The AI Driving Olympics .

[=h=® |

Contents

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/00_book_AIDO.md

Part G - References

PART A
Introduction .

Contents

Subsection 0.0.1 - Quick links
Subsection 0.0.2 - AI-DO 6 Urban League Challenges

Subsection 0.0.3 - Computational resources
Subsection 0.0.4 - Evaluation metrics

Unit A-1 - The AI Driving Ol ICS . ureeereienneeerieeeeeetaeeeneeeeteeeneeeneeeneeeneeenneens 5

For a detailed description of the scientific objectives and outcomes please see our pa-
per about the AI-DO at NeurIPS.

1) Quick links N

There are different challenges, different computational resource regimes and different
performance categories in this competition.

+ Get started with your code submission

2) AI-DO 6 Urban League Challenges N

« Lane following (LF)
+ Lane following with vehicles (LFV)
+ Lane following with intersections (LFVI)

+ Lane following with multiple vehicles and intersections where state information is
given (LFVI-multi-stateful)

3) Computational resources

« Purist option - RaspberryPi 3B+ (discontinued from AI-DO 6)
« Purist option - Jetson Nano (2 GB and 4 GB version)
« Remote option

Note that during the AI-DO 6 finals, the submissions will be run remotely.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/10_part_motivation.md
https://arxiv.org/pdf/1903.02503.pdf
https://arxiv.org/pdf/1903.02503.pdf
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/10_part_motivation.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/10_part_motivation.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/10_part_motivation.md

4 INTRODUCTION

4) Evaluation metrics

For details about the evaluation metrics please refer to the performance metrics

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/10_part_motivation.md

UNIT A-1
The AI Driving Olympics)

The Al Driving Olympics (AI-DO) is a set of competitions with the objective of evalu-
ating the state of the art in machine learning and artificial intelligence for mobile ro-
botics.

For a detailed description of the scientific objectives and outcomes please see our pa-
er about the AI-DO at NeurIPS.

\ |
\ \

Figure 1.1. The AI Driving Olympics at ICRA 2020

Contents
Figure 1.1 - The AI Driving Olympics at ICRA 2020

Section 1.4 - How to use this documentationc..ccceceeeevveereeeneeeneeeneennennee.. 7
HOW t0 S8t NEIP eiiiueiiiiiiiieeeeeeeeeeeeeeeee e 7
1.1. History .

« AI-DO 1 was in conjunction with NeurIPS 2018.
« AI-DO 2 was in conjunction with ICRA 2019.
« AI-DO 3 was in conjunction with NeurIPS 2019.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/15_welcome.md
https://driving-olympics.ai/
https://arxiv.org/pdf/1903.02503.pdf
https://arxiv.org/pdf/1903.02503.pdf
https://vimeo.com/629305710
https://vimeo.com/629305710
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/15_welcome.md

6 THE AI DRIVING OLYMPICS

« AI-DO 4 was supposed to be in conjunction with ICRA 2020, but was canceled due
to COVID-19.

« AI-DO 5 was in conjunction with NeurIPS 2020.
« AI-DO 6is in conjunction with NeurIPS 2021.

Figure 1.2. Where it all started: AI-DO 1 at NeurIPS 2018 in Montreal.

1.2. Leagues .
There are currently three leagues in the AI Driving Olympics.

The Urban League is based on the Duckietown platform, and includes a series of tasks
of increasing complexity. For each task, we provide tools for competitors to use in the
form of simulators, logs, code templates, baseline implementations and low-cost ac-
cess to robotic hardware. We evaluate submissions in simulation online, on standard-
ized hardware environments, and finally at the competition event.

Participants will not need to be physically present at any stage of the competition —
they will just need to send their source code.

There will be qualifying rounds in simulation, similar to recent DARPA Robotics Chal-
lenges, and, for evaluation, we make available the use of “Duckietown Autolabs (un-
known ref opmanual autolab/book)

warning next (1 of 18) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual autolab/book'.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/15_welcome.md
https://duckietown.org/
https://www.subtchallenge.com/
https://www.subtchallenge.com/
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html

THE AI DRIVING OLYMPICS 7

Location not known more precisely.
Created by function n/a in module n/a.

” which are facilities that allow remote experimentation in a reproducible setting.

See the leaderboards and many other things at the challenges site.

The Advanced Perception League is organized by Motional (ex nuTonomy, Aptiv Mo-
bility).

All information about the Advanced Perception League is at nuScenes.org.

The Racing League is organized by the AWS Deepracer team. All information about
the racing league is available on aicrowd.com.

1.3. What’s new in the Urban League in AI-DO 6 .

There have been cool new improvements for the 6th edition of the AI-DO Urban
League:
« The challenges are now compatible the new DB21 Duckiebots that have Jetson

Nanos with GPUs and were used for the Self-Driving Cars with Duckietown MOOC
on EdX.

1.4. How to use this documentation .
If you would like to compete in the AI-DO Urban League, you will want to:

» Read the brief introduction to the competition.

+ Find the challenge that you would like to try.
o Get started and make a submission.

At this point you are all set up: your environment is operational, and you can make
a submission. But you should want to make your submission perform better than the
provided baselines.

To do this the following tools might prove useful:
+ The AIDO API so that your workflow is efficient using the available tools.

« The reference algorithms where we have implemented some different approaches
to approach the challenges.

How to get help .

https://challenges.duckietown.org/
https://motional.com/
https://nuscenes.org/
https://www.aicrowd.com/challenges/neurips-2021-aws-deepracer-ai-driving-olympics-challenge
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/15_welcome.md
https://get.duckietown.com/products/duckiebot-db21-m
https://www.edx.org/course/self-driving-cars-with-duckietown
https://www.edx.org/course/self-driving-cars-with-duckietown
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/15_welcome.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/15_welcome.md

8 THE AI DRIVING OLYMPICS

If you are stuck try one of the following things:

« Look through the contents of this documentation using the links on the left. Note
that the “Parts” have many “Chapters” that you can see when you click on the Part
title,

« Join our slack community,
» Look on the Duckietown Stack Overflow to see if someone already answered your
question (you can ask to be invited in the Slack channel #help-accounts)

« Ifyou are sure you actually found a bug, file a Github issue in the appropriate repo.

How to cite .
If you use the AI-DO platform in your work and want to cite it please use:

@article{zilly2019ai,

title={The AI Driving Olympics at NeurIPS 2018},

author={Julian Zilly and Jacopo Tani and Breandan Considine and
Bhairav Mehta and Andrea F. Daniele and Manfred Diaz and Gianmarco
Bernasconi and Claudio Ruch and Jan Hakenberg and Florian Golemo and A.
Kirsten Bowser and Matthew R. Walter and Ruslan Hristov and Sunil
Mallya and Emilio Frazzoli and Andrea Censi and Liam Paull},

journal={arXiv preprint arXiv:1903.02503},

year={2019}
)

If you use the Duckietown platform in your work and want to cite it please use:

https://join.slack.com/t/duckietown/shared_invite/enQtNTU0Njk4NzU2NTY1LWM2YzdlNmJmOTg4MzAyODc2YTI3YTc5MzE2MThkZGUwYTFkZWQ4M2ZlZGU1YTZhYjg5YTgzNDkyMzI2ZjNhZWE
https://stackoverflow.com/c/duckietown/
https://duckietown.slack.com/archives/C70CR8TAS
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/15_welcome.md

THE AI DRIVING OLYMPICS

@INPROCEEDINGS{PaullICRA2017,

author={Paull, Liam and Tani, Jacopo and Ahn, Heejin and Alonso-Mo-
ra, Javier and Carlone, Luca and Cap, Michal and Chen, Yu Fan and Choi,
Changhyun and Dusek, Jeff and Fang, Yajun and Hoehener, Daniel and Liu,
Shih-Yuan and Novitzky, Michael and Okuyama, Igor Franzoni and Pazis,
Jason and Rosman, Guy and Varricchio, Valerio and Wang, Hsueh-Cheng and
Yershov, Dmitry and Zhao, Hang and Benjamin, Michael and Carr, Christo-
pher and Zuber, Maria and Karaman, Sertac and Frazzoli, Emilio and Del
Vecchio, Domitilla and Rus, Daniela and How, Jonathan and Leonard, John
and Censi, Andrea},

booktitle={2017 IEEE International Conference on Robotics and Au-
tomation (ICRA)}, title={Duckietown: An open, inexpensive and flexible
platform for autonomy education and research},

year={2017},

volume=,

number=,

pages={1497-1504},

10

UNIT A-2
The Duckietown Platform .

The Duckietown platform has many components.

This section focuses on the physical platform used for the embodied robotic chal-
lenges.

For examples of Duckiebot driving see a set of demo videos of Duckiebots driving in
Duckietown (unknown ref opmanual duckiebot/demos)

previous warning next (2 of 18) index
warning

I will ignore this because it is an external link.
> I do not know what is indicated by the link '#op-
manual_duckiebot/demos"'.

Location not known more precisely.
Created by function n/a in module n/a.

The actual embodied challenges will be described in more detail in LF, LFV, LFL.

Note: the sequence of the challenges was chosen to gradually increase the difficulty,
by extending previous challenge solutions to more general situations. We recom-
mend you tackle the challenges in this same order.

Contents

Section 2.1 - The Duckietown Platform.......cceceeeeeeieeeieneiieiieeieiineieneennee.

Section 2.2 - Duckiebots and Duckietowns

2.1. The Duckietown Platform .
There are three main parts of the platform with which you will interact:

1. Simulation and training environment, which allows testing in simulation before
trying on the real robots.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/35_embodied_tasks.md
https://www.duckietown.org/platform
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/35_embodied_tasks.md

THE DUCKIETOWN PLATFORM 11

2. Duckietown Autolabs in which to try the code in controlled and reproducible con-
ditions.
3. Physical Duckietown platform: miniature autonomous vehicles and smart-cities

in which the vehicles drive. The Duckiebots (unknown ref opmanual duckiebot/duckiebot-
configurations)

previous warning next (3 of 18) index

warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual duckiebot/duckiebot-configurations'.

Location not known more precisely.
Created by function n/a in module n/a.

(robot hardware) and Duckietown (environment) are rigorously specified (unknown ref

opmanual duckietown/dt-ops-appearance-specifications

previous warning next (4 of 18) index

warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual duckietown/dt-ops-appearance-specifications'.

Location not known more precisely.
Created by function n/a in module n/a.

, which makes the development extremely repeatable. If you have a Duckiebot you can

refer to the Duckiebot operational manual (unknown ref opmanual duckiebot/book)

previous warning next (5 of 18) index

warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual duckiebot/book"'.

Location not known more precisely.
Created by function n/a in module n/a.

/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html

12 THE DUCKIETOWN PLATFORM

for step-by-step instructions on how to assemble, maintain, calibrate and operate your
robot. If you would like to acquire a Duckiebot please go to the Duckietown project
store.

The Duckiebots officially supported for AI-DO 6 (2021) are the bB21 Duckiebots. We
recommend you build your Duckietowns according to the specifications, too. The nec-
essary materials can be sourced locally pretty much globally - but if you want compli-
ant “one-click” AI-DO kits for each challenge you can get them from here:

e« LF AI-DO 6 hardware kit
e LFV AI-DO 6 hardware kit
o LFI AI-DO 6 hardware kit

For any questions regarding Duckietown hardware you can reach out to hard-
ware@duckietown.com.

2.2. Duckiebots and Duckietowns N

We briefly describe the physical Duckietown platform, which comprises autonomous
vehicles (Duckiebots) and a customizable model urban environment (Duckietown).

1) The Duckiebot «

Duckiebots are designed with the objectives of affordability, modularity and ease of
construction. They are equipped with: a front viewing camera with 160 degrees fish-
eye lens capable of streaming 0 0 resolution images reliably at 30 fps, and wheel
encoders on the motors. DB21 Duckiebots are equipped with IMUs and front facing
time of flight sensors too.

Actuation is provided through two DC motors that independently drive the front
wheels (differential drive configuration), while the rear end of the Duckiebot is
equipped with a passive omnidirectional wheel.

All the computation is done onboard on a: - DB19: Raspberry Pi 3B+ computer, - DB21:
Jetson Nano 2 GB (DB21M) or Jetson Nano 4 GB (DB21J).

Power is provided by a 0000 mAh Duckiebattery (unknown ref opmanual duckiebot/db-op-
manual-preliminaries-electronics)

previous warning next (6 of 18) index
warning

https://get.duckietown.com/
https://get.duckietown.com/
https://get.duckietown.com/collections/dt-robots/products/duckiebot-db21-m
https://docs.duckietown.org/daffy/opmanual_duckietown/out/index.html
https://get.duckietown.com/collections/ai-do-kits/products/ai-do-lane-following-lf-challenge-kit
https://get.duckietown.com/collections/ai-do-kits/products/ai-do-lane-following-lf-challenge-kit
https://get.duckietown.com/collections/ai-do-kits/products/ai-do-lane-following-with-vehicles-lfv-challenge-kit
https://get.duckietown.com/collections/ai-do-kits/products/ai-do-lane-following-with-vehicles-lfv-challenge-kit
https://get.duckietown.com/collections/starter-kits/products/db-mooc-kit
https://get.duckietown.com/collections/starter-kits/products/db-mooc-kit
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/35_embodied_tasks.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/35_embodied_tasks.md
https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
https://developer.nvidia.com/embedded/jetson-nano-2gb-developer-kit
https://developer.nvidia.com/embedded/jetson-nano
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html

THE DUCKIETOWN PLATFORM 13

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual duckiebot/db-opmanual-preliminaries-electron-
ics'.
Location not known more precisely.
Created by function n/a in module n/a.

which provides several hours of operation.

2) The Duckietown

A

Duckietowns are modular, structured environments built on two layers: the road and
the signal layers (Figure 2.2). Detailed specifications can be found here (unknown ref op-
manual duckietown/dt-ops-appearance-specifications)

previous warning next (7 of 18) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual duckietown/dt-ops-appearance-specifications'.

Location not known more precisely.

Created by function n/a in module n/a.

There are six well-defined road segments: straight, left and right 90 deg turns, 3-way
intersection, 4-way intersection, and empty tile. Each is built on individual tiles, and
their interlocking enables customizable city sizes and topographies. The appearance
specifications detail the color and size of the lines as well as the geometry of the roads.

The signal layer comprises street signs and traffic lights. Street signs enable global lo-
calization (knowing where they are within a predefined map) of Duckiebots in the
city and interpretation of intersection topologies. They are defined as the union of an
AprilTag [1] in addition to the typical road sign symbol. Their size, height and relative
positioning with respect to the road are specified. Many signs are supported, including
intersection type (3- or 4-way), stop signs, road names, and pedestrian crossings.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/35_embodied_tasks.md
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html

14 THE DUCKIETOWN PLATFORM

— /1
l|

The Duckietown environment is rigorously defined at road and signal level. When the appearance
specifications are met, Duckiebots are guaranteed to navigate cities of any topology.

Figure 2.2

3) Simulation .

We provide a cloud simulation environment for training.

