fp = model_path if model_path else "model"
self.model.load(fp, "models", for_inference=True)

• We abort if no GPU is detected and the environment variable AIDO_REQUIRE_GPU .
• We are calling our model to compute an action with the following code:

def compute_action(self, observation):
action = self.model.predict(observation)
return action.astype(float)

4.3.4.3. Model fModel filesiles
The other addition files are the following:

wrappers.py
model.py
models

wrappers.py contains a simple wrapper for resizing the input image. model.py is
used for training the model, and the models are stored in models .

PYTORCH TEMPLATE 73

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/05_template_pytorch.md

✎

PPARARTT EE

Baseline AlgBaseline Algorithmsorithms

To help competitors get started, we have implemented some baseline algorithms.
These can be built on or used for inspiration. At present, all of these baseline algo-
rithms are for the LF* challenges:

ContContentsents
UnitUnit E-1E-1 - DuckietDuckietown Baselineown Baseline.. 7575
UnitUnit E-2E-2 - RReinforeinforcement Learningcement Learning .. 8383
UnitUnit E-3E-3 - BehaBehavior Cloningvior Cloning .. 8888
UnitUnit E-4E-4 - Dataset AggrDataset Aggregegationation .. 9797
UnitUnit E-5E-5 - RResidual Pesidual Policy Learningolicy Learning.. 103103

74

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/00_part_strategies.md

✎

✎

UUNITNIT E-1E-1

DuckietDuckietown Baselineown Baseline

This section describes the basic procedure for making a submission using the Robot
Operating System and the Duckietown software stack.

Knowledge and activity graph

RRequirequires:es: That you have made a submission with the ROS template and you un-
derstand how it works.
RRequirequires:es: You already know something about ROS.
RResults:esults: You have a competitive submission.

Figure 1.1. ROS template

1.1.1.1. QuickstartQuickstart
Clone this repo

$ git clone git@github.com:duckietown/challenge-aido_LF-baseline-ducki-
etown.git

Change into the directory:

$ cd challenge-aido_LF-baseline-duckietown

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/20_ros_baseline.md
http://www.ros.org/
http://www.ros.org/
https://github.com/duckietown/dt-core
https://vimeo.com/478452025
https://vimeo.com/478452025
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/20_ros_baseline.md
https://github.com/duckietown/challenge-aido_LF-baseline-duckietown

✎

✎

Test the submission, either locally with:

$ dts challenges evaluate --challenge CHALLENGE_NAME

or make an official submission when you are ready with

$ dts challenges submit --challenge CHALLENGE_NAME

You can find the list of challenges here. Make sure that it is marked as “Open”.

1.2.1.2. Baseline DetailsBaseline Details
The “Duckietown” baseline is based on the ROS template.

1)1) DockDockerferfileile

One important fact of the Dockerfile is that we use a “multi-stage build”:

FROM ${DOCKER_REGISTRY}/duckietown/dt-car-interface:${BASE_TAG} AS dt-
car-interface

FROM ${DOCKER_REGISTRY}/duckietown/challenge-aido_lf-template-
ros:${BASE_TAG} AS template

FROM ${DOCKER_REGISTRY}/duckietown/dt-core:${BASE_TAG} AS base

This allows us to take some elements from each of the first two base images, and copy
them into the dt-core image:

COPY --from=dt-car-interface ${CATKIN_WS_DIR}/src/dt-car-interface
${CATKIN_WS_DIR}/src/dt-car-interface
COPY --from=template /data/config /data/config
COPY --from=template /code/rosagent.py .

As a result, we have the calibration files (from /data/config) as well as the
rosagent.py from the challenge-aido_lf-template-ros and all the source files from
the dt-car-interface image.

76 DUCKIETOWN BASELINE

https://challenges.duckietown.org/v4/humans/challenges
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/20_ros_baseline.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/20_ros_baseline.md
https://github.com/duckietown/dt-car-interface

✎

✎

We also get everything that is in the dt-core image.
The remainder of the Dockerfile is very similar to the Dockerfile in the ROS template.

2)2) solution.py
There is no solution.py because it is inherited from the ROS template. In the event
that you wanted to, for example, change the launcher that was run in the final CMD
line.

3)3) launchers/
There is only one “launcher”, and it deviates slightly from the one in the ROS template:

#!/bin/bash

source /environment.sh

source /opt/ros/noetic/setup.bash
source /code/catkin_ws/devel/setup.bash --extend
source /code/solution/devel/setup.bash --extend
source /code/submission_ws/devel/setup.bash --extend

set -eux

dt-exec-BG roscore

dt-exec-BG roslaunch --wait car_interface all.launch veh:="${VEHI-
CLE_NAME}"
dt-exec-BG roslaunch --wait duckietown_demos lane_following.launch

sleep 5 # for some reason we still need this so that nodes can startup
dt-exec-BG roslaunch --wait duckietown_demos set_state.launch
veh:="${VEHICLE_NAME}" state:="LANE_FOLLOWING"

rostopic list
foreground
dt-exec-FG roslaunch --wait agent agent_node.launch || true
rostopic list
copy-ros-logs

Here we launch the lane_following.launch launch file from the duckietown_demos

DUCKIETOWN BASELINE 77

https://github.com/duckietown/dt-core
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/20_ros_baseline.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/20_ros_baseline.md
https://github.com/duckietown/dt-core/blob/daffy/packages/duckietown_demos/launch/lane_following.launch

✎

✎

package. We don’t go into the intricate details of everything that is run in this launch
file here, but some of the more consequential nodes which are getting launched are
the following:
• line_detector_node: Used to detect the lines in the image.
• ground_projection_node: Used to project the lines onto the ground plane using the
camera extrinsic calibration.
• lane_filter_node: Used to take the ground projected line segments and estimate the
Duckiebot’s position and orientation in the lane.
• lane_controller_node: Used to take the estimate of the robot and generate a refer-
ence linear and angular velocities for the Duckiebot.
In the event that you wanted to, for example change the launcher that was run in the
final CMD line.

4)4) submission_ws/
The submission_ws folder contains all the new ROS packages that you would like to
include in your submission. It is currently empty, but there is a reference package in-
cluded in the ROS template.

NNotote:e: Importantly, your submissions_ws is sourced aftafterer the existing catkin_ws that
is included in dt-core . As a result, if you include a node and package in your sub-
mission_ws with the same name as one in dt-core , the one in submission_ws will
get executed. This is convenient because it means that, as long as you adhere to the
same subscriptions and publications, you don’t need to define any new launch file,
lane_following.launch will automatically launch your newly written node.

1.3.1.3. Local DevLocal Development Welopment Workfloworkflow
For rapid local development, you can make use of the dts exercises API (unknown r(unknown refef
opmanual_duckiebot/runningopmanual_duckiebot/running-e-exxerercises)cises)

previous wwarningarning next (17 of 18) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/running-exercises'.

78 DUCKIETOWN BASELINE

https://github.com/duckietown/dt-core/blob/daffy/packages/duckietown_demos/launch/lane_following.launch
https://github.com/duckietown/dt-core/tree/daffy/packages/line_detector
https://github.com/duckietown/dt-core/tree/daffy/packages/ground_projection
https://github.com/duckietown/dt-core/tree/daffy/packages/lane_filter
https://github.com/duckietown/dt-core/tree/daffy/packages/lane_control
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/20_ros_baseline.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/20_ros_baseline.md
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html

✎

✎

Location not known more precisely.
Created by function n/a in module n/a.

, developed to build and test exercises and assignments in class settings.