In a way similar to the last DARPA Robotics Challenge, we use the simulation as a first
screening of the participant’s submissions. It will be necessary for the submitted agent
code to run in simulation and be sufficiently performant to gain access to the Auto-
labs.

Simulation environments for each of the individual challenges are provided as Docker
containers with clearly specified APIs. The baseline solutions for each challenge is
provided as separate containers. When both containers (the simulation and corre-
sponding solution) are loaded and configured correctly, the simulation will effectively
replace the real robot(s). A proposed solution can be uploaded to our cloud servers, at
which point it will be automatically run against our pristine version of the simulation
environment (on a cluster) and a score will be assigned and returned to the partici-
pant.

Examples of the simulators provided are shown on the Duckietown Challenges server.
E.g., here is a LF evaluated submission example from AI-DO 5.

This simulator is also integrated with the OpenAI Gym environment for reinforcement
learning agent training. An API for designing reward functions or tweaking domain
randomization will be provided.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/35_embodied_tasks.md
https://challenges.duckietown.org/v4/
https://challenges.duckietown.org/v4/humans/submissions/13502

THE DUCKIETOWN PLATFORM 15

4) Duckietown Autolabs «

The Duckietown Autolab at ETH Ziirich

Figure 2.4

The idea of an Autolab is inspired by Georgia Tech’s Robotarium (contraction of robot
and aquarium) [2].

The use of an Autolab has two main advantages:
1. Convenience: It allows convenient access to a complete robot setup.

2. Reproducibility: It allows for multiple people to run the experiments in repeatable
controlled conditions.

You can find detailed information on Duckietown Autolabs in our paper: Integrated
Benchmarking and Design for Reproducible and Accessible Evaluation of Robotic
Agents.

If you would like to cite Duckietown Autolabs, please use:

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/05_introduction/35_embodied_tasks.md
https://tinyurl.com/duckienet
https://tinyurl.com/duckienet
https://tinyurl.com/duckienet

16 THE DUCKIETOWN PLATFORM

@INPROCEEDINGS{tani2020duckienet,

author={Tani, Jacopo and Daniele, Andrea F. and Bernasconi, Gianmarco
and Camus, Amaury and Petrov, Aleksandar and Courchesne, Anthony and
Mehta, Bhairav and Suri, Rohit and Zaluska, Tomasz and Walter, Matthew
R. and Frazzoli, Emilio and Paull, Liam and Censi, Andrea},

booktitle={2020 IEEE/RSJ International Conference on Intelligent Ro-
bots and Systems (IRO0S)},

title={Integrated Benchmarking and Design for Reproducible and Acces-
sible Evaluation of Robotic Agents},

year={2020},

volume=,

number=,

pages={6229-6236},

doi={10.1109/IR0S45743.2020.9341677}}

For the competition we will several options for computational power.

1. The “purist” computational substrate option: where processing is done onboard
Duckiebots.

2. The images are streamed to a base-station with a powerful GPU. This will increase
computational power but also increase the latency in the control loop.

PART B
The Challenges)

This section precisely defines the general rules and performance metrics and explains
AI-DO Urban league challenges.

Contents
Unit B-1 - GeNeral ruleScceeeeveieeeiineiieeiiieieeeieeeiieeiieeeeeeeeneeeneieneeenneeens 18
Unit B-2 - Performance mMetriCS. ..o eueiiiueeieeeieiiineeiineeeineeeneeeneeeneeeneeeneeenns 21

Unit B-3 - ChalleNge LFccoveieeiineiiieiieeiieeiieeiieeieeceeeceeceeecneceeeeennenns 23

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/00_part_rules.md

18

UNIT B-1
General rules

Contents
NY<Tel 5 (o) s U R0 NS 55 0 0 ol e) E TR 18
Section 1.2 - Eligibility...coeeeeeeeueeerueieeeeirieieieiieeeieeeneeeaeeeeeeeaeeeneeeenreeneeenaenns 20
Section 1.3 - Intellectual PrOPErtY wocoeeeeeeeeeeeeeieeeieeeeeeeeeeeeeeeeeceeeeeene 20
1.1. Protocol N
1) Deployment technique N

We use Docker containers to package, deploy, and run the applications on the physical
Duckietown platform as well as on the cloud for simulation. Base Docker container
images are provided and distributed via Docker HUB.

A challenges server is used to collect and queue all submitted agents. The simulation
evaluations execute each queued agents as they become available. Submissions that
pass the simulation environment will be queued for execution in the Autolab.

Results

Remote DTAs

Local Development
o

=

Challenges server N

Jobs

Simulator

Results

Figure 1.1. The AI-DO evaluations workflow supports local and remote development, in simulation and
on hardware.

For validation of submitted code and evaluation the competition finals a surprise en-
vironment will be employed. This is to discourage over-fitting to any particular Duck-
ietown configuration.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/05_other.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/05_other.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/05_other.md
https://hub.docker.com/r/duckietown/

GENERAL RULES 19

2) Submission of entries N

Participants can submit their code in the form of a docker container to a challenge.
Templates are provided for creating the container image in a conforming way.

The system will schedule to run the submitted robot agent on the cloud on the chal-
lenges selected by the user, and, if simulations pass, in the Autolabs.

Participants can submit entries as many times as they would like, which will be
processed on a best effort basis. Access control and prioritization policies are in place
to provide equal opportunities to all participants and prevent monopolization of the
computational and physical resources available.

Participants are required to open source their solutions source code. If auxiliary train-
ing data are used to train the models, that data must be made available.

Submitted code will be evaluated in simulation and if sufficient on physical Autolabs.
Scores and logs generated with submitted code are made available on the challenges
server.

Simulation code is available as open source for everybody to use on computers that
they control. The baselines interact with the simulator through a standardized inter-
faces that mimics the interface with the real robot.

3) Autolab test and validation N

When an experiment is run in a training/testing Autolab, the participants receive, in
addition to the score, detailed feedback, including logs, telemetry, videos, etc. The sen-
sory data generated by the robots is continuously recorded and becomes available to

the entire community.

Figure 1.2. Autolab LF-challenge evaluation demo.

When an experiment is run in a validation Autolab, the only output to the user is the
test score and minimal statistics (number of collisions, number of rule violations, etc.).

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/05_other.md
https://github.com/duckietown/gym-duckietown/
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/05_other.md
https://challenges.duckietown.org/v4/
https://challenges.duckietown.org/v4/
https://vimeo.com/561305335
https://vimeo.com/561305335

20 GENERAL RULES
Here are some examples.

4) Leaderboards N

After each run in simulation and in Autolabs, the participants can see the metrics sta-
tistics on the competition scoring website. Extended leaderboards are made available

for each challenge.

1.2. Eligibility .
Employees and affiliates of organizing and sponsoring organizations are ineligible
from participation in the competition, but they are welcome to submit baseline solu-
tions that will be reported in a special leaderboard.

Students of organizing institutions (ETH Ziirich, University of Montreal, and TTIC),
are eligible to participate in the competition as part of coursework, if they do not work
in the organization of the competition.

1.3. Intellectual property .

Participants of AI-DO are required to provide the source code / data / learning models
of their submission to the organizers before the finals (so that we can check for their
regularity.)

Winners of AI-DO are required to make their submission open source so that it can be
reused later in the next challenges.

https://challenges.duckietown.org/v4/humans/challenges/aido5-LF-real-validation/leaderboard
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/05_other.md
https://challenges.duckietown.org/v4/
https://challenges.duckietown.org/v4/humans/challenges/aido5-LF-sim-validation/leaderboard
https://challenges.duckietown.org/v4/humans/challenges
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/05_other.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/05_other.md

UNIT B-2
Performance metrics h

Measuring performance in robotics is less clear cut and more multidimensional than
traditionally encountered in machine learning settings. Nonetheless, to achieve reli-
able performance estimates we assess submitted code on several episodes with differ-
ent initial settings and compute statistics on the outcomes. We denote J to be an ob-
jective or cost function to optimize, which we evaluate for every experiment. In the
following formalization, objectives are assumed to be minimized.

In the following we summarize the objectives used to quantify how well an embodied
task is completed. We will produce scores in three different categories.

Contents
Section 2.1 - Performance criteria (P)occceceeveeeieniiniieiineinieneieneieneineeneeenene. 21
Section 2.2 - Traffic law 0bjective (T).ccueeeeeeieeeieiiieiiieeeeeeeeeeeeeeeeeeneene 22
Section 2.3 - Comfort objective (C) voviveieueieiineiniiiiiiiiniiiiiieiieieeieieeeaeenee, 22
2.1. Performance criteria (P) N

As a performance indicator for both the “lane following task” and the “lane following
task with other dynamic vehicles”, we choose the integrated speed v(t) along the road
(not perpendicular to it) over time of the Duckiebot. This measures the moved dis-
tance along the road per episode, where we fix the time length of an episode. This en-
courages both faster driving as well as algorithms with lower latency. An episode is
used to mean running the code from a particular initial configuration.

t
To—se(®) = /0 —o(t)dt

The integral of speed is defined over the traveled distance of an episode up to time
t = Teps, Where Teps is the length of an episode.

The way we measure this is in units of “tiles traveled”:

Ip—rrv)(t) = # of tiles traveled

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/07_measuring.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/07_measuring.md

22 PERFORMANCE METRICS

2.2. Traffic law objective (T) N

The following shows rule objectives the Duckiebots are supposed to abide by within
Duckietown. These penalties hold for the embodied tasks (LF, LFV).

1) Major infractions N

This objective means to penalize “illegal” driving behavior. As a cover for many un-
desired behaviors, we count the median time spent oustide of the drivable zones. This
also covers the example of driving in the wrong lane.

Metric: The median of the time spent outside of the drivable zones.

Jr_rr/rrv = median({toutside })s

where {touside } 1S the list of accumulated time outside of drivable zones per episode.

2.3. Comfort objective (C) N

In the single robot setting, we encourage “comfortable” driving solutions. We therefore
penalize large angular deviations from the forward lane direction to achieve smoother
driving. This is quantified through changes in Duckiebot angular orientation 6 (%)
with respect to the lane driving direction.

Lateral deviation: ®

For better driving behavior we measure the median per episode lateral deviation from
the right lane center line.

Jo-rr/rrv (t) = median({dousside })s

where {dyuiside } 1S the sequence of lateral distances from the center line.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/07_measuring.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/07_measuring.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/07_measuring.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/07_measuring.md

UNIT B-3
Challenge LF)

The first challenge of the AI Driving Olympics is “lane following” (LF).

In this challenge, we ask participants to submit code allowing the Duckiebot to drive
on the right-hand side of the street within Duckietown without a specific goal point.
Duckiebots will drive through the Duckietown and will be judged on how fast they
drive, how well they follow the rules and how smooth or “comfortable” their driving
is.

? ...‘l)i.
e l." -

Figure 3.1. Lane following example submission.

A description of the specific rules is provided.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/35_lf.md
https://vimeo.com/492081180
https://vimeo.com/492081180

24 CHALLENGE LF

Figure 3.2. A Duckiebot following a lane.

The challenge is designed in a way that allows for a completely reactive algorithm de-
sign, i.e., to accomplish the challenge it is not strictly necessary to keep past observa-
tions in memory.

In particular intersections will not be part of maps for this challenge.

3.1. Templates and Baselines .

To get started, try one of the existing templates, which are minimal setups that do ran-
dom things but are functions, or the baselines which are instantiations of the tem-
plates that implement some algorithms, but not in an optimal way. Additionally, many
of the past AI-DO winners are in the baseline solutions.

3.2. LF in Simulation N

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/35_lf.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/35_lf.md

CHALLENGE LF 25

The current versions of the lane following simulation challenges are aido-LF-sim-
testing and aido-LF-sim-validation. These two challenges are identical except for
the output that you are allowed to see. In the case of testing you will be able to see
performance of your agent (Figure 3.3) and you will be able to download the logs and
artifacts.

Al

Al Driving Olympics 5 - NeurlPS 2020
challenges.duckietown.org

Fernanda Custodio Pereiro do Carmo
chollenge oidoS—LF—sim—validation
submission 13501

Figure 3.3. Visual output for a LF submission

1) aido-LF-sim-testing Details .

+ Challenge overview
« Leaderboard

« All submissions

9 <

The details for “experiment manager”, “simulator”, and “scenario maker” parameters
may be of interest and are available here (Under “Details”).

2)aido-LF-sim-validation Details

« Challenge overview
» Leaderboard

o All submissions

3.3. LF in the Duckietown Autolab N

The current version of the lane following real robot challenge is aido-LF-real-vali-
dation.

Note that to test the performance of your agent on the real robot yourself, you can fol-
low the instructions to run your agent on your Duckiebot

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/35_lf.md
https://challenges.duckietown.org/v4/humans/challenges/aido-LF-sim-testing
https://challenges.duckietown.org/v4/humans/challenges/aido-LF-sim-testing/leaderboard
https://challenges.duckietown.org/v4/humans/challenges/aido-LF-sim-testing/submissions
https://challenges.duckietown.org/v4/humans/challenges/aido-LF-sim-testing
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/35_lf.md
https://challenges.duckietown.org/v4/humans/challenges/aido-LF-sim-validation
https://challenges.duckietown.org/v4/humans/challenges/aido-LF-sim-validation/leaderboard
https://challenges.duckietown.org/v4/humans/challenges/aido-LF-sim-validation/submissions
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/35_lf.md

26 CHALLENGE LF

1) aido-LF-real-validation Details

+ Challenge overview
o Leaderboard

« All submissions

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/35_lf.md
https://challenges.duckietown.org/v4/humans/challenges/aido-LF-real-validation
https://challenges.duckietown.org/v4/humans/challenges/aido-LF-real-validation/leaderboard
https://challenges.duckietown.org/v4/humans/challenges/aido-LF-real-validation/submissions

UNIT B-4
Challenge LFV .

The second challenge of the AI Driving Olympics is “lane following with dynamic ve-
hicles” (LFV). This challenge is an extension of Challenge LF to include additional
rules of the road and other moving vehicles and static obstacles.

v

Figure 4.1. A Duckiebot doing lane following with other vehicles.

Again we ask participants to submit code allowing the Duckiebot to drive on the right-
hand side of the street within Duckietown. Due to interactions with other Duckiebots,
a successful solution will likely not be completely reactive.

4.1. LFV in Simulation “

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/36_lfv.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/36_lfv.md

28 CHALLENGE LFV

The current versions of the lane following with vehicles in simulation are aido2-LFV-
sim-testing and aido2-LF-sim-validation. These two challenges are identical ex-
cept for the output that you are allowed to see. In the case of testing you will be able
to see performance of your agent (Figure 4.2) and you will be able to download the
logs and artifacts.

Albo

Al Driving Olympics 5 - NeurlPS 2020

challenges. duckietown.org

WEME
gidaS—LFV=sim—validotion
n 13710

Figure 4.2. Visual output for a LFV submission.

4.2. Templates and Baselines .

To get started, try one of the existing templates, which are minimal setups that do ran-
dom things but are functions, or the baselines which are instantiations of the tem-
plates that implement some algorithms, but probably not in an optimal way. Many of
the past AI-DO winners are in the baseline solutions.

1) aido-LFV-sim-testing Details

« Challenge overview
o Leaderboard

« All submissions

9 <

The details for “experiment manager”, “simulator”, and “scenario maker” parameters
may be of interest and are available here (Under “Details”).

2)aido-LFV-sim-validation Details

+ Challenge overview
» Leaderboard

o All submissions

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/36_lfv.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/36_lfv.md
https://challenges.duckietown.org/v4/humans/challenges/aido-LFV-sim-testing
https://challenges.duckietown.org/v4/humans/challenges/aido-LFV-sim-testing/leaderboard
https://challenges.duckietown.org/v4/humans/challenges/aido-LFV-sim-testing/submissions
https://challenges.duckietown.org/v4/humans/challenges/aido2-LFV-sim-testing
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/36_lfv.md
https://challenges.duckietown.org/v4/humans/challenges/aido-LFV-sim-validation
https://challenges.duckietown.org/v4/humans/challenges/aido-LFV-sim-validation/leaderboard
https://challenges.duckietown.org/v4/humans/challenges/aido-LFV-sim-validation/submissions

CHALLENGE LFV 29
4.3. LFV in the Duckietown Autolab N

The current version of the lane following real robot challenge is aido-LFV-real-val-
idation.

Note that to test the performance of your agent on the real robot yourself, you can fol-
low the instructions to run your agent on your Duckiebot

1) aido-LFV-real-validation Details

« Challenge overview
« Leaderboard

o All submissions

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/36_lfv.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/36_lfv.md
https://challenges.duckietown.org/v4/humans/challenges/aido-LFV-real-validation
https://challenges.duckietown.org/v4/humans/challenges/aido-LFV-real-validation/leaderboard
https://challenges.duckietown.org/v4/humans/challenges/aido-LFV-real-validation/submissions

30

UNIT B-5
Challenge LFI)

The third challenge of the AI Driving Olympics is “lane following with intersections”
(LFI). This challenge is an extension of Challenge LF to include map configurations
that are not just loops but now contain intersections which must be traversed.

:Qs

Figure 5.1. A Duckiebot following a lane in a Duckietown with intersections.

Again we ask participants to submit code allowing the Duckiebot to drive on the right-
hand side of the street within Duckietown, but now it must also successfully navigate
intersections. Due to interactions with other Duckiebots, a successful solution almost
certainly not be completely reactive.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/37_lfi.md

CHALLENGE LFI 31

5.1. LFI in Simulation “

The current versions of the lane following with vehicles in simulation are aido-LFI-
sim-testing and aido2-LF-sim-validation. These two challenges are identical ex-
cept for the output that you are allowed to see. In the case of testing you will be able
to see performance of your agent (Figure 5.2) and you will be able to download the
logs and artifacts.

A

Al Driving Olympics 5 - NeurlPS 2020

challenges.duckietown.org

ct Ii} girn—validation

susmission

Figure 5.2. Visual output for a LFI submission.

5.2. Templates and Baselines .

To get started, try one of the existing templates, which are minimal setups that do ran-
dom things but are functions, or the baselines which are instantiations of the tem-
plates that implement some algorithms, but probably not in an optimal way. Many of
the past AI-DO winners are in the baseline solutions.

1) aido-LFI-sim-testing Details

+ Challenge overview
o Leaderboard

« All submissions

9 <

The details for “experiment manager”, “simulator”, and “scenario maker” parameters
may be of interest and are available here (Under “Details”).

2)aido-LFI-sim-validation Details

« Challenge overview
» Leaderboard

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/37_lfi.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/37_lfi.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/37_lfi.md
https://challenges.duckietown.org/v4/humans/challenges/aido-LFI-sim-testing
https://challenges.duckietown.org/v4/humans/challenges/aido-LFI-sim-testing/leaderboard
https://challenges.duckietown.org/v4/humans/challenges/aido-LFI-sim-testing/submissions
https://challenges.duckietown.org/v4/humans/challenges/aido-LFI-sim-testing
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/37_lfi.md
https://challenges.duckietown.org/v4/humans/challenges/aido2-LFVI-sim-validation
https://challenges.duckietown.org/v4/humans/challenges/aido2-LFVI-sim-validation/leaderboard

32 CHALLENGE LFI

« All submissions

5.3. LFI in the Duckietown Autolab N

The current version of the lane following real robot challenge is aido-LFI-real-val-
idation.

Note that to test the performance of your agent on the real robot yourself, you can fol-
low the instructions to run your agent on your Duckiebot

1) aido-LFI-real-validation Details

« Challenge overview
« Leaderboard

« All submissions

https://challenges.duckietown.org/v4/humans/challenges/aido2-LFVI-sim-validation/submissions
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/37_lfi.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/37_lfi.md
https://challenges.duckietown.org/v4/humans/challenges/aido-LFI-real-validation
https://challenges.duckietown.org/v4/humans/challenges/aido-LFI-real-validation/leaderboard
https://challenges.duckietown.org/v4/humans/challenges/aido-LFI-real-validation/submissions

UNIT B-6
Challenge LFVI-multi-full .

The fourth challenge of the AI Driving Olympics is “lane following with dynamic ve-
hicles and intersections” (LFVI). This challenge is an extension of Challenge LF to in-
clude map configurations that are not just loops but now contain intersections which
must be negotiated. Your agent will control all the Duckiebots in the map. We make
things somewhat simpler by providing directly the state information of the Duck-
iebots. As a result, this challenge will only be evaluated in simulation

Figure 6.1. A Duckiebot following a lane following in the presence of other vehicles, in a Duckietown
with intersections.

Again we ask participants to submit code allowing the Duckiebot to drive on the right-
hand side of the street within Duckietown, but now it must also successfully navigate
intersections. Due to interactions with other Duckiebots, a successful solution almost

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/38_lfvi.md

34 CHALLENGE LFVI-MULTI-FULL

certainly not be completely reactive.

6.1. LFVI_multi_full in Simulation .

The current versions of the lane following with vehicles in simulation are aido-
LFVI multi-sim-testing and aido-LFVI multi-sim-validation. These two chal-
lenges are identical except for the output that you are allowed to see. In the case of
testing you will be able to see performance of your agent (Figure 6.2) and you will be
able to download the logs and artifacts.

Al Driving Olympics 5 - NeurlPS 2020

challenges.duckietown. org

A]

raph
challengs aidoS—LPyI—sim—validation

sunmission 12846

Figure 6.2. Visual output for a LFVI submission.

6.2. Templates N

6.3. Templates and Baselines N

To get started, try one of the existing templates, which are minimal setups that do ran-
dom things but are functions, or the baselines which are instantiations of the tem-
plates that implement some algorithms, but probably not in an optimal way. Many of
the past AI-DO winners are in the baseline solutions.

Note that in the case of this challenge you will need to update the protocol that is used.

TODO: provide more details.

task next (1 of 2) index
task

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/38_lfvi.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/38_lfvi.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/38_lfvi.md
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/tasks.html

CHALLENGE LFVI-MULTI-FULL 35

The following was marked as "todo".
TODO: provide more details.

Location not known more precisely.

Created by function n/a in module n/a.

J

You may also look at the minimal agent with full state information for an example of
how to do this.

1) aido-LFVI_multi-sim-testing Details

+ Challenge overview
« Leaderboard

« All submissions

9 <

The details for “experiment manager”, “simulator”, and “scenario maker” parameters
may be of interest and are available here (Under “Details”).

2)aido-LFVI_multi-sim-validation Details

« Challenge overview
» Leaderboard

o All submissions

https://github.com/duckietown/challenge-aido_LF-minimal-agent-full
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/38_lfvi.md
https://challenges.duckietown.org/v4/humans/challenges/aido-LFVI_multi-sim-testing
https://challenges.duckietown.org/v4/humans/challenges/aido-LFVI_multi-sim-testing/leaderboard
https://challenges.duckietown.org/v4/humans/challenges/aido-LFVI_multi-sim-testing/submissions
https://challenges.duckietown.org/v4/humans/challenges/aido2-LFVI-sim-testing
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/10_challenges/38_lfvi.md
https://challenges.duckietown.org/v4/humans/challenges/aido-LFVI_multi-sim-validation
https://challenges.duckietown.org/v4/humans/challenges/aido-LFVI_multi-sim-validation/leaderboard
https://challenges.duckietown.org/v4/humans/challenges/aido-LFVI_multi-sim-validation/submissions

36

PART C
Getting Started)

This part describes the necessary steps to get started competing in the AI-DO. It should

take about 5-20 minutes depending on your specific setup. In short, the steps are the
following:

« Get the needed accounts;

« Make sure you meet the software requirements;

o Make a test submission.

A‘] The Al Driving Olympics
‘ @ NeurlPS 2020 3
L INFORMATION

"V NEURAL INFe
ROCESSING SYSTEMS
lae

aido.duckietown.org

Brought to you by a huge team & many supportive sponsors:

ETHziirich Universitél‘”‘l [T

de Montréal

% DUCKIETOWN

Notional (@) SwissRe EANVIDIA,

Presenters: Andrea Censi (ETH Zurich), Liam Paull (U. Montréal).

Figure 0.3. Getting Started

At this point you have a fully functioning setup, and you can start to build a solution to

the specific challenge that you interested in. In this section, we provide two additional
quickstart guides as entry points:

Contents

Figure 0.3 - Getting Started
Unit C-1 - Accounts needed

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/00_part_quickstart.md
https://vimeo.com/477294988
https://vimeo.com/477294988

GETTING STARTED

38

UNIT C-1
Accounts needed .

This section describes the accounts that you need before competing.

1.1. Docker Hub account N
A Docker Hub account is necessary to submit container images.

Create an account here. Take note of your USERNAME .

1.2. Duckietown account .
A Duckietown account is necessary to interact with the challenges server.

Create an account here.

1.3. Stack Overflow account N

We have a Stack Overflow for Duckietown. We will send you an invitation when you
register. Otherwise, please ask us on Slack in the #help-accounts channel.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/01_account.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/01_account.md
https://hub.docker.com/
https://hub.docker.com/
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/01_account.md
https://www.duckietown.org/research/ai-driving-olympics/ai-do-register
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/01_account.md
https://stackoverflow.com/c/duckietown/
https://join.slack.com/t/duckietown/shared_invite/zt-72tpbfth-xsfmv5iDAodqJ6eTFhjd4A
https://duckietown.slack.com/archives/C70CR8TAS

UNIT C-2
Software requirements :

This section describes the required software to participate in the competition.

2.1. Supported Operating Systems .

1) Ubuntu 20.04 N

Ubuntu 20.04 is the best supported environment. Earlier version might work. Note
that we require an environment with Python 3.8 or higher.

2) Other GNU/Linux versions N

Any other GNU/Linux OS with Python of at least version 3.8 should work. However,
to streamline assistance, we only support officially Ubuntu.

3) Mac OS X N

OS X is well-supported; however we don’t have full instructions for certain steps.
(There is so much divergence in how OS X environments are configured.)

We suggest to use pyenv to install Python 3.8.

4) Windows N

Windows is currently not supported. We are working on it! Please let us know on Slack
if you can help, in the #devel-wsl channel.

2.2. Docker N
Install Docker from these instructions.

If you want to use a GPU for evaluating your submission, edit your /etc/docker/dae-
mon. json to include the following options.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/02_software.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/02_software.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/02_software.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/02_software.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/02_software.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/02_software.md
https://duckietown.slack.com/archives/C015DQZ4BDE
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/02_software.md
https://docs.docker.com/install/

40 SOFTWARE REQUIREMENTS

{
"default-runtime": "nvidia",
"runtimes": {
"nvidia": {
"path": "nvidia-container-runtime",
"runtimeArgs": []
}
i
"node-generic-resources": ["NVIDIA-GPU=0"]
}

Note: Don’t forget that after you install Docker you need to add user to “docker”
group:

$ sudo adduser “whoami® docker

Note: you likely know about the first two options default-runtime and runtimes.
Be sure to include also the “unusual” option node-generic-resources: this is need-
ed because the evaluation uses Docker Compose.

2.3. Git N
We need Git and Git LFS.

On Ubuntu you can install both using

$ apt-get install git git-1fs

2.4. Duckietown Shell N
Install the Duckietown Shell using:

$ pip3 install --user -U duckietown-shell

If you encounter problems look at the Duckietown Shell instructions in the README.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/02_software.md
https://git-lfs.github.com/
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/02_software.md
https://github.com/duckietown/duckietown-shell
https://github.com/duckietown/duckietown-shell

SOFTWARE REQUIREMENTS 41

Make sure it is installed by using:

$ dts version

Set the daffy command branch:

$ dts --set-version daffy

Update the commands using:

$ dts update

1) Authentication token N

Set the Duckietown authentication token using this command:

$ dts tok set

2) Docker Hub information N

Set your Docker Hub username and password using:

read -p "docker username: " docker username

read -p "docker password: " docker password

dts challenges config --docker-username --docker-pass-
word

You can use an access token instead of a password.

Login to Docker Hub:

$ docker login

Note: Since November 2, 2020 Docker Hub has implemented tight rate limits for
anonymous accounts. If you experience timeouts in Docker or similar problems, it is
likely because you have not logged in recently. Note that docker login needs to be
repeated every 12 hours.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/02_software.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/02_software.md

42 SOFTWARE REQUIREMENTS

3) Check dts configuration

This command checks that you have a good authentication token:

$ dts challenges info

You should expect an output like:

~ You are succesfully authenticated:

~ ID: your numeric ID

~ name: your name

~ login: your account name on Duckietown
~ profile: your website

= You can find the list of your submissions at the page:

~ https://challenges.duckietown.org/v4/humans/users/1639

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/02_software.md

UNIT C-3
Make your first submission)

This section describes the steps to make your first submission.

KNOWLEDGE AND ACTIVITY GRAPH

| Requires: You have set up your accounts.

| Requires: You have the software requirement.

Results: You have made a submission to the Lane Following AI-DO challenge, and
you know how to try to make it better.

3.1. Checkout the submission repo .

Check out the competition template challenge-aido LF-template-random:

$ git clone https://github.com/duckietown/challenge-aido LF-template-

random

3.2. Submit .
Jump into the directory:

$ cd challenge-aido LF-template-random

Submit using:

$ dts challenges submit --challenge aido-hello-sim-validation

This does the following:

1. Build a Docker container.

2. Push the Docker container.

3. Make contact with the challenge server to send your submission.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/03_make_a_sub.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/03_make_a_sub.md
https://github.com/duckietown/challenge-aido_LF-template-random
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/03_make_a_sub.md
https://challenges.duckietown.org/v4/

44 MAKE YOUR FIRST SUBMISSION

The expected output is something along the lines of:

Sending build context to Docker daemon 5.632kB

Successfully created submission SUBMISSION NUMBER

You can track the progress at: https://challenges.duckietown.org/v4/hu-
mans/submissions/ SUBMISSION NUMBER

You can also use the command:

dts challenges follow --submission SUBMISSION NUMBER

where SUBMISSION NUMBER is your submission id.

To understand more about the details of what’s happening here see Unit D-1 - Minimal
pure-Python Template.