1)1) Building yBuilding your Codeour Code

From inside the challenge-aido_LF-baseline-duckietown folder, you can start by
building your code with:

$ dts exercises build

This performs catkin build inside a docker container. If you go inside the submis-
sion_ws folder you will notice that there are more folders that weren’t there before.
These are build artifacts that persist from the building procedure because of mount-
ing.

2)2) RRunning in Simulationunning in Simulation

You can run your current solution in the gym simulator with:

$ dts exercises test --sim

Then you can look at what’s happening by looking through the browser at http://local-
host:8087. This will open a noVNC desktop. In it, open up the rqt_image_view , resize
it, and choose /agent/camera_node/image/compressed in the dropdown. You should
see the image from the robot in the simulator.
You might want to launch a virtual joystick by opening a terminal and doing:

$ dt-launcher-joystick

By default the Duckiebot is in joystick control mode, so you can freely drive it around.
You can also set it to LANE FOLLOWING mode by pushing the a button when you have
the virtual joystick active. If you do so you will see the robot move forward slowly and
never turn.
At the same time, you can see a birds eye overview of the Duckiebot on the track
though the browser at http://localhost:8090.

DUCKIETOWN BASELINE 79

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/20_ros_baseline.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/20_ros_baseline.md
http://localhost:8087/
http://localhost:8087/
http://localhost:8090/

✎

✎

3)3) TTesting Yesting Your Algour Algorithm on the Rorithm on the Robotobot

If you are using a Linux laptop, you have two options, local (i.e., on your laptop) and
remote (i.e., on the Duckiebot). To run “locally”

$ dts exercises test --duckiebot_name ROBOT_NAME --local

To run on the Duckiebot:

$ dts exercises test --duckiebot_name ROBOT_NAME

In both cases you should still be able to look at things through noVNC by pointing
your browser to http://localhost:8087 . If you are running on Linux, you can load up
the virtual joystick and start lane following as above.

Warning: If you are Mac user unfortunately you should not use the --local flag
Starting Lane Following on Mac:
TODO: should be retested

previous tasktask (2 of 2) index
task

The following was marked as "todo".

TODO: should be retested

Location not known more precisely.
Created by function n/a in module n/a.

Since we can’t publish from Mac and have it be received by ROS, we have to do some-
thing slightly different. In a new terminal on your Mac do:

$ docker -H ROBOT_NAME .local exec agent launchers/start_lane_follow-
ing.sh

This will run the start_lane_following.sh bash script inside the agent container
which initiates LANE_FOLLOWING mode.
Similarly, you can stop your Duckiebot from lane following by doing:

80 DUCKIETOWN BASELINE

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/20_ros_baseline.md
http://localhost:8087/
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/20_ros_baseline.md
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/tasks.html

✎

✎

$ docker -H ROBOT_NAME .local exec agent launchers/stop_lane_follow-
ing.sh

You could also do an equivalent thing through the Portainer interface in the dashboard
by opening a new terminal in your agent container and running the corresponding
launcher.

4)4) How tHow to Impro Improvove ye your Submissionour Submission

A good way to get started could be to copy one of the packages defined in the Duck-
ietown dt-core repo or the Duckietown dt-car-interface repo into the submission_ws
folder and modify it. Note that your modified package will automatically get run be-
cause of the order of the sourcing of the catkin workspaces in the run_and_start.sh
launch file.
If you would like to add a new package and node that includes a functionality not al-
ready run by lane_following.launch or you would like to change the connectivity of
interfaces of these nodes, then you will also need:
• to write your own launch file that launches your node and also all of the other
nodes from the base images that you would still like to use.
• to modify the launch file run_and_start.sh so that it launches your newly created
launchfile. You could equally define a new launchfile, but then make sure that it gets
executed in the last line of your Dockerfile .

5)5) Other POther Possibly Useful Utilitiesossibly Useful Utilities

All of the normal ROS debugging utilities are available to you through the noVNC
desktop. For example, You might also explore the other outputs that you can look at in
rqt_image_view .
Also useful are some debugging outputs that are published and visualized in RViz .
You can open RViz through the terminal in the noVNC desktop by typing:

$ rviz

In the window that opens click “Add” the switch to the topic tab, then find the seg-
ment_markers , and you should see the projected segments appear. Do the same for the
pose_markers .
Another tool that may be useful is rqt_plot which also can be opened through the

DUCKIETOWN BASELINE 81

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/20_ros_baseline.md
https://github.com/duckietown/dt-core
https://github.com/duckietown/dt-core
https://github.com/duckietown/dt-car-interface
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/20_ros_baseline.md

terminal in noVNC. This opens a window where you can add “Topics” in the text box
at the top left and then you will see the data get plotted live.
All of this data can be viewed as data through the command line also. Take a look at
all of the rostopic command line utilities.

82 DUCKIETOWN BASELINE

✎

✎

UUNITNIT E-2E-2

RReinforeinforcement Learningcement Learning

This section describes the basic procedure for making a submission with a model
trained in simulation using reinforcement learning with PyTorch.

Knowledge and activity graph

RRequirequires:es: That you have made a submission with the PyTorch template.
RRequirequires:es: You should install CUDA10.2+ locally. This baseline works with CUDA
11, and it should also work with CUDA 10.2.
RRequirequires:es: Patience, training RL agents is not easy.
RResults:esults: You have a functional agent trained with RL. Your expectations in regards
to end-to-end RL’s capabilities should be realistic.

Before getting started, you should be aware that RL is very much an active area of re-
search. Simply getting a successful turn with this baseline should be celebrated. It is
still provided to you because this implementation is a good stepping point to other al-
gorithms. We also assume here that you are relatively familiar with the basics of rein-
forcement learning. There are many tutorials and resources, and even complete cours-
es, online for learning about RL, but for a succinct introduction, you can check out the
Reinforcement Learning lecture from the IFT6757 class at the University of Montreal,
or try our reinforcement learning Jupyter notebook which is in the Duckietown exer-
cises repository.
You should also make sure you have access to good hardware. A recent graphics card
(probably GTX1060+) is a must, and more than 8GB of RAM is required.

2.1.2.1. QuickstartQuickstart
Clone this repo

$ git clone git@github.com/duckietown/challenge-aido_LF-baseline-sim-py-
torch.git

Change into the directory:

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/36_rl_baseline.md
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://classe.iro.umontreal.ca/videos/watch/6cd0af06-1ca2-469e-9f70-162afe3b4f51
https://classe.iro.umontreal.ca/videos/watch/1f717ac8-dbc9-4397-9771-a21a10f869a2
https://github.com/duckietown/dt-exercises
https://github.com/duckietown/dt-exercises
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/36_rl_baseline.md
https://github.com/duckietown/challenge-aido_LF-baseline-RL-sim-pytorch

✎

$ cd challenge-aido_LF-baseline-sim-pytorch

Test the submission, either locally with:

$ dts challenges evaluate --challenge CHALLENGE_NAME

or make an official submission when you are ready with

$ dts challenges submit --challenge CHALLENGE_NAME

You can find the list of challenges here. Make sure that it is marked as “Open”.