3.3. Monitor the submission N
There are 2 ways to monitor the submission:

The first way is to use the web interface, at the URL indicated in the terminal.

The second way is to use the dts challenges follow command:

EIN TN ENR RN T IT N Fe M NIV EE S il SUBMISSION NUMBER

3.4. Look at the leaderboard N
The leaderboard for this challenge is available at the URL

https://challenges.duckietown.org/v4/humans/challenges/aido-hello-
sim-validation/leaderboard

In general all the challenge leaderboards can be viewed at the front page the chal-
lenges website.
All available challenges can be viewed in the comprehensive challenges page.

3.5. Local evaluation

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/03_make_a_sub.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/03_make_a_sub.md
https://challenges.duckietown.org/v4/humans/challenges/aido-hello-sim-validation/leaderboard
https://challenges.duckietown.org/v4/humans/challenges/aido-hello-sim-validation/leaderboard
https://challenges.duckietown.org/v4/
https://challenges.duckietown.org/v4/
https://challenges.duckietown.org/v4/humans/challenges
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/03_make_a_sub.md

MAKE YOUR FIRST SUBMISSION 45

You can also evaluate the submission locally. This is useful for debugging and devel-
opment.

Use this command:

$ dts challenges evaluate --challenge aido-hello-sim-validation

3.6. Troubleshooting .

If any of the commands above don’t work, it is likely that something related to Docker
permissions is to blame.

If you are using Docker Desktop for Mac OS X you might need to try the following:

Symptom: dts challenges submit fails with a permission error on Mac OS X using
Docker Desktop.

Resolution: Disable grRPC FUSE in Docker Desktop by going to “Preferences” and
unchecking the option “Use gRPC Fuse for file sharing”. Select “Apply and Restart” to
save the changes.

For other issues please ask us on Slack in the #help-accounts channel.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/03_make_a_sub.md
https://duckietown.slack.com/archives/C70CR8TAS

46

UNIT C-4
Next steps towards winning the AI-DO)

Now that you have made your first submission using the minimal template, you can
now move on to the next steps.

Contents

Section 4.3 - Try the baselinescceceeeevieeeeeiueieeeieeeieeeieeeeeeeeeeeeneeeneeenneens 46

Section 4.4 - Understand the ruleS.....ouueeeeeeieeeeeiiieiieeeeeeeeeeeeeeeee 47
Section 4.5 - Try one of the harder challengesccooveeeieeeieeiieeieneiineennnne 47
4.1. Understand how the minimal template works N

The anatomy of the minimal template is explained in Unit D-1 - Minimal pure-Python
Template.

You will understand how the Docker infrastructure works and how to create valid sub-
missions.

4.2. Select the template that you need N

The minimal template you tried is a pure-Python template. We offer a few more tem-
plates to try if you want to use a framework.

In particular, you could try:
« the TensorFlow template;
« the PyTorch template;

» the ROS template.

4.3. Try the baselines .
In Part E - Baseline Algorithms we discuss our “baselines”: submissions that do some-

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/15_next_steps.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/15_next_steps.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/15_next_steps.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/15_next_steps.md

NEXT STEPS TOWARDS WINNING THE AI-DO 47

thing smart.

4.4. Understand the rules N

You might want to read Part B - The Challenges, which describes in detail how your
score is generated for the specific challenges.

4.5. Try one of the harder challenges N

In addition to the simple LF challenge you can try the the LFV challenge the LFI chal-
lenge or the LFVI-multi challenge where you have access to the state information.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/15_next_steps.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/15_next_steps.md

438

UNIT C-5
Run an agent on your Duckiebot)

In this page we will describe how to run your submission on your Duckiebot.

KNOWLEDGE AND ACTIVITY GRAPH

| Requires: You have a Duckiebot. See here for how to acquire a Duckiebot.

| Requires: You have built your DB19 (unknown ref opmanual duckiebot/assembling-duck-
iebot-db19)

previous warning next (8 of 18) index
warning

I will ignore this because it is an external link.
> I do not know what is indicated by the link '#op-
manual duckiebot/assembling-duckiebot-db19'.
Location not known more precisely.
Created by function n/a in module n/a.
or (recommended) DB21 (unknown ref opmanual duckiebot/assembling-duckiebot-db21)

previous warning next (9 of 18) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/assembling-duckiebot-db21"'.

Location not known more precisely.
Created by function n/a in module n/a.

Duckiebot. Evaluations will be performed using DB21 Duckiebots.
| Requires: You have built your Duckietown according to the appearance specifica-
tion (unknown ref opmanual duckietown/dt-ops-appearance-specifications)

previous warning next (10 of 18) index
warning

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/16_lanefollowing_duckiebot.md
https://www.duckietown.org/about/hardware
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html

RUN AN AGENT ON YOUR DUCKIEBOT 49

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual duckietown/dt-ops-appearance-specifications'.

Location not known more precisely.
Created by function n/a in module n/a.

| Requires: You can connect to your robot wirelessly (unknown ref opmanual duckiebot/
duckiebot-network)

previous warning next (11 of 18) index
warning

I will ignore this because it is an external link.
> I do not know what is indicated by the link '#op-
manual duckiebot/duckiebot-network".

Location not known more precisely.
Created by function n/a in module n/a.

L J

| Requires: You have made a valid AI-DO submission.
| Results: You have run a submission on your physical Duckiebot.

aido.duckietown.org

Brought 1o you by a huge team & many supportive sponsors:

ETHziirich Univer ite tth % e,
zdrich Urgdioneal DG 2

[——

motional (@) SwissRe CANVIDIA

Presenters: Ancrea Gensi (ETH Zirich), Liam Paull(U. Montréal).

Figure 5.1. Running your agent on your Duckiebot tutorial.

Warning: Running your AI-DO submission on your robot is currently only support-
ed on Ubuntu (not Mac OSX).

/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html
https://vimeo.com/479462039
https://vimeo.com/479462039

50 RUN AN AGENT ON YOUR DUCKIEBOT

Warning: If everything’s setup right, the procedure is very straightforward. But
things can be hard to troubleshoot because they involve networking.

There are two basic modes that you can use to run a submission.
1. From a local submission folder

2. From an existing image (for example one that you submitted to the AI-DO)

5.1. Verifying that your Duckiebot is operational .

When you boot your robot it starts to produce camera imagery and wheel encoder data
(if it’s moving) and waits for incoming motor commands. To verify that your Duck-

iebot is fully operational, you should follow (unknown ref opmanual duckiebot/rc-control)

previous warning next (12 of 18) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual duckiebot/rc-control'.
Location not known more precisely.
Created by function n/a in module n/a.
and (unknown ref opmanual duckiebot/read-camera-data)

previous warning next (13 of 18) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_ duckiebot/read-camera-data'.

Location not known more precisely.
Created by function n/a in module n/a.

You should also ensure that your Duckiebot is well calibrated, both camera (unknown
ref opmanual duckiebot/camera-calib)

previous warning next (14 of 18) index
warning

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/16_lanefollowing_duckiebot.md
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html

RUN AN AGENT ON YOUR DUCKIEBOT 51

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_ duckiebot/camera-calib'.
Location not known more precisely.
Created by function n/a in module n/a.

and wheels (unknown ref opmanual duckiebot/wheel-calibration)

previous warning next (15 of 18) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual duckiebot/wheel-calibration'.

Location not known more precisely.
Created by function n/a in module n/a.

5.2. Run a local submission on the Duckiebot N
Go into any valid submission folder (i.e., one where you could run dts submit and
you would make a submission) and run:

$ dts duckiebot evaluate --duckiebot name @Rl[&ICI=¥z]ONRR\VVYIS

5.3. Run an image that is already built on the Duckiebot N

$ dts duckiebot evaluate --duckiebot name !{DUCKIEBOT NAME] --image

AGE NAME

5.4. Local workflow using the Exercises API N

We have also developed a workflow for submitting exercises (unknown ref opmanual duck-
iebot/running-exercises)

/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/16_lanefollowing_duckiebot.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/16_lanefollowing_duckiebot.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/16_lanefollowing_duckiebot.md

52 RUN AN AGENT ON YOUR DUCKIEBOT

previous warning next (16 of 18) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual duckiebot/running-exercises'.

Location not known more precisely.
Created by function n/a in module n/a.

in the Duckietown MOOC on EdX that may be useful for your development workflow.
Several of the AI-DO templates and baselines are also valid “exercises” and can there-
fore follow this workflow.

/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html
https://www.edx.org/course/self-driving-cars-with-duckietown

UNIT C-6
Object Detection Dataset)

6.1. Download N

The dataset can be downloaded from here. We provide annotations and sample scripts
for loading the annotations.

6.2. Overview .

This dataset consists of 3 categories: traffic cones, duckies, and Duckiebots. All the
dataset images were captured with Duckiebot cameras. We use a combination of im-
ages from the Duckietown logs database and our own captured logs. Images were cap-
tured in different lighting conditions, with different versions of Duckiebot models,
and on different Duckietown maps. Below are some statistics and visualizations of our
dataset:

Number of images 1956
Number of object categories 3

Number of objects annotated 5068

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/21_object_detection_dataset.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/21_object_detection_dataset.md
https://drive.google.com/drive/folders/1cTBoKrXJb0kajBGxhuBxJpbKaotHPX7O
https://github.com/saryazdi/Duckietown-Object-Detection-LFV/tree/master/OD_scripts
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/21_object_detection_dataset.md
http://logs.duckietown.org/

54 OBJECT DETECTION DATASET

Figure 6.1

6.3. Category Details

1) Traffic Cones

Category name cone
Number of instances 372
Category id 1

2) Duckies

Category name duckie

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/21_object_detection_dataset.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/21_object_detection_dataset.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/21_object_detection_dataset.md

OBJECT DETECTION DATASET 55

Number of instances 2570

Category id 2

3) Duckiebots «
Category name Duckiebot

Number of instances 2126

Category id 3

Number of old Duckiebot instances 1419

Number of new Duckiebot instances 707

6.4. Data Loading Scripts .

We provide some sample scripts for loading in the dataset here.

6.5. Data Collection Procedure N

In this work, we first identify the most prominent objects that we see on the roads of
Duckietown: duckies, Duckiebots and traffic cones. To begin our data collection pro-
cedure, we first identify all useful logs from the Duckietown logs database which con-
tain the objects of interest. We then download and trim these logs so that the videos
consist only of frames containing our objects of interest. Finally, we convert our videos
to images (frames) while skipping some number of frames between each image to en-
sure that we get a diverse set of images.

In these logs, there are videos of older versions of Duckiebots with lots of wirings on
them (DB17). However, new Duckiebots are much cleaner with only the battery visi-
ble. To ensure robust detections, we needed to capture this intra-class variation. Thus,
we collected our own logs containing the new Duckiebots. In the final dataset, we have
merged old and new Duckiebots to ensure that we can detect both variations.

Figure 6.2

6.6. Data Annotation Procedure .
We used OpenCV’s free CVAT tool to annotate the dataset.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/21_object_detection_dataset.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/21_object_detection_dataset.md
https://github.com/saryazdi/Duckietown-Object-Detection-LFV/tree/master/OD_scripts
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/21_object_detection_dataset.md
http://logs.duckietown.org/
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/15_getting_started/21_object_detection_dataset.md
https://github.com/opencv/cvat

56 OBJECT DETECTION DATASET

CEERTT Y

T G I w S|

L ! | o — o

TNty B MOty o Bk Prw: o ey eseos o b o Lis s

Figure 6.3

PART D
Template Solutions)

We provide a set of templates for solutions. These templates are fully functional so-
lutions that don’t do anything “smart”. They will get you a valid score on the leader-
board, but it’s unlikely that it will be very good.

Specifically, we provide the following templates:
+ Minimal agent template is the most minimal feasible solution for LF* challenges,

« TensorFlow template for making a submission with a tensorflow model to the LF*
challenges,

+ PyTorch template for making a submission with a Pytorch model to the LF* chal-
lenges,

« ROS template for making a submission using the robot operating system to the LF*
challenges,

Contents

Unit D-3 - TensorFIowW Template........ccoeeeiueeieeieeiiieeieeiieeeeeeeeeeeceeeeneene 63

Unit D-4 - PyTorch Template.........cccceeeevieeueieieeieeeieeeiieeiieeieeeineieneieneeenneeens 71

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/00_part_embodied_tasks.md

58

UNIT D-1
Minimal pure-Python Template)

This section describes the contents of the simplest template: a “random” agent.
It can be used as a starting point for any of the LF, LFV, and LFI challenges.

KNOWLEDGE AND ACTIVITY GRAPH

I Requires: That you have setup your accounts.
| Requires: That you meet the software requirement.

Results: You make a submission to all of the LF* challenges and can view their
status and output.

Arl The Al Driving Olympics
h m @ NeurlPS 2020 3%,
NEURAL INFORMATION
. PROCESSNG SraTEMS

aido.duckietown.org

Brought to you by a huge team & many supportive sponsors:

ETH:zirich Un&f{/ﬂ}ﬁ(&m gjnucms'rowu
notional (@) SwissRe EANVIDIA,
Presenters: Andrea Censi (ETH Zdrich), Liam Paull (U. Montréal).
Figure 1.1. Minimal Template
1.1. Quickstart .

Check out the repository:

$ git clone git@github.com:duckietown/challenge-aido LF-template-ran-

dom.git

Change into the directory:

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/03_template_random.md
https://vimeo.com/477294988
https://vimeo.com/477294988
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/03_template_random.md
https://github.com/duckietown/challenge-aido_LF-template-random

MINIMAL PURE-PYTHON TEMPLATE 59

$ cd challenge-aido LF-template-random

Either make a submission with:
$ dts challenges submit --challenge (@zZVBRZ[(EIZ@NYIH

where you can find a list of the open challenges here.

Or, run local evaluation with:
$ dts challenges evaluate --challenge (@zVBB[€)\ViV\7))

1) Verify your submission(s) N

This will make a number of submissions (as described below). You can track the status
of these submissions in the command line with:

$ dts challenges follow --submission @EIEAZIEIIOINMNIIN IS

or through your browser by navigating the webpage: https://challenges.ducki-
etown.org/v4/humans/submissions/ SUBMISSION NUMBER where SUBMIS-
SION NUMBER should be replaced with the number of the submission which is re-
ported in the terminal output.

1.2. Anatomy of the submission N
The submission consists of the following files:

submission.yaml
Dockerfile
Makefile
requirements.txt
solution.py

1) submission.yaml .

The file submission.yaml contains the configuration for this submission:

https://challenges.duckietown.org/v4/humans/challenges
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/03_template_random.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/03_template_random.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/03_template_random.md

60 MINIMAL PURE-PYTHON TEMPLATE

challenge: [cl,c2]

protocol: aido2 dbl8 agent-z2
user-label: random agent
user-payload:

« With challenge you can list the challenges that you want your submission to be
run on.

« The user-label can be changed to your liking

» The protocol and user-payload should probably be left as they are.

2) requirements. txt N

This file contains any python requirements that are needed by your code.

3) solution.py .

The solution.py solution file illustrates the protocol interface.