2.2.2.2. How tHow to To Trrain yain your Pour Policyolicy
The previous uses the model that is included in the baseline repository. You are going
to want to train your own policy.
To do so:
Change into the directory:

$ cd challenge-aido_LF-baseline-RL-sim-pytorch

Install this package:

$ pip3 install -e .

and the gym-duckietown package:

$ pip3 install -e git://github.com/duckietown/gym-ducki-
etown.git@daffy#egg=gym-duckietown

NNotote:e: Depending on your configuration, you might need to use pip instead of pip3
Change into the duckietown_rl directory and run the training script

84 REINFORCEMENT LEARNING

https://challenges.duckietown.org/v4/humans/challenges
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/36_rl_baseline.md

✎

✎

$ cd duckietown_rl
$ python3 -m scripts.train_cnn.py --seed 123

When it finishes, try it out (make sure you pass in the same seed as the one passed to
the training script)

$ python3 -m scripts.test_cnn.py --seed 123

2.3.2.3. How tHow to submit the tro submit the trained policyained policy
Once you’re done training, you need to copy your model and the saved weights of the
policy network.
Specifically if you use this repo then you need to copy the following artifacts into the
corresponding locations of the root directory:
• duckietown_rl/ddpg.py and rename to model.py

• scripts/pytorch_models/DDPG_XXX_actor.pth and DDPG_XXX_critic.pth and re-
name to models/model_actor.pth and models/model_critic.pth respectively, where
XXX is the seed of your best policy
Also, make sure that the root-level wrappers.py contains all the wrappers you used in
duckietown_rl/wrappers.py .
Then edit the solution.py file over to make sure everything is loaded correctly (i.e.,
all the imports point to the right place).
Finally, you evaluate or submit your agent using the process described above in the
Quickstart.

2.4.2.4. How tHow to impro improvove ye your policyour policy
Here are some ideas for improving your policy:
• Check out the DtRewardWrapper and modify the rewards (set them higher or lower
and see what happens)
• Try resizing the images. Make them smaller to speed up training, or bigger for en-
suring that your RL agent can extract everything it can from them. You will need to
also edit the layers in ddpg.py accordingly.
• Try making the observation image grayscale instead of color.

REINFORCEMENT LEARNING 85

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/36_rl_baseline.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/36_rl_baseline.md

✎

• Try stacking multiple images, like 4 monochrome images instead of 1 color image.
You will need to also edit the layers in ddpg.py accordingly.
• You can also try increasing the contrast in the input to make the difference between
road and road-signs clearer. You can do so by adding another observation wrapper.
• Cut off the horizon from the image (and correspondingly change the convnet para-
meters).
• Check out the default hyperparameters in duckietown_rl/args.py and tune them.
For example increase the expl_noise or increase the start_timesteps to get better
exploration.
• (more sophisticated) Use a different map in the simulator, or - even better - use ran-
domized maps. But be mindful that some maps include obstacles on the road, which
might be counter-productive to a LF submission.
• (more advanced) Use a different/bigger convnet for your actor/critic. And add bet-
ter initialization.
• (very advanced) Use the ground truth from the simulator to construct a better re-
ward.
• (extremely advanced) Use an entirely different training algorithm - like PPO, A2C,
or DQN. But this might take significant time, even if you’re familiar with the matter.

2.5.2.5. Sim2RSim2Real Teal Trransfer (Optional)ansfer (Optional)
You should try your agent on the real Duckiebot.
It is possible, even likely, that your agent will not generalize well to the real environ-
ment. One approach to mitigate this problem is to randomize the simulator environ-
ment during training, in the hope that this improves generalization. This approach is
referred to as “Domain Randomization”.
To implement this, you will need to modify the env.py file. You’ll notice that we
launch the Simulator class from gym-duckietown . When we take a look at the con-
structor, you’ll notice that we aren’t using all of the parameters listed. In particular,
the three you should focus on are:
• map_name : What map to use; hint, take a look at gym_duckietown/maps for more
choices
• domain_rand : Applies domain randomization, a popular, black-box, sim2real tech-
nique
• randomized_maps_on_reset : Slows training time, but increases training variety.

86 REINFORCEMENT LEARNING

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/36_rl_baseline.md
https://github.com/duckietown/gym-duckietown/blob/daffy/src/gym_duckietown/simulator.py
https://github.com/duckietown/gym-duckietown/blob/daffy/src/gym_duckietown/simulator.py

✎

✎

Mixing and matching different values for these will help you improve your training di-
versity, and thereby improving your evaluation robustness.
If you’re interested in more advanced techniques, like learning a representation that is
a bit easier for your network to work with, or one that transfers better across the sim-
ulation-to-reality gap, there are some alternative, more advanced methods you may be
interested in trying out.

2.6.2.6. TTrraining headlessaining headless
Should you want to train on a server, you will notice that the simulator requires an X
server to run. Fear not, however, as we can use a fake X server for it.

$ xvfb-run -s "-screen 0 1400x900x24" python3 -m scripts.train_cnn.py --
seed 123

That way, we trick the simulator into thinking that an X server is running. And, to be
honest, from its point of view, it’s actually true!

2.7.2.7. ContrControlling which GPU is being usedolling which GPU is being used
Your machine might have more than one GPU. To select the nth instead of the 0th, you
can use

$ CUDA_VISIBLE_DEVICES=n python3 -m scripts.train_cnn.py --seed 123

This is, of course, combinable with running on a server

$ CUDA_VISIBLE_DEVICES=n xvfb-run -s "-screen 0 1400x900x24" python3 -m
scripts.train_cnn.py --seed 123

REINFORCEMENT LEARNING 87

https://github.com/duckietown/segmentation-transfer
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/36_rl_baseline.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/36_rl_baseline.md

✎

✎

✎

UUNITNIT E-3E-3

BehaBehavior Cloningvior Cloning

In this part, you can find the required steps to make a submission based on Behavior
Cloning with Tensorflow for the lane following task, using data from real world or
simulator data. It can be used as a strong starting point for any of the challenges.

Knowledge and activity graph

RRequirequires:es: That you have made a submission with the tensorflow template.
RResults:esults: You could win the AI-DO!

Figure 3.1. Behavior Cloning

3.1.3.1. IntrIntroductionoduction
This baseline refers to the approach for behavior cloning for autonomous vehicles de-
scribed in this paper: End to End Learning for Self-Driving Cars. It is created by Frank
(Chude Qian) for his submission to AI-DO 3 at NeurIPS 2019. The submission was
very successful on simulator challenge, however, it was not the best for real world
challenges.
A detailed description on the specific implementation for this baseline can be found
on the summary poster here: Teaching Cars to Drive Themselves.

3.2.3.2. QuickstartQuickstart
Clone the baseline Behavior Cloning repository:

88

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://vimeo.com/481632757
https://vimeo.com/481632757
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://images.nvidia.com/content/tegra/automotive/images/2016/solutions/pdf/end-to-end-dl-using-px.pdf
mailto:frank.qian@case.edu
mailto:frank.qian@case.edu
https://doi.org/10.5281/zenodo.3660134
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://github.com/duckietown/challenge-aido_LF-baseline-behavior-cloning

✎

✎

✎

$ git clone -b daffy https://github.com/duckietown/challenge-aido_LF-
baseline-behavior-cloning.git

$ cd challenge-aido_LF-baseline-behavior-cloning

The code is structured into 5 folders:
1. Teach your Duckiebot to drive itself in duckieSchool .
2. (Optional) Store all the logs that can be used for training using duckieLog .
3. Train your model using tensorflow in duickieTrainer .
4. (Optional) Hold all previous models you generated in duckieModels .
5. Submit your submission via duckieChallenger folder.

3.3.3.3. The duckieSchoolThe duckieSchool
In side this folder you find two types of duckieSchool : simulator based duckieGym
and real robot based duckieRoad .

1)1) Installing duckietInstalling duckietown Gymown Gym

To install duckietown Gym and all the necessary dependencies:

pip3 install -r requirements.txt

2)2) Use joystick tUse joystick to drivo drivee

Before you use the script, make sure you have the joystick connected to your computer.
To run the script, use the following command:

$ python3 human.py

The system utilizes an Xbox One S joystick to drive around. Left up and down controls
the speed and right stick left and right controls the velocity. Right trigger enables the
“DRS” mode and allows the vehicle to drive full speed forward. (Note there are no an-
gular acceleration when this mode is enabled).
In addition, every 1500 steps in simulator, the recording will pause and playback. You
will have the chance to review the result and decide whether to keep the log or not.

BEHAVIOR CLONING 89

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://en.wikipedia.org/wiki/Drag_reduction_system

✎

The logs are recorded in two formats: raw_log saves all the raw information for future
re-processing, and traning_data saves the directly feedable log.

3)3) Options for joystick scriptOptions for joystick script

For driving a Duckiebot with a joystick in a simulator, you have the following options:
1. --env-name : currently the default is None .
2. --map-name : This sets the map you choose to run. Currently, it is set as
small_loop_cw .
3. --draw-curve : This draw the lane following curve. Default is set as False . How-
ever, if you are new to the system, you should familiarize yourself with enabling this
option as True .
4. --draw-bbox : This helps draw out the collision detection bounding boxes. Default
is set as False .
5. --domain-rand : This enables domain randomization. Default is set as True .
6. --playback : This enables playback after each record section for you to inspect the
log you just took. Default is set as True .
7. --distortion : This enables distortion to let the view as fisheye lens. Default is set
as True .
8. --raw_log : This enables recording also a high resolution version of the log instead
of the down-sampled version. Default is set as True . NNotote: if ye: if you disable this option,ou disable this option,
plaplayback will be disabled tyback will be disabled toooo..
9. --steps : This sets how many steps to record once. Default is set as 1500 .
10. --nb-episodes : This controls how many episodes (a.k.a. sessions) you drive.
11. --logfile : This specifies where you can store your log file. Default will just save
the log file in the current folder.
12. --downscale : This option currently is disabled.
13. --filter-bad-data : This option allows you to only log driving that is better than
the last state. It uses reward feedback on the duckietown gym for tracking the reward
status.
Additionally, some other features has been hard coded:
1. The training images are stored as YUV color space, you can change it in line 258.
2. The frames are sized as 150x200, per original paper recommendation. This could
be not the most effective resolution.
3. The logger resets if it detects driving out of bounds.

90 BEHAVIOR CLONING

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md

✎

✎

✎

4)4) AAututomatomated log ged log genereneration using puration using pure pursuite pursuit

This baseline also provides an option to automatically generate training samples using
the pure pursuit control algorithm.
The configurable parameters are similar to the human driver agent case described
above.
If you would like to mass generate training samples on a headless server, under the
util folder you will find the necessary tools.
To start pure pursuit data generation:

$ python3 automatic.py

5)5) Log using an actual DuckiebotLog using an actual Duckiebot

To log using an actual Duckiebot, refer to this tutorial on how to get a rosbag on a
duckiebot.
Once you have obtained the ROS bag, you can use the folder duckieRoad to process
that log.

6)6) PrProcess a log frocess a log from an actual Duckiebotom an actual Duckiebot

You will find the following files in the duckieRoad directory.

BEHAVIOR CLONING 91

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://www.coursera.org/lecture/intro-self-driving-cars/lesson-2-geometric-lateral-control-pure-pursuit-44N7x
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/take_a_log.html
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md

.
├── Dockerfile # File that sets up the docker image
|
├── bag_files # Put your ROS bags here.
│ ├── ROSBAG1 # Your ROS bag.
│ ├── ROSBAG2 # Your training on Date 2.
│ └── ...
|
├── converted # Stores the converted log for you
to train the Duckiebot
|
├── src # Scripts to convert ROS bag to
pickle log
│ ├── _loggers.py # Logger used to log the pickle log
│ ├── extract_data_functions.py # Helper function for the script
│ └── extract_data.py # Convertion script. You set your
Duckiebot
| name, and topic to convert here.
|
├── MakeFile # Make file.
├── requirements.txt # Used for docker to setup dependen-
cy
└── pickle23.py # Convert the pickle2 style log pro-
duced to pickle 3

https://docs.duckietown.org/daffy/duckietown-robotics-development/out/
ros_logs.html
YYou should changou should changee extract_data.py line 83 tline 83 to the corro the correctect VEHICLE_NAME..
First put your ROS bags in the bag_files folder. Then:

$ make make_extract_container

Next start the conversion docker:

$ make start_extract_data

It will automatically mount the bags folder as well as the converted folder.

92 BEHAVIOR CLONING

✎

✎

✎

✎

✎

NONOTE: When yTE: When you run the makou run the make fe file, makile, make sure sure ye you arou are in duckieRe in duckieRoad not in the sroad not in the srcc
folder!folder!

3.4.3.4. The duckieLogThe duckieLog
This folder is set for your to put all of your duckie logs. Some helper functions are pro-
vided. However, they might not be the most efficient ones to run. It is here for your
reference.

1)1) The log viewThe log viewerer

To view the logs, under duckieLog folder:

$ python3 util/log_viewer.py --log_name YOUR_LOG_FILE_NAME.log

2)2) The log combinerThe log combiner

To combine the logs, under duckieLog folder:

$ python3 util/log_combiner.py --log1 dataset1.log --log2 dataset2.log
--output newdataset.log

3.5.3.5. The duckieTThe duckieTrrainerainer
This section describes everything you need to know using the duckieChallenger.

1)1) FFolder structurolder structuree

In this folder you can find the following fils:

BEHAVIOR CLONING 93

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md

✎

✎

.
├── __pycache__ # Python Compile stuff.
|
├── trainlogs # Training logs for tfboard.
│ ├── Date 1 # Your training on Date 1.
│ ├── Date 2 # Your training on Date 2.
│ └── ...
|
├── trainedModel # Your trained model is here.
│ ├── FrankNetBest_Loss.h5 # Lowest training loss model.
│ ├── FrankNetBest_Validation.h5 # Lowest validation loss model.
│ └── FrankNet.h5 # The last model of the training.
|
├── frankModel.py # The deep learning model.
├── logReader.py # Helper file for reading the log
├── train.py # The training setup.
├── requirements.txt # Required pip3 packges for training
└── train.log # Your training data.

2)2) EnEnvirvironment Setuponment Setup

To setup your environment, I strongly urge you to train the model using a system with
GPU. Tensorflow and GPU sometimes can be confusing, and I recommend you to re-
fer to tensorflow documentation for detailed information.
Currently, the system requires TensorFlow 2.2.1. To setup TensorFlow, you can refer
to the official TensorFlow install guide here.
Additionally, this training sytem utilizes scikit-learn and numpy . You can find a pro-
vided requirements.txt file that helps you install all the necessary packages.

$ pip3 install -r requirements.txt

3)3) Model AModel Adjustmentdjustment

To change the model, you can modify the frankModel.py file as it includes the model
architecture. Currently it uses a parallel architecture to seperately generate a linear
and angular velocity. It might perform better if they are not setup seperately.
To change your training parameters, you can find EPOCHS, LEARNING RATE, and
BATCH size at the beginning of train.py . You should tweak around these values with
respect to your own provided training data.