The important parts are:

on received observations context: Context, data: DB200bserva-
tionsWithTimestamp
profiler context.get profiler
camera: JPGImageWithTimestamp = data.camera

odometry: DB200dometryWithTimestamp data.odometry
context.info {camera.timestamp}
context.info {odometry.timestamp}
profiler.prof
_rgb jpg2rgb(camera.jpg data

which reads an image whenever one becomes available, and

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/03_template_random.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/03_template_random.md

MINIMAL PURE-PYTHON TEMPLATE

on received get commands context: Context, data: GetCommands
n 1

behavior = 0 # random trajectory
behavior 1 # primary motions

behavior 0
pwm left np.random.uniform(0.5, 1.0
pwm right np.random.uniform(0.5, 1.0
col = RGB(0.0, 1.0, 1.0

behavior 1
t = data.at _time
d=1.0

phases

phase t phases
pwm right, pwm left, col = phases[phase

behavior

led commands = LEDSCommands(col, col, col, col, col

pwm_commands PWMCommands (motor left=pwm left, mo-
tor right=pwm right

commands = DB20Commands (pwm commands, led commands

context.write commands

which asks for wheel commands to be sent to the robot. Your code must finish by send-
ing the commands to the robot with the context.write command.

62

UNIT D-2
ROS Template)

This section describes the basic procedure for making a submission with an agent us-
ing the Robot Operating System. It can be used as a starting point for any of the LF,
LFV, and LFI challenges.

KNOWLEDGE AND ACTIVITY GRAPH

| Requires: That you have setup your accounts.
| Requires: That you meet the software requirement.
I Requires: That you have a basic understanding of ROS.

Results: You make a submission to all of the LF* challenges and can view their
status and output.

Ar‘ The Al Driving Olympics
h m @ NeurlPS 2020 3 s

aido.duckietown.org

Brought fo you by a huge team & many supportive sponsars:

ETHziirich Université fh &uucnnown

de Montréal A

notional (@) SwissRe <NVIDIA

Presenters: Andrea Censi (ETH Zlrich), Liam Paull (U. Montréal).

Figure 2.1. ROS template

2.1. Quickstart .
Clone the template repo:

$ git clone git@github.com:duckietown/challenge-aido LF-template-ros.

Change into the directory:

$ cd challenge-aido-LF-template-ros

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_5_template_ros.md
http://www.ros.org/
http://www.ros.org/
https://vimeo.com/478452025
https://vimeo.com/478452025
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_5_template_ros.md
https://github.com/duckietown/challenge-aido_LF-template-ros

ROS TEMPLATE 63

Either make a submission with:

$ dts challenges submit --challenge (@zZVBRZ[(EI@NNYIS

where you can find a list of the open challenges here.

Or, run local evaluation with:
$ dts challenges evaluate --challenge (@zZVBBZN[EIZg\VLN\%)

1) Verify the submission: N

This will make a number of submissions (as described below). You can track the status
of these submissions in the command line with:

$ dts challenges follow --submission @EEAZVIERIOINNEN IZISNN

or through your browser by navigating the webpage: https://challenges.ducki-
etown.org/v4/humans/submissions/ SUBMISSION NUMBER

where SUBMISSION NUMBER should be replaced with the number of the submis-
sion which is reported in the terminal output.

2.2. Anatomy of the submission .

The submission consists of all of the basic files that required for a basic submission.
Below we will highlight the specifics with respect to this template.

There are also a few other new files and folders in this submission:

launchers/
submission ws/

and additionally the solution.py is inside the submission ws folder and Dockerfile
have changed. We will describe each of these in detail.

Note: If you don’t care about the details, or just want to get started, you can start by
adding new ROS packages into the submission ws.

https://challenges.duckietown.org/v4/humans/challenges
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_5_template_ros.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_5_template_ros.md

64 ROS TEMPLATE

1) Dockerfile N

The main update here is that we build your catkin workspace inside (the submis-
sion ws folder) in the Dockerfile:

RUN . /opt/ros/${R0S_DISTRO}/setup.sh [&& \
. ${CATKIN WS DIR}/devel/setup.bash [@ \
catkin build --workspace /code/submission ws

Also note that instead of just running solution.py when we enter the container, we
now run a “launcher” (in the launchers folder) called run_and start.sh. For details
see Subsection 2.2.4 - launchers/.

Also note that in this Dockerfile we are not copying the entire directory over, instead
we are copying files individually (this is actually more efficient). So if you add new
files that you are using that are outside of the submission_ws and launchers folders,
you will have to add additional COPY commands.

2) solution.py .

You probably don’t need to change this file.

We instantiate a ROSAgent() (see Subsection 2.2.3 - rosagent.py) and this becomes
the object that handles interfacing with the ROS interface. This includes the publish-
ing of imagery and encoder data to ROS:

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_5_template_ros.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_5_template_ros.md

ROS TEMPLATE 65

on received observations data: DB200bservationsWithTimestamp
context: Context
camera = data.camera
odometry = data.odometry
context.info(f'received obs camera {camera.timestamp} odome-
try {odometry.timestamp}')

camera.timestamp last camera timestamp
agent.publish img(camera.jpg data, camera.timestamp
agent.publish info(camera.timestamp
last camera timestamp = camera.timestamp

odometry.timestamp last odometry timestamp
agent.publish odometry
odometry.resolution rad, odometry.axis left rad, odome-
try.axis right rad, odometry.timestamp

last odometry timestamp = odometry.timestamp

Notice now that the protocol includes timestamps which are used to tag the data,
and that a new camera image is not published if the timestamp does not change.

3) rosagent. py N

You probably don’t need to change this file.

rosagent.py sets up a class that can be used to interface with the rest of the ROS
stack. It is for all intents and purposes a fully functional ROS node except that it isn’t
launched through ROS, it is instantiated in code. This class takes care of a few useful
things, such as getting the correct camera calibration files, subscribing to control com-
mands and sending them to your robot (real or simulated), as well as retreiving the
sensor data from the robot and publishing it to ROS.

The main functions are:

o def publish img(self, obs: bytes, timestamp: float):, which takes the camera
observation from the environment, and publishes it to the topic that you specify in the
constructor of the ROSAgent

e def publish odometry(self, resolution rad: float, 1left rad: float,
right rad: float, timestamp: float):, which take the encoder data from the robot,
and publishes it to the topic specified in the constructor of the R0OSAgent .

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_5_template_ros.md

66 ROS TEMPLATE

o def ik action cb(self, msg):, listens on the inverse kinematics action topic,
and assigns it to self.action.

4) launchers/ .

The bash scripts in the launchers directory are there to help you get everything start-
ed when you run your container. In this template there is only run and start.sh:

#!/bin/bash
source /environment.sh

source /opt/ros/noetic/setup.bash
source /code/catkin ws/devel/setup.bash --extend
source /code/submission_ws/devel/setup.bash --extend

set -eux
dt-exec-BG roscore

dt-exec-BG roslaunch --wait random action random action_node.launch
dt-exec-FG roslaunch --wait agent agent node.launch || true

copy-ros-logs

You are free to modify this as you see fit, but a few things are important to consider.

1. The order that we source things matters. If we have a package with the same
name in two workspaces, ROS will run whichever one got sourced last.

2. Ifyou don’t put things in the background (with dt-exec-BG) then if those com-
mands don’t end, subsequent commands will not get run.

3. The --wait flag in the roslaunch command is recommended so that
roslaunch will wait until the roscore has finished initializing.

5) submission_ws/ .

This is a standard ROS catkin workspace. You can populate it with ROS packages. You
will notice that the random action package is already in the workspace. This can be
used as a template for creating more packages. The main elements are launch files in
the launch folder (you will see the random action node.launch which is launched by

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_5_template_ros.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_5_template_ros.md
http://wiki.ros.org/ROS/Tutorials/CreatingPackage

ROS TEMPLATE 67

the run_and start.sh launcher), the src folder which contains the ROS nodes, and
the include folder which contains your python includes (you can also write nodes in
C++ or other languages if you prefer).

68

UNIT D-3
TensorFlow Template :

This section describes the basic procedure for making a submission with a model
trained in using TensorFlow. It can be used as a starting point for any of the LF, LFV,
and LFI challenges.

KNOWLEDGE AND ACTIVITY GRAPH

| Requires: That you have setup your accounts.
| Requires: That you meet the software requirement.

| Requires: 9 GB free space.
Results: You make a submission to all of the LF* challenges and can view their

status and output.
A‘] The Al Driving Olympics
b @ NeurlPS 2020 ¥t e

awEg

o
rovs sporsas

[} -
H £y pucKiETOWN

nVIDIA

Today's Presenters: Chude Cian (U. Torento), Moustata ElsRaby (U. Montréal)

Figure 3.1. TensorFlow Template

3.1. Quickstart .
Clone the template repo:

$ git clone git@github.com:duckietown/challenge-aido LF-template-tensor-

flow.git

Change into the directory:

$ cd challenge-aido LF-template-tensorflow

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_template_tensorflow.md
https://www.tensorflow.org/
https://vimeo.com/481632757
https://vimeo.com/481632757
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_template_tensorflow.md
https://github.com/duckietown/challenge-aido_LF-template-tensorflow

TENSORFLOW TEMPLATE 69

Either make a submission with:
$ dts challenges submit --challenge (@zZVBRZ[(EI@NNYIS

where you can find a list of the open challenges here.

Or, run local evaluation with:
$ dts challenges evaluate --challenge (@zZVBBZN[EIZg\VLN\%)

1) Verify your submission(s) N

This will make a number of submissions (as described below). You can track the status
of these submissions in the command line with:

$ dts challenges follow --submission @EEAZVIERIOINNEN IZISNN

or through your browser by navigating the webpage: https://challenges.ducki-
etown.org/v4/humans/submissions/ SUBMISSION NUMBER

where SUBMISSION NUMBER should be replaced with the number of the submis-
sion which is reported in the terminal output.

3.2. Anatomy of the submission .

The submission consists of all of the basic files that required for a basic submission.
Below we will highlight the specifics with respect to this template.

1) solution.py N

The only difference in solution.py is that we are initializing our model:

https://challenges.duckietown.org/v4/humans/challenges
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_template_tensorflow.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_template_tensorflow.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_template_tensorflow.md

70 TENSORFLOW TEMPLATE

model TfInference
define observation and output shapes
model = TfInference(observation shape=(1 expect shape
this is the shape of the image we

get.
action shape=(1, 2 # we need to out-
put v, omega.
graph_location='tf models/' # this
is the folder where our models are stored.
current _image = np.zeros(expect shape

and then we call our model to compute an action with the following code:

compute action observation

action model.predict(observation
action.astype

Note that we also can require the presence of a GPU with the environment variable
AIDO REQUIRE_GPU and then the solution will fail if a GPU is not found.

2) Model files N

The other additional files are the following:

tf models/
model.py

The directory tf models/ contains the Tensorflow learned models (the ones that you
have trained).

The model.py code is the code that runs the Tensorflow model.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/04_template_tensorflow.md

UNIT D-4
PyTorch Template)

This section describes the basic procedure for making a submission with a model
trained in using PyTorch.

It can be used as a starting point for any of the LF, LFV_multi, and LFI challenges.

KNOWLEDGE AND ACTIVITY GRAPH

| Requires: That you have setup your accounts.

I Requires: That you meet the software requirement.

Results: You make a submission to all of the LF* challenges and can view their
status and output.

The Al Driving Olympics

@ NewrlPS 2020
QR0

[l
Brought to you by a huge team & many supportive sponsors:
ETHziirich l‘nl.;uc;i‘\::‘»ﬁh @juucnncwu
motional (@) SwissRe ANVIDIA
Today's Presenters: Chude Qian (U. Toronto), Charfie Gauthier{U. Montréal).
Figure 4.1. PyTorch Template
4.1. Quickstart N

Clone the template repo:

$ git clone git://github.com/duckietown/challenge-aido LF-template-py-

torch.git

Change into the directory:

$ cd challenge-aido LF-template-pytorch

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/05_template_pytorch.md
https://pytorch.org/
https://vimeo.com/480202594
https://vimeo.com/480202594
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/05_template_pytorch.md
https://github.com/duckietown/challenge-aido_LF-template-pytorch

72 PYTORCH TEMPLATE

Run the submission:

Either make a submission with:
$ dts challenges submit --challenge (@zZVBBZ\N[EIsg\ViV\%)

where you can find a list of the open challenges here.

Or, run local evaluation with:
$ dts challenges evaluate --challenge (@zZAVBB[EIS\VN7))

1) Verify the submission(s) N

This will make a number of submissions (as described below). You can track the status
of these submissions in the command line with:

$ dts challenges follow --submission @QEEAZIERIOINMNIIN NI

or through your browser by navigating the webpage: https://challenges.ducki-
etown.org/v4/humans/submissions/ SUBMISSION NUMBER

where SUBMISSION NUMBER should be replaced with the number of the submis-
sion which is reported in the terminal output.

4.2. Anatomy of the submission N

The submission consists of all of the basic files that required for a basic submission.
Below we will highlight the specifics with respect to this template.

1) solution.py .

The only differences in solution.py (the python script that is run by our submission)
are:

« We conditionally load the model in the initializaiton procedure:

https://challenges.duckietown.org/v4/humans/challenges
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/05_template_pytorch.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/05_template_pytorch.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/05_template_pytorch.md

PYTORCH TEMPLATE 73

model = DDPG(state dim preprocessor.shape, action dim=2
max_action=1, net type
current image np.zeros((640, 480, 3

load model
logger.info('PytorchRLTemplateAgent loading models'
fp = model path model path
model.load(fp for _inference

« We abort if no GPU is detected and the environment variable AIDO REQUIRE GPU.
« We are calling our model to compute an action with the following code:

compute action observation

action model.predict(observation
action.astype

4.3. Model files N
The other addition files are the following:

wrappers.py
model.py
models

wrappers.py contains a simple wrapper for resizing the input image. model.py is
used for training the model, and the models are stored in models.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/30_task_embodied/05_template_pytorch.md

74

PART E
Baseline Algorithms)

To help competitors get started, we have implemented some baseline algorithms.
These can be built on or used for inspiration. At present, all of these baseline algo-
rithms are for the LF* challenges:

Contents
Unit E-1 - Duckietown Baseline.......cc.cccoueceuieincnvicinineinenincneencvnnnncnenee.
Unit E-2 - Reinforcement Learning
Unit E-3 - Behavior ClONINgc.coceicenioiiioniiiiiiniieienee
Unit E-4 - Dataset AZgregationoceeeeeeeeeeiesecesiieeeseeeseceseseesee e, 97
Unit E-5 - Residual Policy Learning...........coeececeeeconeeeinecnncinencincennnnee. 103

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/00_part_strategies.md

UNIT E-1
Duckietown Baseline .

This section describes the basic procedure for making a submission using the Robot
Operating System and the Duckietown software stack.

KNOWLEDGE AND ACTIVITY GRAPH

Requires: That you have made a submission with the ROS template and you un-
derstand how it works.

| Requires: You already know something about ROS.

I Results: You have a competitive submission.

A‘] The Al Driving Olympics
‘ @ NeurlPS 2020 3
2 ne o

aido.duckietown.org

Brough to you by & huge tearm & many supportve sponsors
rie lJuiwr.il«-l‘H’l HE
ETHzirich Unirersite N grg o Eyouckierown
motional (@) SwissRe CANVIDIA

Presenters: Andrea Gens! (ETH Zarich), Liam Paul (U. Montréal)

Figure 1.1. ROS template

1.1. Quickstart N
Clone this repo

$ git clone git@github.com:duckietown/challenge-aido LF-baseline-ducki-

etown.git

Change into the directory:

$ cd challenge-aido LF-baseline-duckietown

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/20_ros_baseline.md
http://www.ros.org/
http://www.ros.org/
https://github.com/duckietown/dt-core
https://vimeo.com/478452025
https://vimeo.com/478452025
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/20_ros_baseline.md
https://github.com/duckietown/challenge-aido_LF-baseline-duckietown

76 DUCKIETOWN BASELINE

Test the submission, either locally with:

$ dts challenges evaluate --challenge (@zZVBB[EIS\VV\7))

or make an official submission when you are ready with

$ dts challenges submit --challenge (@zZVBRZ\[(EI\NYIS

You can find the list of challenges here. Make sure that it is marked as “Open”.

1.2. Baseline Details .
The “Duckietown” baseline is based on the ROS template.

1) Dockerfile N

One important fact of the Dockerfile is that we use a “multi-stage build”:

FROM ${DOCKER REGISTRY}/duckietown/dt-car-interface:${BASE TAG} AS dt-
car-interface

FROM ${DOCKER REGISTRY}/duckietown/challenge-aido lf-template-
ros:${BASE_TAG} AS template

FROM ${DOCKER REGISTRY}/duckietown/dt-core:${BASE TAG} AS base

This allows us to take some elements from each of the first two base images, and copy
them into the dt-core image:

COPY --from=dt-car-interface ${CATKIN WS DIR}/src/dt-car-interface
${CATKIN_WS DIR}/src/dt-car-interface

COPY --from=template /data/config /data/config

COPY --from=template /code/rosagent.py .

As a result, we have the calibration files (from /data/config) as well as the
rosagent.py from the challenge-aido 1f-template-ros and all the source files from
the dt-car-interface image.

https://challenges.duckietown.org/v4/humans/challenges
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/20_ros_baseline.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/20_ros_baseline.md
https://github.com/duckietown/dt-car-interface

DUCKIETOWN BASELINE 77

We also get everything that is in the dt-core image.
The remainder of the Dockerfile is very similar to the Dockerfile in the ROS template.

2) solution.py .

There is no solution.py because it is inherited from the ROS template. In the event
that you wanted to, for example, change the launcher that was run in the final CMD
line.

3) Launchers/ .

There is only one “launcher”, and it deviates slightly from the one in the ROS template:

#!/bin/bash

source /environment.sh

source /opt/ros/noetic/setup.bash

source /code/catkin ws/devel/setup.bash --extend

source /code/solution/devel/setup.bash --extend

source /code/submission ws/devel/setup.bash --extend

set -eux

dt-exec-BG roscore

dt-exec-BG roslaunch --wait car interface all.launch veh:="${

}II
dt-exec-BG roslaunch --wait duckietown demos lane following.launch

sleep 5
dt-exec-BG roslaunch --wait duckietown demos set state.launch
veh:="${ }" state:="LANE_FOLLOWING"

rostopic list
dt-exec-FG roslaunch --wait agent agent node.launch || true

rostopic list
copy-ros-logs

Here we launch the lane following.launch launch file from the duckietown demos

https://github.com/duckietown/dt-core
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/20_ros_baseline.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/20_ros_baseline.md
https://github.com/duckietown/dt-core/blob/daffy/packages/duckietown_demos/launch/lane_following.launch

78 DUCKIETOWN BASELINE

package. We don’t go into the intricate details of everything that is run in this launch
file here, but some of the more consequential nodes which are getting launched are
the following:

+ line_detector_node: Used to detect the lines in the image.

« ground projection node: Used to project the lines onto the ground plane using the
camera extrinsic calibration.

« lane filter node: Used to take the ground projected line segments and estimate the
Duckiebot’s position and orientation in the lane.

« lane_controller_node: Used to take the estimate of the robot and generate a refer-
ence linear and angular velocities for the Duckiebot.

In the event that you wanted to, for example change the launcher that was run in the
final cMD line.

4) submission ws/ .

The submission_ws folder contains all the new ROS packages that you would like to
include in your submission. It is currently empty, but there is a reference package in-
cluded in the ROS template.

Note: Importantly, your submissions ws is sourced after the existing catkin ws that
isincluded in dt-core. As a result, if you include a node and package in your sub-
mission ws with the same name as one in dt-core, the one in submission ws will
get executed. This is convenient because it means that, as long as you adhere to the
same subscriptions and publications, you don’t need to define any new launch file,
lane following.launch will automatically launch your newly written node.

1.3. Local Development Workflow .
For rapid local development, you can make use of the dts exercises API (unknown ref
opmanual duckiebot/running-exercises)

previous warning next (17 of 18) index
warning

I will ignore this because it is an external 1link.

> I do not know what is indicated by the link '#op-
manual duckiebot/running-exercises'.

https://github.com/duckietown/dt-core/blob/daffy/packages/duckietown_demos/launch/lane_following.launch
https://github.com/duckietown/dt-core/tree/daffy/packages/line_detector
https://github.com/duckietown/dt-core/tree/daffy/packages/ground_projection
https://github.com/duckietown/dt-core/tree/daffy/packages/lane_filter
https://github.com/duckietown/dt-core/tree/daffy/packages/lane_control
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/20_ros_baseline.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/20_ros_baseline.md
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html

DUCKIETOWN BASELINE 79

Location not known more precisely.
Created by function n/a in module n/a.

, developed to build and test exercises and assignments in class settings.

1) Building your Code N

From inside the challenge-aido LF-baseline-duckietown folder, you can start by
building your code with:

$ dts exercises build

This performs catkin build inside a docker container. If you go inside the submis-
sion_ws folder you will notice that there are more folders that weren’t there before.
These are build artifacts that persist from the building procedure because of mount-
ing.

2) Running in Simulation N

You can run your current solution in the gym simulator with:

$ dts exercises test --sim

Then you can look at what’s happening by looking through the browser at http://local-
host:8087. This will open a noVNC desktop. In it, open up the rqt _image view, resize
it, and choose /agent/camera_node/image/compressed in the dropdown. You should
see the image from the robot in the simulator.

You might want to launch a virtual joystick by opening a terminal and doing:

$ dt-launcher-joystick

By default the Duckiebot is in joystick control mode, so you can freely drive it around.
You can also set it to LANE FOLLOWING mode by pushing the a button when you have
the virtual joystick active. If you do so you will see the robot move forward slowly and
never turn.

At the same time, you can see a birds eye overview of the Duckiebot on the track

though the browser at http://localhost:8090.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/20_ros_baseline.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/20_ros_baseline.md
http://localhost:8087/
http://localhost:8087/
http://localhost:8090/

80 DUCKIETOWN BASELINE

3) Testing Your Algorithm on the Robot N

If you are using a Linux laptop, you have two options, local (i.e., on your laptop) and
remote (i.e., on the Duckiebot). To run “locally”

$ dts exercises test --duckiebot name @{O2IONM\VNZIH - - local

To run on the Duckiebot:

$ dts exercises test --duckiebot name @{@J1ONNR\VZVZIS

In both cases you should still be able to look at things through noVNC by pointing
your browser to http://localhost:8087 . If you are running on Linux, you can load up
the virtual joystick and start lane following as above.

Warning: If you are Mac user unfortunately you should not use the --local flag

A

Starting Lane Following on Mac:
TODO: should be retested

previous task (2 of 2) index
task

The following was marked as "todo".
TODO: should be retested

Location not known more precisely.
Created by function n/a in module n/a.

Since we can’t publish from Mac and have it be received by ROS, we have to do some-
thing slightly different. In a new terminal on your Mac do:

$ docker -H @G{O{OJMIVN/ID .1 ocal exec agent launchers/start lane follow-
ing.sh

This will run the start_lane_following.sh bash script inside the agent container
which initiates LANE_FOLLOWING mode.

Similarly, you can stop your Duckiebot from lane following by doing:

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/20_ros_baseline.md
http://localhost:8087/
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/20_ros_baseline.md
/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/tasks.html

DUCKIETOWN BASELINE 81

$ docker -H @{OL{@JMVANIY . ocal exec agent launchers/stop lane follow-

ing.sh

You could also do an equivalent thing through the Portainer interface in the dashboard
by opening a new terminal in your agent container and running the corresponding
launcher.

4) How to Improve your Submission

LY

A good way to get started could be to copy one of the packages defined in the Duck-
ietown dt-core repo or the Duckietown dt-car-interface repo into the submission ws
folder and modify it. Note that your modified package will automatically get run be-
cause of the order of the sourcing of the catkin workspaces in the run_and_start.sh
launch file.

If you would like to add a new package and node that includes a functionality not al-
ready run by lane_following.launch or you would like to change the connectivity of
interfaces of these nodes, then you will also need:

+ to write your own launch file that launches your node and also all of the other
nodes from the base images that you would still like to use.

+ to modify the launch file run_and start.sh so that it launches your newly created
launchfile. You could equally define a new launchfile, but then make sure that it gets
executed in the last line of your Dockerfile.

5) Other Possibly Useful Utilities

A

All of the normal ROS debugging utilities are available to you through the noVNC
desktop. For example, You might also explore the other outputs that you can look at in
rqt_image view.

Also useful are some debugging outputs that are published and visualized in RvViz.
You can open RViz through the terminal in the noVNC desktop by typing:

In the window that opens click “Add” the switch to the topic tab, then find the seg-
ment_markers, and you should see the projected segments appear. Do the same for the
pose _markers.

Another tool that may be useful is rqt_plot which also can be opened through the

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/20_ros_baseline.md
https://github.com/duckietown/dt-core
https://github.com/duckietown/dt-core
https://github.com/duckietown/dt-car-interface
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/20_ros_baseline.md

82 DUCKIETOWN BASELINE

terminal in noVNC. This opens a window where you can add “Topics” in the text box
at the top left and then you will see the data get plotted live.

All of this data can be viewed as data through the command line also. Take a look at
all of the rostopic command line utilities.

UNIT E-2
Reinforcement Learning)

This section describes the basic procedure for making a submission with a model
trained in simulation using reinforcement learning with PyTorch.

KNOWLEDGE AND ACTIVITY GRAPH

I Requires: That you have made a submission with the PyTorch template.

Requires: You should install CUDA10.2+ locally. This baseline works with CUDA
11, and it should also work with CUDA 10.2.

I Requires: Patience, training RL agents is not easy.

Results: You have a functional agent trained with RL. Your expectations in regards
to end-to-end RL’s capabilities should be realistic.

Before getting started, you should be aware that RL is very much an active area of re-
search. Simply getting a successful turn with this baseline should be celebrated. It is
still provided to you because this implementation is a good stepping point to other al-
gorithms. We also assume here that you are relatively familiar with the basics of rein-
forcement learning. There are many tutorials and resources, and even complete cours-
es, online for learning about RL, but for a succinct introduction, you can check out the
Reinforcement Learning lecture from the IFT6757 class at the University of Montreal,
or try our reinforcement learning Jupyter notebook which is in the Duckietown exer-
cises repository.

You should also make sure you have access to good hardware. A recent graphics card
(probably GTX1060+) is a must, and more than 8GB of RAM is required.

2.1. Quickstart .
Clone this repo

$ git clone git@github.com/duckietown/challenge-aido LF-baseline-sim-py-

torch.git

Change into the directory:

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/36_rl_baseline.md
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://classe.iro.umontreal.ca/videos/watch/6cd0af06-1ca2-469e-9f70-162afe3b4f51
https://classe.iro.umontreal.ca/videos/watch/1f717ac8-dbc9-4397-9771-a21a10f869a2
https://github.com/duckietown/dt-exercises
https://github.com/duckietown/dt-exercises
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/36_rl_baseline.md
https://github.com/duckietown/challenge-aido_LF-baseline-RL-sim-pytorch

84 REINFORCEMENT LEARNING

$ cd challenge-aido LF-baseline-sim-pytorch

Test the submission, either locally with:

$ dts challenges evaluate --challenge (@izZAVBB[€ISP\VV\7))

or make an official submission when you are ready with

$ dts challenges submit --challenge (@zZVBRZ[(EI\NYIH

You can find the list of challenges here. Make sure that it is marked as “Open”.

2.2. How to Train your Policy N

The previous uses the model that is included in the baseline repository. You are going
to want to train your own policy.

To do so:

Change into the directory:

$ cd challenge-aido LF-baseline-RL-sim-pytorch

Install this package:

$ pip3 install -e .

and the gym-duckietown package:

$ pip3 install -e git://github.com/duckietown/gym-ducki-

etown.git@daffy#egg=gym-duckietown

| Note: Depending on your configuration, you might need to use pip instead of pip3

Change into the duckietown rl directory and run the training script

https://challenges.duckietown.org/v4/humans/challenges
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/36_rl_baseline.md

REINFORCEMENT LEARNING 85

$ cd duckietown rl

$ python3 -m scripts.train cnn.py --seed 123

When it finishes, try it out (make sure you pass in the same seed as the one passed to
the training script)

$ python3 -m scripts.test cnn.py --seed 123

2.3. How to submit the trained policy N

Once you’re done training, you need to copy your model and the saved weights of the
policy network.

Specifically if you use this repo then you need to copy the following artifacts into the
corresponding locations of the root directory:

« duckietown rl/ddpg.py and rename to model.py

e scripts/pytorch _models/DDPG_XXX actor.pth and DDPG_ XXX critic.pth and re-
name to models/model_actor.pth and models/model critic.pth respectively, where
XXX is the seed of your best policy

Also, make sure that the root-level wrappers.py contains all the wrappers you used in
duckietown rl/wrappers.py.

Then edit the solution.py file over to make sure everything is loaded correctly (i.e.,
all the imports point to the right place).

Finally, you evaluate or submit your agent using the process described above in the

Quickstart.

2.4. How to improve your policy .
Here are some ideas for improving your policy:

+ Check out the DtRewardWrapper and modify the rewards (set them higher or lower
and see what happens)

» Try resizing the images. Make them smaller to speed up training, or bigger for en-
suring that your RL agent can extract everything it can from them. You will need to
also edit the layers in ddpg.py accordingly.

« Try making the observation image grayscale instead of color.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/36_rl_baseline.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/36_rl_baseline.md

86 REINFORCEMENT LEARNING

« Try stacking multiple images, like 4 monochrome images instead of 1 color image.
You will need to also edit the layers in ddpg.py accordingly.

« You can also try increasing the contrast in the input to make the difference between
road and road-signs clearer. You can do so by adding another observation wrapper.

+ Cut off the horizon from the image (and correspondingly change the convnet para-
meters).

» Check out the default hyperparameters in duckietown rl/args.py and tune them.
For example increase the expl_noise or increase the start_timesteps to get better
exploration.