94 BEHAVIOR CLONING

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://www.tensorflow.org/install/gpu#ubuntu_1804_cuda_101
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md

✎

✎

✎

✎

4)4) BeforBefore Te Trrainingaining

Before you start training, make sure your log is stored at the root of the duckieTrainer
folder. It should be named as train.log .
Make sure you have saved all the desired trained models into duckieModels. Trust
me you do not want your overnight training overwritten by accident. Yes I have been
through losing my overnight training result.

5)5) TTrrain itain it

To train your model:

$ python3 train.py

To observe using tensorboard, run this command in the duckieTrainer directory:

$ tensorboard --logdir logs

You should be able to also see your training status at http://localhost:6006/ . If
your computer is accessible by other computers, you can also see it by visiting
http://TRAINERIP:6006

6)6) Things tThings to impro improvovee

There are a lot of things could be improved as this is an overnight hack for me. The
data loading could be maybe more efficient. Currently it just load all and stores all in
a global variable. The training loss reference might not be the best. The optimizeer
might be improved. And most importantly, the way of choosing which model to use
could be drastically improved.

7)7) TTrroubeshootingoubeshooting

Symptom: tensorflow.python.framework.errors_impl.InternalError: CUDA run-
time implicit initialization on GPU:0 failed. Status: out of memory

Resolution: Currently there is no known fix other than cross your fingers
and run again and reducing your batch size.

BEHAVIOR CLONING 95

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md

✎

✎

✎

3.6.3.6. The duckieModelsThe duckieModels
This is a folder created just for you to keep track of all your potential models. There is
nothing functional in it.

3.7.3.7. The duckieChallengThe duckieChallengerer
This is the folder where you submit to challenge. The folder is structured as follows:

.
├── Dockerfile # Docker file used for compiling a
container.
| Modify this file if you added file,
etc.
├── helperFncs.py # Helper file for all helper func-
tions.
├── requirements.txt # All required pip3 install.
├── solution.py # Your actual solution
└── submission.yaml # Submission configuration.

After you put your trained model FrankNet.h5 in this folder, you can proceed as nor-
mal submission:

$ dts challenges submit

Or run locally:

$ dts challenges evaluate

An example submission looks like this

3.8.3.8. AAcknowledgcknowledgementement
We would like to thank: Anthony Courchesne and Kay (Kaiyi) Chen for their help and
support during the development of this baseline.

96 BEHAVIOR CLONING

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://challenges.duckietown.org/v4/humans/submissions/11410
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://www.linkedin.com/in/courchesnea/
mailto:kxc581@case.edu

✎

✎

UUNITNIT E-4E-4

Dataset AggrDataset Aggregegationation

This section describes the procedure for training and testing an agent with the gym-
duckietown simulator using the Dagger algorithm.
It can be used as a starting point for any of the LF, LFV, and LFI challenges.

Knowledge and activity graph

RRequirequires:es: You are somewhat familiar with PyTorch and the Pytorch template.
RResults:esults: You could win the AI-DO!

Figure 4.1. Dataset Aggregation (skip to end)

4.1.4.1. IntrIntroductionoduction
We saw a first implementation of imitation learning in the behaviour cloning baseline.
That baseline models the driving task as an end-to-end supervised learning problem
where data can be collected offline from an expert. One of the central issues with this
approach is that of distributional shiftdistributional shift. Since this is a sequential decision making prob-
lem, the training data are not “identically and independently distributed”. The result
is that if your agent deviates from the optimal trajectory that was demonstrated by the
expert, it will not have any data in its dataset that shows it how to recover back to the
optimal trajectory. As a result, it is unlikely that the behiaviour cloning approach will
be robust.
For a better result than behaviour cloning this second version of imitation learning
does not train only on a single trajectory given by the expert. We follow the Dataset Ag-
greagation algorithm (Dagger) where we also let the agent interact with the environ-
ment and allow the expert to recover. The actions between the expert and the learner

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/42_il_sim_dagger.md
https://github.com/duckietown/gym-duckietown
https://github.com/duckietown/gym-duckietown
https://www.cs.cmu.edu/~sross1/publications/Ross-AIStats11-NoRegret.pdf
https://vimeo.com/481632757
https://vimeo.com/481632757
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/42_il_sim_dagger.md
https://www.cs.cmu.edu/~sross1/publications/Ross-AIStats11-NoRegret.pdf

✎

✎

✎

are chosen randomly with a varying probability with the hope that the expert corrects
the learner if it starts deviating from the optimal trajectory.

4.2.4.2. QuickstartQuickstart
Clone this repo:

$ git clone https://github.com/duckietown/challenge-aido_LF-baseline-
dagger-pytorch.git

Change into the directory:

$ cd challenge-aido_LF-baseline-dagger-pytorch

In here you will see two directories submission and learning . To make a submission,
enter the submission folder:

$ cd submission

Then test the submission, either locally with:

$ dts challenges evaluate --challenge CHALLENGE_NAME

or make an official submission when you are ready with

$ dts challenges submit CHALLENGE_NAME

You can find the list of challenges here. Make sure that it is marked as “Open”.

4.3.4.3. Local DevLocal Development Welopment Workfloworkflow
The previous submission used a model which is included in the repo, but you should
try to improve upon it.

1)1) Option 1: TOption 1: Trraining with Collabaining with Collab

98 DATASET AGGREGATION

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/42_il_sim_dagger.md
https://github.com/duckietown/challenge-aido_LF-baseline-dagger-pytorch
https://challenges.duckietown.org/v4/humans/challenges
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/42_il_sim_dagger.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/42_il_sim_dagger.md

✎

✎

We provide a Collab notebook that you can used to get started
During training the loss curve for each episode is available (by default on a folder cre-
ated on root called iil_baseline) and may be checked using tensorboard and spec-
ifying the --logidr . On the same folder you will have data.dat and target.dat
which are the memory maps used by the dataset.

2)2) Option 2: TOption 2: Trraining Locallyaining Locally

Start by cloning the gym-duckietown simulator repo:

$ git clone https://github.com/duckietown/gym-duckietown.git

Change into the directory:

$ cd gym-duckietown

Install the package:

$ pip3 install -e .

To run the baseline training procedure, run:

$ python -m learning.train

in the root directory.

3)3) PPararametameters that can affect trers that can affect trainingaining

There are several optional flags that may be used to modify hyperparameters of the al-
gorithm:
• --episode or -i an integer specifying the number of episodes to train the agent,
defaults to 10.
• --horizon or -r an integer specifying the length of the horizon in each episode,
defaults to 64.
• --learning-rate or -l integer specifying the index from the list [1e-1, 1e-2, 1e-3,
1e-4, 1e-5] to select the learning rate, defaults to 2.

DATASET AGGREGATION 99

https://colab.research.google.com/github/duckietown/challenge-aido_LF-baseline-dagger-pytorch/blob/main/notebook.ipynb
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/42_il_sim_dagger.md
https://github.com/duckietown/gym-duckietown
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/42_il_sim_dagger.md

✎

• --decay or -d integer specifying the index from the list [0.5, 0.6, 0.7, 0.8, 0.85, 0.9,
0.95] to select the initial probability to choose the teacher, the learner.
• --save-path or -s string specifying the path where to save the trained model,
models will be overwritten to keep latest episode, defaults to a file named iil_base-
line.pt on the project root.
• --map-name or -m string specifying which map to use for training, defaults to
loop_empty.
• --num-outputs integer specifying the number of outputs the model will have, can
be modified to train only angular speed, defaults to 2 for both linear and angular speed.
• --domain-rand or -dr a flag to enable domain randomization for the transferabil-
ity to real world from simulation.
• --randomize-map or -rm a flag to randomize training maps on reset.
The baseline model is based on the Dronet model. The feature extractor of the model
is frozen while the classifier is modified for the regression task.
All the PyTorch boilerplate code is encapsulated in the NeuralNetworkPolicy class
implemented on learning/imitation/iil-dagger/learner/neural_network_poli-
cy.py and is based on previous work done by Manfred Díaz on Tensorflow.

4)4) Local ELocal Evvaluationaluation

A simple testing script test.py is provided with this implementation. It loads the lat-
est model from the the provided directory and runs it on the simulator. To test the
model:

$ python -m learning.test --model-path path

The model path flag has to be provided for the script to load the model:
• --model-path or -mp string specifying the path to the saved model to be used in
testing.
Other optional flags that may be used are:
• --episode or -i an integer specifying the number of episodes to test the agent, de-
faults to 10.
• --horizon or -r an integer specifying the length of the horizon in each episode,
defaults to 64.
• --save-path or -s string specifying the path where to save the trained model,
models will be overwritten to keep latest episode, defaults to a file named iil_base-

100 DATASET AGGREGATION

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/42_il_sim_dagger.md

✎

✎

✎

line.pt on the project root.
• --num-outputs integer specifying the number of outputs the model has, defaults to
2.
• --map-name or -m string specifying which map to use for training, defaults to
loop_empty.

5)5) ExpectExpected Red Resultsesults

The following video shows the results for training the agent during 130 episodes and
keeping the rest of the configuration to its default:

Figure 4.2

6)6) Tips tTips to Impro Improvove ye your modelour model

Some ideas on how to improve on the provided baseline:
• Map randomization.
• Domain randomization.
• Better selection than random when switching between expert/learner actions.
• Balancing the loss between going straight and turning.
• Change the task from linear and angular speed to left and right wheel velocities.
• Improving the teacher.

4.4.4.4. RRefereferencesences

DATASET AGGREGATION 101

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/42_il_sim_dagger.md
https://youtu.be/--Cy_EgdrvU
https://youtu.be/--Cy_EgdrvU
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/42_il_sim_dagger.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/42_il_sim_dagger.md

@phdthesis{diaz2018interactive,
title={Interactive and Uncertainty-aware Imitation Learning: Theory

and Applications},
author={Diaz Cabrera, Manfred Ramon},
year={2018},
school={Concordia University}

}

@inproceedings{ross2011reduction,
title={A reduction of imitation learning and structured prediction to

no-regret online learning},
author={Ross, St{\'e}phane and Gordon, Geoffrey and Bagnell, Drew},
booktitle={Proceedings of the fourteenth international conference on

artificial intelligence and statistics},
pages={627--635},
year={2011}

}

@article{loquercio2018dronet,
title={Dronet: Learning to fly by driving},
author={Loquercio, Antonio and Maqueda, Ana I and Del-Blanco, Carlos

R and Scaramuzza, Davide},
journal={IEEE Robotics and Automation Letters},
volume={3},
number={2},
pages={1088--1095},
year={2018},
publisher={IEEE}

}

102 DATASET AGGREGATION

✎

✎

UUNITNIT E-5E-5

RResidual Pesidual Policy Learningolicy Learning

This section describes the basic procedure for making a submission with a model
trained in simulation using residual policy learning with PyTorch and ROS. In this ap-
proach, we use the basic Duckietown lane following stack as the base policy, and we
use reinforcement learning to improve it.

Knowledge and activity graph

RRequirequires:es: That you have made a submission with the ROS template.
RResults:esults: You have a submission that leverages both our ROS stack and reinforce-
ment learning.

Figure 5.1. Residual Policy Learning

Before getting started, you should be aware that this baseline is a combination of the
RL baseline and of the ROS template. It is recommended that you are familar for each
of those templates and baselines, as the workflow of this one is similar to those. Here
are some links:
• RL baseline
• ROS template
• Classical Duckietown baseline
You should also make sure you have access to good hardware. A recent graphics card
(probably GTX1060+) is a must, and more than 8GB of RAM is required.

5.1.5.1. QuickstartQuickstart

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/43_rpl_baseline.md
https://vimeo.com/480202594
https://vimeo.com/480202594
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/43_rpl_baseline.md

✎

To train a policy, you should first make sure that Docker on your machine can access
the GPU/CUDA. You should also install CUDA10.2+ locally.
Here’s a few pointers:
• nvidia-docker
• CUDA 11
Clone this repo:

$ git clone https://github.com/duckietown/challenge-aido_LF-baseline-
RPL-ros.git

Change into the directory:

$ cd challenge-aido_LF-baseline-RPL-ros

Test the submission, either locally with:

$ dts challenges evaluate --challenge CHALLENGE_NAME

or make an official submission when you are ready with

$ dts challenges submit --challenge CHALLENGE_NAME

You can find the list of challenges here. Make sure that it is marked as “Open”.

5.2.5.2. Baseline OvBaseline Overviewerview
Since, this baseline uses both ROS and ML, we need to train inside an environment
where both ROS and PyTorch are installed. We will use Docker for this purpose.
The ROS template already provides us with a submission docker image. Our strategy
here is to directly use that agent docker image during training, but we’ll the addition
of the simulator and the training architecture on top.
This could have been done using a second running docker container to provide a net-
work interface to the simulator, but this adds unnecessary overhead since we don’t ac-
tually need the added security that comes with running things separately.
So, every time we train, we build the agent docker image, and then the “trainer dock-

104 RESIDUAL POLICY LEARNING

https://github.com/NVIDIA/nvidia-docker
https://developer.nvidia.com/cuda-downloads
https://github.com/duckietown/challenge-aido_LF-baseline-RPL-ros
https://challenges.duckietown.org/v4/humans/challenges
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/43_rpl_baseline.md

er” image builds directly FROM the agent image, adding the simulator on top.
The final docker container then runs the simulator and the agent in parallel, allowing
the agent to directly interface with the simulator, just like we do in the other machine
learning baselines.

Figure 5.2. RPL baseline overview

RESIDUAL POLICY LEARNING 105

✎

✎

✎

5.3.5.3. How tHow to tro train yain your policyour policy
From the challenge-aido_LF-baseline-RPL-ros directory, change into the lo-
cal_dev directory:

$ cd local_dev

and open the args.py file. This is how you will control the training and testing in
this repo. For now, just change the --test argument to default=False . Then, we can
train with:

$ make run

As mentioned Section 5.2 - Baseline Overview, this will first build two subsequent
docker images. This might take a while. Then, it will train an RL policy over the ROS
stack inside Docker.
When it finishes, see how it works. Simply change the --test flag back to de-
fault=True in args.py and test with:

$ make run

This will launch a simulator window on your host machine for you to view how your
agent performs. You should see something like this:

Figure 5.3

You can use this gif to gauge how long it takes for the testing docker to start (do note
that this assumes that the two required docker images have already been built!)

5.4.5.4. How tHow to submit the ro submit the rained policyained policy
Make sure that rosagent.py uses the right weights for your RL agent. This is con-
trolled by the MODEL_NAME global variable. Then follow the procedure in Section 5.1 -
Quickstart to evaluate and submit.