» (more sophisticated) Use a different map in the simulator, or - even better - use ran-
domized maps. But be mindful that some maps include obstacles on the road, which
might be counter-productive to a LF submission.

» (more advanced) Use a different/bigger convnet for your actor/critic. And add bet-
ter initialization.

+ (very advanced) Use the ground truth from the simulator to construct a better re-
ward.

» (extremely advanced) Use an entirely different training algorithm - like PPO, A2C,
or DQN. But this might take significant time, even if you’re familiar with the matter.

2.5. Sim2Real Transfer (Optional) .

You should try your agent on the real Duckiebot.

It is possible, even likely, that your agent will not generalize well to the real environ-
ment. One approach to mitigate this problem is to randomize the simulator environ-
ment during training, in the hope that this improves generalization. This approach is
referred to as “Domain Randomization”.

To implement this, you will need to modify the env.py file. You’ll notice that we
launch the Simulator class from gym-duckietown. When we take a look at the con-
structor, you’ll notice that we aren’t using all of the parameters listed. In particular,
the three you should focus on are:

« map_name: What map to use; hint, take a look at gym_duckietown/maps for more
choices

« domain rand: Applies domain randomization, a popular, black-box, sim2real tech-
nique

« randomized maps_on_reset: Slows training time, but increases training variety.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/36_rl_baseline.md
https://github.com/duckietown/gym-duckietown/blob/daffy/src/gym_duckietown/simulator.py
https://github.com/duckietown/gym-duckietown/blob/daffy/src/gym_duckietown/simulator.py

REINFORCEMENT LEARNING 87

Mixing and matching different values for these will help you improve your training di-
versity, and thereby improving your evaluation robustness.

If you’re interested in more advanced techniques, like learning a representation that is
a bit easier for your network to work with, or one that transfers better across the sim-
ulation-to-reality gap, there are some alternative, more advanced methods you may be
interested in trying out.

2.6. Training headless .

Should you want to train on a server, you will notice that the simulator requires an X
server to run. Fear not, however, as we can use a fake X server for it.

$ xvfb-run -s
seed 123

-screen 0 1400x900x24" python3 -m scripts.train cnn.py --

That way, we trick the simulator into thinking that an X server is running. And, to be
honest, from its point of view, it’s actually true!

2.7. Controlling which GPU is being used .

Your machine might have more than one GPU. To select the nth instead of the Oth, you
can use

$ CUDA VISIBLE DEVICES=n python3 -m scripts.train cnn.py --seed 123

This is, of course, combinable with running on a server

$ CUDA VISIBLE DEVICES=n xvfb-run -s "-screen 0 1400x900x24" python3 -m

scripts.train cnn.py --seed 123

https://github.com/duckietown/segmentation-transfer
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/36_rl_baseline.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/36_rl_baseline.md

88

UNIT E-3
Behavior Cloning .

In this part, you can find the required steps to make a submission based on Behavior
Cloning with Tensorflow for the lane following task, using data from real world or
simulator data. It can be used as a strong starting point for any of the challenges.

KNOWLEDGE AND ACTIVITY GRAPH

| Requires: That you have made a submission with the tensorflow template.
| Results: You could win the AI-DO!

The Al Driving Olympics

@ NeurlPS 2020

O
ot
‘r”:'ﬁ\‘ HHEs &youcierown
issRe <AMNVIDIA
Figure 3.1. Behavior Cloning
3.1. Introduction .

This baseline refers to the approach for behavior cloning for autonomous vehicles de-
scribed in this paper: End to End Learning for Self-Driving Cars. It is created by Frank
(Chude Qian) for his submission to AI-DO 3 at NeurIPS 2019. The submission was
very successful on simulator challenge, however, it was not the best for real world
challenges.

A detailed description on the specific implementation for this baseline can be found
on the summary poster here: Teaching Cars to Drive Themselves.

3.2. Quickstart .
Clone the baseline Behavior Cloning repository:

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://vimeo.com/481632757
https://vimeo.com/481632757
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://images.nvidia.com/content/tegra/automotive/images/2016/solutions/pdf/end-to-end-dl-using-px.pdf
mailto:frank.qian@case.edu
mailto:frank.qian@case.edu
https://doi.org/10.5281/zenodo.3660134
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://github.com/duckietown/challenge-aido_LF-baseline-behavior-cloning

BEHAVIOR CLONING 89

$ git clone -b daffy https://github.com/duckietown/challenge-aido LF-
baseline-behavior-cloning.git

$ cd challenge-aido LF-baseline-behavior-cloning

The code is structured into 5 folders:
1. Teach your Duckiebot to drive itself in duckieSchool.

2. (Optional) Store all the logs that can be used for training using duckieLog.

3. Train your model using tensorflow in duickieTrainer.

4. (Optional) Hold all previous models you generated in duckieModels.

5. Submit your submission via duckieChallenger folder.

3.3. The duckieSchool .

In side this folder you find two types of duckieSchool: simulator based duckieGym
and real robot based duckieRoad.

1) Installing duckietown Gym N

To install duckietown Gym and all the necessary dependencies:
pip3 install -r requirements.txt

2) Use joystick to drive

A

Before you use the script, make sure you have the joystick connected to your computer.

To run the script, use the following command:

$ python3 human.py

The system utilizes an Xbox One S joystick to drive around. Left up and down controls
the speed and right stick left and right controls the velocity. Right trigger enables the
“DRS” mode and allows the vehicle to drive full speed forward. (Note there are no an-
gular acceleration when this mode is enabled).

In addition, every 1500 steps in simulator, the recording will pause and playback. You
will have the chance to review the result and decide whether to keep the log or not.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://en.wikipedia.org/wiki/Drag_reduction_system

90 BEHAVIOR CLONING

The logs are recorded in two formats: raw_log saves all the raw information for future
re-processing, and traning_data saves the directly feedable log.

3) Options for joystick script N

For driving a Duckiebot with a joystick in a simulator, you have the following options:
1. --env-name: currently the default is None.

2. --map-name: This sets the map you choose to run. Currently, it is set as
small loop cw.

3. --draw-curve: This draw the lane following curve. Default is set as False. How-
ever, if you are new to the system, you should familiarize yourself with enabling this
option as True.

4. --draw-bbox: This helps draw out the collision detection bounding boxes. Default
is set as False.

5. --domain-rand: This enables domain randomization. Default is set as True.

6. --playback: This enables playback after each record section for you to inspect the
log you just took. Default is set as True.

7. --distortion:This enables distortion to let the view as fisheye lens. Default is set
as True.

8. --raw_log: This enables recording also a high resolution version of the log instead

of the down-sampled version. Default is set as True. Note: if you disable this option,
playback will be disabled too.

9. --steps: This sets how many steps to record once. Default is set as 1500.

10. --nb-episodes: This controls how many episodes (a.k.a. sessions) you drive.

11. --logfile: This specifies where you can store your log file. Default will just save
the log file in the current folder.

12. --downscale: This option currently is disabled.

13. --filter-bad-data: This option allows you to only log driving that is better than

the last state. It uses reward feedback on the duckietown gym for tracking the reward
status.

Additionally, some other features has been hard coded:
1. The training images are stored as YUV color space, you can change it in line 258.

2. The frames are sized as 150x200, per original paper recommendation. This could
be not the most effective resolution.

3. The logger resets if it detects driving out of bounds.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md

BEHAVIOR CLONING 91

4) Automated log generation using pure pursuit N

This baseline also provides an option to automatically generate training samples using
the pure pursuit control algorithm.

The configurable parameters are similar to the human driver agent case described
above.

If you would like to mass generate training samples on a headless server, under the
util folder you will find the necessary tools.

To start pure pursuit data generation:

$ python3 automatic.py

5) Log using an actual Duckiebot N

To log using an actual Duckiebot, refer to this tutorial on how to get a rosbag on a
duckiebot.

Once you have obtained the ROS bag, you can use the folder duckieRoad to process
that log.

6) Process a log from an actual Duckiebot N

You will find the following files in the duckieRoad directory.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://www.coursera.org/lecture/intro-self-driving-cars/lesson-2-geometric-lateral-control-pure-pursuit-44N7x
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/take_a_log.html
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md

92

— Dockerfile
|

BEHAVIOR CLONING

File that sets up the docker image

— bag files # Put your ROS bags here.

| | ROSBAG1 # Your ROS bag.

| |— ROSBAG2 # Your training on Date 2.

| ...

I

F— converted # Stores the converted log for you

to train the Duckiebot
I

src

pickle log

| F— _loggers.py

| F— extract data functions.py
| L— extract data.py

Duckiebot

|

|

H*

Scripts to convert ROS bag to
Logger used to log the pickle log
Helper function for the script

Convertion script. You set your

name, and topic to convert here.

— MakeFile # Make file.

F— requirements.txt # Used for docker to setup dependen-
cy

L— pickle23.py # Convert the pickle2 style log pro-
duced to pickle 3

https://docs.duckietown.org/daffy/duckietown-robotics-development/out/
ros_logs.html

You should change extract_data.py line 83 to the correct VEHICLE_NAME.
First put your ROS bags in the bag_files folder. Then:

$ make make extract container

Next start the conversion docker:

$ make start extract data

It will automatically mount the bags folder as well as the converted folder.

BEHAVIOR CLONING 93

NOTE: When you run the make file, make sure you are in duckieRoad not in the src
folder!

3.4. The duckieLog .

This folder is set for your to put all of your duckie logs. Some helper functions are pro-
vided. However, they might not be the most efficient ones to run. It is here for your
reference.

1) The log viewer N

To view the logs, under duckieLog folder:

$ python3 util/log viewer.py --log name YOUR LOG FILE NAME.log

2) The log combiner N

To combine the logs, under duckieLog folder:

$ python3 util/log combiner.py --logl datasetl.log --log2 dataset2.log

--output newdataset.log

3.5. The duckieTrainer N
This section describes everything you need to know using the duckieChallenger.

1) Folder structure N

In this folder you can find the following fils:

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md

94 BEHAVIOR CLONING

F— pycache # Python Compile stuff.

I

— trainlogs # Training logs for tfboard.
— Date 1 # Your training on Date 1.
— Date 2 # Your training on Date 2.

I_---
Your trained model is here.
Lowest training loss model.
Lowest validation loss model.
The last model of the training.

— FrankNetBest Loss.h5
F— FrankNetBest Validation.h5
L— FrankNet.h5

H H K

|
|
|
|
— trainedModel
|
|
|
|

— frankModel.py
F— logReader.py

— train.py
F— requirements.txt
L— train.log

The deep learning model.

Helper file for reading the log

The training setup.

Required pip3 packges for training
Your training data.

H H H K W

2) Environment Setup N

To setup your environment, I strongly urge you to train the model using a system with
GPU. Tensorflow and GPU sometimes can be confusing, and I recommend you to re-
fer to tensorflow documentation for detailed information.

Currently, the system requires TensorFlow 2.2.1. To setup TensorFlow, you can refer
to the official TensorFlow install guide here.

Additionally, this training sytem utilizes scikit-learn and numpy. You can find a pro-
vided requirements.txt file that helps you install all the necessary packages.

$ pip3 install -r requirements.txt

3) Model Adjustment N

To change the model, you can modify the frankModel.py file as it includes the model
architecture. Currently it uses a parallel architecture to seperately generate a linear
and angular velocity. It might perform better if they are not setup seperately.

To change your training parameters, you can find EPOCHS, LEARNING RATE, and
BATCH size at the beginning of train.py. You should tweak around these values with
respect to your own provided training data.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://www.tensorflow.org/install/gpu#ubuntu_1804_cuda_101
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md

BEHAVIOR CLONING 95

4) Before Training

A

Before you start training, make sure your log is stored at the root of the duckieTrainer
folder. It should be named as train.log.

Make sure you have saved all the desired trained models into duckieModels. Trust
me you do not want your overnight training overwritten by accident. Yes I have been
through losing my overnight training result.

5) Train it

To train your model:

$ python3 train.py

To observe using tensorboard, run this command in the duckieTrainer directory:

$ tensorboard --logdir logs

You should be able to also see your training status at http://localhost:6006/. If
your computer is accessible by other computers, you can also see it by visiting
http://TRAINERIP:6006

6) Things to improve

A

There are a lot of things could be improved as this is an overnight hack for me. The
data loading could be maybe more efficient. Currently it just load all and stores all in
a global variable. The training loss reference might not be the best. The optimizeer
might be improved. And most importantly, the way of choosing which model to use
could be drastically improved.

7) Troubeshooting

Symptom: tensorflow.python.framework.errors impl.InternalError: CUDA run-
time implicit initialization on GPU:0 failed. Status: out of memory

Resolution: Currently there is no known fix other than cross your fingers
and run again and reducing your batch size.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md

96 BEHAVIOR CLONING

3.6. The duckieModels .
This is a folder created just for you to keep track of all your potential models. There is
nothing functional in it.

3.7. The duckieChallenger .

This is the folder where you submit to challenge. The folder is structured as follows:

— Dockerfile # Docker file used for compiling a
container.

| Modify this file if you added file,
etc.

F— helperFncs.py # Helper file for all helper func-
tions.

F— requirements.txt # ALl required pip3 install.

F— solution.py # Your actual solution

L— submission.yaml # Submission configuration.

After you put your trained model FrankNet.h5 in this folder, you can proceed as nor-
mal submission:

$ dts challenges submit

Or run locally:

$ dts challenges evaluate

An example submission looks like this

3.8. Acknowledgement .

We would like to thank: Anthony Courchesne and Kay (Kaiyi) Chen for their help and
support during the development of this baseline.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://challenges.duckietown.org/v4/humans/submissions/11410
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/41_baseline_behavior_cloning.md
https://www.linkedin.com/in/courchesnea/
mailto:kxc581@case.edu

UNIT E-4
Dataset Aggregation)

This section describes the procedure for training and testing an agent with the gym-
duckietown simulator using the Dagger algorithm.

It can be used as a starting point for any of the LF, LFV, and LFI challenges.

KNOWLEDGE AND ACTIVITY GRAPH

| Requires: You are somewhat familiar with PyTorch and the Pytorch template.
I Results: You could win the AI-DO!

The Al Driving Olympics

@ NeurlPS 2020

[SlEAS]
Gl
g
R nVIDIA
Figure 4.1. Dataset Aggregation (skip to end)
4.1. Introduction .

We saw a first implementation of imitation learning in the behaviour cloning baseline.
That baseline models the driving task as an end-to-end supervised learning problem
where data can be collected offline from an expert. One of the central issues with this
approach is that of distributional shift. Since this is a sequential decision making prob-
lem, the training data are not “identically and independently distributed”. The result
is that if your agent deviates from the optimal trajectory that was demonstrated by the
expert, it will not have any data in its dataset that shows it how to recover back to the
optimal trajectory. As a result, it is unlikely that the behiaviour cloning approach will
be robust.