5.5.5.5. How tHow to impro improvove ye your policyour policy

106 RESIDUAL POLICY LEARNING

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/43_rpl_baseline.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/43_rpl_baseline.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/43_rpl_baseline.md

First, you should probably improve the base ROS policy. By default, this baseline uses
the basic lane_following demo that is provided in Duckietown (unknown r(unknown ref opmanu-ef opmanu-
al_duckiebot/demoal_duckiebot/demo-lane-lane-following)-following)

previous wwarningarning (18 of 18) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/demo-lane-following'.

Location not known more precisely.
Created by function n/a in module n/a.

.
You could build a Pure Pursuit controller, change the lane filter, etc. See the classical
Duckietown baseline for more ideas. To do this, you would add your new ROS pack-
ages inside of submission_ws .
You could also limit RL’s influence over the final policy. Perhaps the current approach
of giving it full control in [-1,1] action values isn’t restrictive enough. Perhaps it could
be better if it could only change the base policy by smaller action values.
Or perhaps it’s the opposite: maybe the base policy needs to be changed by more than
1 : since the min/max value that the base policy can output is 1 / -1 , the RL policy
would need to be able to output from -2 to 2 to fully correct it.
Here are some ideas for improving your policy:
• Check out the dtRewardWrapper in rl_agent and modify the rewards (set them
higher or lower and see what happens). By default, this wrapper is not used: you will
have to add it to train.py .
• Try resizing the images. Make them smaller to have faster training, or bigger for
making sure that RL can extract everything it can from them. You will need to also ed-
it the layers in ddpg.py accordingly.
• Try making the observation image grayscale instead of color.
• Try stacking multiple images, like 4 monochrome images instead of 1 color image.
You will need to also edit the layers in ddpg.py accordingly.
• You can also try increasing the contrast in the input to make the difference between
road and road-signs clearer. You can do so by adding another observation wrapper.
• Cut off the horizon from the image (and correspondingly change the convnet para-

RESIDUAL POLICY LEARNING 107

/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html

✎

meters).
• Check out the default hyperparameters in local_dev/args.py and tune them. For
example increase the expl_noise or increase the start_timesteps to get better ex-
ploration.
• (more sophisticated) Use a different map in the simulator, or - even better - use ran-
domized maps. But be mindful that some maps include obstacles on the road, which
might be counter-productive to a LF submission.
• (more advanced) Use a different/bigger convnet for your actor/critic. And add bet-
ter initialization.
• (very advanced) Use the ground truth from the simulator to construct a better re-
ward
• (extremely advanced) Use an entirely different training algorithm - like PPO, A2C,
or DQN. Go nuts. But this might take significant time, even if you’re familiar with the
matter.

5.6.5.6. Sim2RSim2Real Teal Trransfer (Optional)ansfer (Optional)
You should try your agent on the real Duckiebot.
It is possible, even likely, that your agent will not generalize well to the real environ-
ment. One approach to mitigate this problem is to randomize the simulator environ-
ment during training, in the hope that this improves generalization. This approach is
referred to as “Domain Randomization”.
To implement this, you will need to modify the local_dev/env.py file. You’ll notice
that we launch the Simulator class from gym-duckietown . When we take a look at the
constructor, you’ll notice that we aren’t using all of the parameters listed. In particular,
the three you should focus on are:
• map_name : What map to use; hint, take a look at gym_duckietown/maps for more
choices
• domain_rand : Applies domain randomization, a popular, black-box, sim2real tech-
nique
• randomized_maps_on_reset : Slows training time, but increases training variety.
Mixing and matching different values for these will help you improve your training di-
versity, and thereby improving your evaluation robustness!

108 RESIDUAL POLICY LEARNING

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/43_rpl_baseline.md
https://github.com/duckietown/gym-duckietown/blob/daffy/src/gym_duckietown/simulator.py
https://github.com/duckietown/gym-duckietown/blob/daffy/src/gym_duckietown/simulator.py

✎

PPARARTT FF

RRefereference manualence manual

We have built some tools and infrastructure to make it easy to build solutions. These
tools may be helpful in building an efficient workflow for developing and testing your
solutions before you submit them.

ContContentsents
UnitUnit FF-1-1 - dts challenges CLICLI .. 110110
UnitUnit FF-2-2 - Using the EUsing the Evvaluataluatoror .. 112112
UnitUnit FF-3-3 - AAdvdvanced submission optionsanced submission options .. 114114

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/00_part_manual.md

✎

✎

✎

✎

✎

UUNITNIT FF-1-1

dts challenges CLICLI

This section is a reference for how to interact with the challenges server with the com-
mand line.

1.1.1.1. AAccount infoccount info
Use this command to see the status of your account:

$ dts challenges info

1.2.1.2. Local evLocal evaluationaluation
The evaluate command allows you to do a local evaluation of your submission:

$ dts challenges evaluate

1.3.1.3. SubmitSubmitting a submissionting a submission
The submit command allows you to submit the solution in the current directory:

$ dts challenges submit

There are many options for this command, explained in Unit F-3 - Advanced submis-
sion options.

1.4.1.4. List submissionsList submissions
The list command allows you to see all of your submissions:

$ dts challenges list

110

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/30_sub_references.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/30_sub_references.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/30_sub_references.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/30_sub_references.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/30_sub_references.md

✎

✎

✎

✎

1.5.1.5. RReset a submissioneset a submission
Resetting a submission means that you discard the evaluations already perfomed and
you force them to be done again.

$ dts challenges reset --submission ID

1.6.1.6. RRetiretire a submissione a submission
Retiring a submission means that you declare the submission void. It will not be eval-
uated and previous results will be discarded.

$ dts challenges retire --submission ID

1.7.1.7. FFollow the fatollow the fate of a submissione of a submission
The follow command polls the server to see whether there are updates:

$ dts challenges follow --submission ID

1.8.1.8. DefDefining a challengining a challengee
The define command allows to define a challenge:

$ dts challenges define

DTS CHALLENGES CLI 111

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/30_sub_references.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/30_sub_references.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/30_sub_references.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/30_sub_references.md

✎

✎

✎

✎

✎

UUNITNIT FF-2-2

Using the EUsing the Evvaluataluatoror

This section describes how to use the Challenges evaluators.

2.1.2.1. EEvvaluataluatorsors
An evaluator is a machine that is in charge of evaluating the protocols.

2.2.2.2. RRunning yunning your own evour own evaluataluatoror
We have several evaluators online that process jobs.
If you want to avoid waiting in the queue for to long, you can run your own evaluator.
The command line is:

$ dts challenges evaluator --continuous

This evaluator will connect to the server and eexxecutecute pre prefereferentially yentially your submissionsour submissions.

2.3.2.3. AAdvdvanced options for evanced options for evaluataluatoror

1)1) NNaming evaming evaluataluatoror

Use the option --name to name the evaluator instance:

$ dts challenges evaluator --name a name

Otherwise the name is going to be autogenerated.
For example:

$ dts challenges evaluator --name Instance1 &
$ dts challenges evaluator --name Instance2 &

112

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/35_evaluator.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/35_evaluator.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/35_evaluator.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/35_evaluator.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/35_evaluator.md

✎2)2) RRun a specifun a specific submissionic submission

Run the evaluator on a specific submission:

$ dts challenges evaluator --submission ID

This evaluates a specific submission.
Note that to force re-evaluation of a submission, you must first reset the submission.
Also note that you cannot re-evaluate a submission that has been “retired”.

USING THE EVALUATOR 113

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/35_evaluator.md

✎

✎

✎

UUNITNIT FF-3-3

AAdvdvanced submission optionsanced submission options

This section describes additional options for the dts challenges submit command.

3.1.3.1. submission.yaml ffileile
Each submission directory has a file submission.yaml containing the following infor-
mation:

protocol: protocol # do not change
challenge: challenge name(s)
user-label: optional label
user-payload: optional user payload

You can override these using the command line, as explained below.

3.2.3.2. Specifying the challengSpecifying the challengee
However you can also pass the name as a parameter --challenge :

$ dts challenges submit --challenge challenge name

The names of the challenges can be seen at this page.
For example, if you would only like to submit to submit to LF validation system, you
can do it as:

$ dts challenges submit --challenge aido3-LF-sim-validation

If you would like to submit to multiple specific challenges, you can do it in the yaml
file:

protocol: aido2_db18_agent-z2 # do not change
challenge: [challenge1_name,challenge2name,...]

114

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/37_submit_advanced.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/37_submit_advanced.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/37_submit_advanced.md
https://challenges.duckietown.org/v4/humans/challenges

✎

✎

3.3.3.3. MetadataMetadata
You can attach two pieces of metadata to your submission.
1. A human-readable label for your identification.
2. A small JSON payload that describes the details of your submission, such as the
parameters that you used for your algorithm.
To specify the label, use the option --user-label :

$ dts challenges submit --user-label "My label"

To specify the payload, use the option --user-meta and specify a JSON structure:

$ dts challenges submit --user-meta '{"param":"1"}

3.4.3.4. Skip DockSkip Docker cacheer cache
Use the option --no-cache to avoid using the Docker cache and re-build your con-
tainers from scratch:

$ dts challenges submit --no-cache

ADVANCED SUBMISSION OPTIONS 115

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/37_submit_advanced.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/37_submit_advanced.md

✎

PPARARTT GG

RRefereferencesences

[1] Edwin Olson. AprilTag: A robust and flexible visual fiducial system. In IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 3400–3407, 2011.
[2] Daniel Pickem, Paul Glotfelter, Li Wang, Mark Mote, Aaron Ames, Eric Feron, and Magnus Egerst-
edt. The Robotarium: A remotely accessible swarm robotics research testbed. In Robotics and Automa-
tion (ICRA), 2017 IEEE International Conference on, pages 1699–1706. IEEE, 2017.

116

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/90_back_matter.md

	The AI Driving Olympics
	Introduction
	Quick links
	AI-DO 6 Urban League Challenges
	Computational resources
	Evaluation metrics

	The AI Driving Olympics
	History
	Leagues
	What’s new in the Urban League in AI-DO 6
	How to use this documentation
	How to get help
	How to cite

	The Duckietown Platform
	The Duckietown Platform
	Duckiebots and Duckietowns
	The Duckiebot
	The Duckietown
	Simulation
	Duckietown Autolabs

	The Challenges
	General rules
	Protocol
	Deployment technique
	Submission of entries
	Autolab test and validation
	Leaderboards

	Eligibility
	Intellectual property

	Performance metrics
	Performance criteria (P)
	Traffic law objective (T)
	Major infractions

	Comfort objective (C)
	Lateral deviation

	Challenge LF
	Templates and Baselines
	LF in Simulation
	aido-LF-sim-testing Details
	aido-LF-sim-validation Details

	LF in the Duckietown Autolab
	aido-LF-real-validation Details

	Challenge LFV
	LFV in Simulation
	Templates and Baselines
	aido-LFV-sim-testing Details
	aido-LFV-sim-validation Details

	LFV in the Duckietown Autolab
	aido-LFV-real-validation Details

	Challenge LFI
	LFI in Simulation
	Templates and Baselines
	aido-LFI-sim-testing Details
	aido-LFI-sim-validation Details

	LFI in the Duckietown Autolab
	aido-LFI-real-validation Details

	Challenge LFVI-multi-full
	LFVI_multi_full in Simulation
	Templates
	Templates and Baselines
	aido-LFVI_multi-sim-testing Details
	aido-LFVI_multi-sim-validation Details

	Getting Started
	Accounts needed
	Docker Hub account
	Duckietown account
	Stack Overflow account

	Software requirements
	Supported Operating Systems
	Ubuntu 20.04
	Other GNU/Linux versions
	Mac OS X
	Windows

	Docker
	Git
	Duckietown Shell
	Authentication token
	Docker Hub information
	Check dts configuration

	Make your first submission
	Checkout the submission repo
	Submit
	Monitor the submission
	Look at the leaderboard
	Local evaluation
	Troubleshooting

	Next steps towards winning the AI-DO
	Understand how the minimal template works
	Select the template that you need
	Try the baselines
	Understand the rules
	Try one of the harder challenges

	Run an agent on your Duckiebot
	Verifying that your Duckiebot is operational
	Run a local submission on the Duckiebot
	Run an image that is already built on the Duckiebot
	Local workflow using the Exercises API

	Object Detection Dataset
	Download
	Overview
	Category Details
	Traffic Cones
	Duckies
	Duckiebots

	Data Loading Scripts
	Data Collection Procedure
	Data Annotation Procedure

	Template Solutions
	Minimal pure-Python Template
	Quickstart
	Verify your submission(s)

	Anatomy of the submission
	submission.yaml
	requirements.txt
	solution.py

	ROS Template
	Quickstart
	Verify the submission:

	Anatomy of the submission
	Dockerfile
	solution.py
	rosagent.py
	launchers/
	submission_ws/

	TensorFlow Template
	Quickstart
	Verify your submission(s)

	Anatomy of the submission
	solution.py
	Model files

	PyTorch Template
	Quickstart
	Verify the submission(s)

	Anatomy of the submission
	solution.py

	Model files

	Baseline Algorithms
	Duckietown Baseline
	Quickstart
	Baseline Details
	Dockerfile
	solution.py
	launchers/
	submission_ws/

	Local Development Workflow
	Building your Code
	Running in Simulation
	Testing Your Algorithm on the Robot
	Starting Lane Following on Mac

	How to Improve your Submission
	Other Possibly Useful Utilities

	Reinforcement Learning
	Quickstart
	How to Train your Policy
	How to submit the trained policy
	How to improve your policy
	Sim2Real Transfer (Optional)
	Training headless
	Controlling which GPU is being used

	Behavior Cloning
	Introduction
	Quickstart
	The duckieSchool
	Installing duckietown Gym
	Use joystick to drive
	Options for joystick script
	Automated log generation using pure pursuit
	Log using an actual Duckiebot
	Process a log from an actual Duckiebot

	The duckieLog
	The log viewer
	The log combiner

	The duckieTrainer
	Folder structure
	Environment Setup
	Model Adjustment
	Before Training
	Train it
	Things to improve
	Troubeshooting

	The duckieModels
	The duckieChallenger
	Acknowledgement

	Dataset Aggregation
	Introduction
	Quickstart
	Local Development Workflow
	Option 1: Training with Collab
	Option 2: Training Locally
	Parameters that can affect training
	Local Evaluation
	Expected Results
	Tips to Improve your model

	References

	Residual Policy Learning
	Quickstart
	Baseline Overview
	How to train your policy
	How to submit the rained policy
	How to improve your policy
	Sim2Real Transfer (Optional)

	Reference manual
	dts challenges CLI
	Account info
	Local evaluation
	Submitting a submission
	List submissions
	Reset a submission
	Retire a submission
	Follow the fate of a submission
	Defining a challenge

	Using the Evaluator
	Evaluators
	Running your own evaluator
	Advanced options for evaluator
	Naming evaluator
	Run a specific submission

	Advanced submission options
	submission.yaml file
	Specifying the challenge
	Metadata
	Skip Docker cache

	References