For a better result than behaviour cloning this second version of imitation learning
does not train only on a single trajectory given by the expert. We follow the Dataset Ag-
greagation algorithm (Dagger) where we also let the agent interact with the environ-
ment and allow the expert to recover. The actions between the expert and the learner

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/42_il_sim_dagger.md
https://github.com/duckietown/gym-duckietown
https://github.com/duckietown/gym-duckietown
https://www.cs.cmu.edu/~sross1/publications/Ross-AIStats11-NoRegret.pdf
https://vimeo.com/481632757
https://vimeo.com/481632757
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/42_il_sim_dagger.md
https://www.cs.cmu.edu/~sross1/publications/Ross-AIStats11-NoRegret.pdf

98 DATASET AGGREGATION

are chosen randomly with a varying probability with the hope that the expert corrects
the learner if it starts deviating from the optimal trajectory.

4.2. Quickstart .
Clone this repo:

$ git clone https://github.com/duckietown/challenge-aido LF-baseline-

dagger-pytorch.git

Change into the directory:

$ cd challenge-aido LF-baseline-dagger-pytorch

In here you will see two directories submission and learning.To make a submission,
enter the submission folder:

$ cd submission

Then test the submission, either locally with:

$ dts challenges evaluate --challenge (@zZVBRIN[EIZgLN\Y)

or make an official submission when you are ready with
R RN EAR RN bRl CHHALLENGE NAME

You can find the list of challenges here. Make sure that it is marked as “Open”.

4.3. Local Development Workflow N

The previous submission used a model which is included in the repo, but you should
try to improve upon it.

1) Option 1: Training with Collab N

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/42_il_sim_dagger.md
https://github.com/duckietown/challenge-aido_LF-baseline-dagger-pytorch
https://challenges.duckietown.org/v4/humans/challenges
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/42_il_sim_dagger.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/42_il_sim_dagger.md

DATASET AGGREGATION 99

We provide a Collab notebook that you can used to get started

During training the loss curve for each episode is available (by default on a folder cre-
ated on root called iil baseline) and may be checked using tensorboard and spec-
ifying the --logidr. On the same folder you will have data.dat and target.dat
which are the memory maps used by the dataset.

2) Option 2: Training Locally N

Start by cloning the gym-duckietown simulator repo:

$ git clone https://github.com/duckietown/gym-duckietown.git

Change into the directory:

$ cd gym-duckietown

Install the package:

$ pip3 install -e .

To run the baseline training procedure, run:

$ python -m learning.train

in the root directory.

3) Parameters that can affect training N

There are several optional flags that may be used to modify hyperparameters of the al-
gorithm:

« --episode or -i an integer specifying the number of episodes to train the agent,
defaults to 10.

« --horizon or -r an integer specifying the length of the horizon in each episode,
defaults to 64.

» --learning-rate or -1 integer specifying the index from the list [1e-1, 1le-2, le-3,
le-4, 1e-5] to select the learning rate, defaults to 2.

https://colab.research.google.com/github/duckietown/challenge-aido_LF-baseline-dagger-pytorch/blob/main/notebook.ipynb
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/42_il_sim_dagger.md
https://github.com/duckietown/gym-duckietown
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/42_il_sim_dagger.md

100 DATASET AGGREGATION

+ --decay or -d integer specifying the index from the list [0.5, 0.6, 0.7, 0.8, 0.85, 0.9,
0.95] to select the initial probability to choose the teacher, the learner.

+ --save-path or -s string specifying the path where to save the trained model,
models will be overwritten to keep latest episode, defaults to a file named iil_base-
line.pt on the project root.

« --map-name or -m string specifying which map to use for training, defaults to
loop_empty.

« --num-outputs integer specifying the number of outputs the model will have, can
be modified to train only angular speed, defaults to 2 for both linear and angular speed.
« --domain-rand or -dr a flag to enable domain randomization for the transferabil-
ity to real world from simulation.

+ --randomize-map or -rm a flag to randomize training maps on reset.

The baseline model is based on the Dronet model. The feature extractor of the model
is frozen while the classifier is modified for the regression task.

All the PyTorch boilerplate code is encapsulated in the NeuralNetworkPolicy class
implemented on learning/imitation/iil-dagger/learner/neural network poli-
cy.pyand is based on previous work done by Manfred Diaz on Tensorflow.

4) Local Evaluation N

A simple testing script test.py is provided with this implementation. It loads the lat-
est model from the the provided directory and runs it on the simulator. To test the
model:

$ python -m learning.test --model-path

The model path flag has to be provided for the script to load the model:

+ --model-path or -mp string specifying the path to the saved model to be used in
testing.

Other optional flags that may be used are:

« --episode or -i an integer specifying the number of episodes to test the agent, de-
faults to 10.

« --horizon or -r an integer specifying the length of the horizon in each episode,
defaults to 64.

+ --save-path or -s string specifying the path where to save the trained model,
models will be overwritten to keep latest episode, defaults to a file named iil_base-

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/42_il_sim_dagger.md

DATASET AGGREGATION 101

line.pt on the project root.

« --num-outputs integer specifying the number of outputs the model has, defaults to
2.

+ --map-name or -m string specifying which map to use for training, defaults to
loop_empty.

5) Expected Results

A

The following video shows the results for training the agent during 130 episodes and
keeping the rest of the configuration to its default:

interactively in duckiet

> M) o003/21

Figure 4.2

6) Tips to Improve your model

Some ideas on how to improve on the provided baseline:

« Map randomization.

+ Domain randomization.

+ Better selection than random when switching between expert/learner actions.

« Balancing the loss between going straight and turning.

+ Change the task from linear and angular speed to left and right wheel velocities.
« Improving the teacher.

4.4. References N

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/42_il_sim_dagger.md
https://youtu.be/--Cy_EgdrvU
https://youtu.be/--Cy_EgdrvU
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/42_il_sim_dagger.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/42_il_sim_dagger.md

102 DATASET AGGREGATION

@phdthesis{diaz2018interactive,

title={Interactive and Uncertainty-aware Imitation Learning: Theory
and Applications},

author={Diaz Cabrera, Manfred Ramon},

year={2018},

school={Concordia University}

}

@inproceedings{ross20llreduction,
title={A reduction of imitation learning and structured prediction to
no-regret online learning},
author={Ross, St{\'e}phane and Gordon, Geoffrey and Bagnell, Drew},
booktitle={Proceedings of the fourteenth international conference on
artificial intelligence and statistics},
pages={627--635},
year={2011}
)

@article{loquercio2018dronet,

title={Dronet: Learning to fly by driving},

author={Loquercio, Antonio and Maqueda, Ana I and Del-Blanco, Carlos
R and Scaramuzza, Davide},

journal={IEEE Robotics and Automation Letters},

volume={3},

number={2},

pages={1088--1095},

year={2018},

publisher={IEEE}

UNIT E-5
Residual Policy Learning)

This section describes the basic procedure for making a submission with a model
trained in simulation using residual policy learning with PyTorch and ROS. In this ap-
proach, we use the basic Duckietown lane following stack as the base policy, and we
use reinforcement learning to improve it.

KNOWLEDGE AND ACTIVITY GRAPH

I Requires: That you have made a submission with the ROS template.

Results: You have a submission that leverages both our ROS stack and reinforce-
ment learning.

The Al Driving Olympics

@ NeurlPS 2020
Orn
&
o
Brought to you by a huge team & many supportive sponsors:

i Uuiwmnu”ﬂ [7| R R
ETHzirich V§Sighie D5 gyouckieTown

motional (@) SwissRe ANVIDIA

Today's Presenters: Chude Qian (U. Torontol, Chariie Gauthier({U. Montréal)

Figure 5.1. Residual Policy Learning

Before getting started, you should be aware that this baseline is a combination of the
RL baseline and of the ROS template. It is recommended that you are familar for each
of those templates and baselines, as the workflow of this one is similar to those. Here
are some links:

« RL baseline
« ROS template
« Classical Duckietown baseline

You should also make sure you have access to good hardware. A recent graphics card
(probably GTX1060+) is a must, and more than 8GB of RAM is required.

5.1. Quickstart N

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/43_rpl_baseline.md
https://vimeo.com/480202594
https://vimeo.com/480202594
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/43_rpl_baseline.md

104 RESIDUAL POLICY LEARNING

To train a policy, you should first make sure that Docker on your machine can access
the GPU/CUDA. You should also install CUDA10.2+ locally.

Here’s a few pointers:
« nvidia-docker

« CUDA11

Clone this repo:

$ git clone https://github.com/duckietown/challenge-aido LF-baseline-

RPL-ros.git

Change into the directory:

$ cd challenge-aido LF-baseline-RPL-ros

Test the submission, either locally with:

$ dts challenges evaluate --challenge (@zZVBB(E)\ViV\7))

or make an official submission when you are ready with

$ dts challenges submit --challenge (@zZVBRZ\[(CI\NYIS

You can find the list of challenges here. Make sure that it is marked as “Open”.

5.2. Baseline Overview N

Since, this baseline uses both ROS and ML, we need to train inside an environment
where both ROS and PyTorch are installed. We will use Docker for this purpose.

The ROS template already provides us with a submission docker image. Our strategy
here is to directly use that agent docker image during training, but we’ll the addition
of the simulator and the training architecture on top.

This could have been done using a second running docker container to provide a net-
work interface to the simulator, but this adds unnecessary overhead since we don’t ac-
tually need the added security that comes with running things separately.

So, every time we train, we build the agent docker image, and then the “trainer dock-

https://github.com/NVIDIA/nvidia-docker
https://developer.nvidia.com/cuda-downloads
https://github.com/duckietown/challenge-aido_LF-baseline-RPL-ros
https://challenges.duckietown.org/v4/humans/challenges
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/43_rpl_baseline.md

RESIDUAL POLICY LEARNING 105

er” image builds directly FROM the agent image, adding the simulator on top.

The final docker container then runs the simulator and the agent in parallel, allowing
the agent to directly interface with the simulator, just like we do in the other machine
learning baselines.

challenge-aido_LF-baseline-RPL-ros

Structure I 1: Proj

Qo

I. Build Agent

2. Build Trainer over agent

3. Train inside trainer. This deposits
weights inside rl_agent/weights

4. Submit! This rebuilds Agent using
the new welghts |

]

Figure 5.2. RPL baseline overview

106 RESIDUAL POLICY LEARNING

5.3. How to train your policy .

From the challenge-aido LF-baseline-RPL-ros directory, change into the 1lo-
cal dev directory:

$ cd local dev

and open the args.py file. This is how you will control the training and testing in
this repo. For now, just change the --test argument to default=False. Then, we can
train with:

$ make run

As mentioned Section 5.2 - Baseline Overview, this will first build two subsequent
docker images. This might take a while. Then, it will train an RL policy over the ROS
stack inside Docker.

When it finishes, see how it works. Simply change the --test flag back to de-
fault=True in args.py and test with:

$ make run

This will launch a simulator window on your host machine for you to view how your
agent performs. You should see something like this:

Figure 5.3

You can use this gif to gauge how long it takes for the testing docker to start (do note
that this assumes that the two required docker images have already been built!)

5.4. How to submit the rained policy N

Make sure that rosagent.py uses the right weights for your RL agent. This is con-
trolled by the MODEL NAME global variable. Then follow the procedure in Section 5.1 -
Quickstart to evaluate and submit.

5.5. How to improve your policy .

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/43_rpl_baseline.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/43_rpl_baseline.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/43_rpl_baseline.md

RESIDUAL POLICY LEARNING 107

First, you should probably improve the base ROS policy. By default, this baseline uses

the basic lane following demo that is provided in Duckietown (unknown ref opmanu-
al_duckiebot/demo-lane-following)

previous warning (18 of 18) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual duckiebot/demo-lane-following"'.

Location not known more precisely.

Created by function n/a in module n/a.

You could build a Pure Pursuit controller, change the lane filter, etc. See the classical
Duckietown baseline for more ideas. To do this, you would add your new ROS pack-
ages inside of submission ws.

You could also limit RL’s influence over the final policy. Perhaps the current approach
of giving it full control in [-1,1] action values isn’t restrictive enough. Perhaps it could
be better if it could only change the base policy by smaller action values.

Or perhaps it’s the opposite: maybe the base policy needs to be changed by more than
1: since the min/max value that the base policy can output is 1/-1, the RL policy
would need to be able to output from -2 to 2 to fully correct it.

Here are some ideas for improving your policy:

« Check out the dtRewardWrapper in rl agent and modify the rewards (set them
higher or lower and see what happens). By default, this wrapper is not used: you will
have to add it to train.py.

« Try resizing the images. Make them smaller to have faster training, or bigger for
making sure that RL can extract everything it can from them. You will need to also ed-
it the layers in ddpg.py accordingly.

« Try making the observation image grayscale instead of color.

« Try stacking multiple images, like 4 monochrome images instead of 1 color image.
You will need to also edit the layers in ddpg.py accordingly.

+ You can also try increasing the contrast in the input to make the difference between
road and road-signs clearer. You can do so by adding another observation wrapper.

 Cut off the horizon from the image (and correspondingly change the convnet para-

/tmp/mcdp_tmp_dir-root/prince_renderp8m3jkhq/warnings.html

108 RESIDUAL POLICY LEARNING

meters).

+ Check out the default hyperparameters in local dev/args.py and tune them. For
example increase the expl noise or increase the start timesteps to get better ex-
ploration.

» (more sophisticated) Use a different map in the simulator, or - even better - use ran-
domized maps. But be mindful that some maps include obstacles on the road, which
might be counter-productive to a LF submission.

+ (more advanced) Use a different/bigger convnet for your actor/critic. And add bet-
ter initialization.

» (very advanced) Use the ground truth from the simulator to construct a better re-
ward

+ (extremely advanced) Use an entirely different training algorithm - like PPO, A2C,
or DQN. Go nuts. But this might take significant time, even if you're familiar with the
matter.

5.6. Sim2Real Transfer (Optional) N

You should try your agent on the real Duckiebot.

It is possible, even likely, that your agent will not generalize well to the real environ-
ment. One approach to mitigate this problem is to randomize the simulator environ-
ment during training, in the hope that this improves generalization. This approach is
referred to as “Domain Randomization”.

To implement this, you will need to modify the local dev/env.py file. You’'ll notice
that we launch the Simulator class from gym-duckietown. When we take a look at the
constructor, you’ll notice that we aren’t using all of the parameters listed. In particular,
the three you should focus on are:

« map_name: What map to use; hint, take a look at gym_duckietown/maps for more
choices

« domain_rand: Applies domain randomization, a popular, black-box, sim2real tech-
nique
« randomized_maps_on_reset: Slows training time, but increases training variety.

Mixing and matching different values for these will help you improve your training di-
versity, and thereby improving your evaluation robustness!

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/31_task_embodied_strategies/43_rpl_baseline.md
https://github.com/duckietown/gym-duckietown/blob/daffy/src/gym_duckietown/simulator.py
https://github.com/duckietown/gym-duckietown/blob/daffy/src/gym_duckietown/simulator.py

PART F
Reference manual .

We have built some tools and infrastructure to make it easy to build solutions. These

tools may be helpful in building an efficient workflow for developing and testing your
solutions before you submit them.

Contents

Unit F-1 - dts challenges CLIccccccccoeeviiivieneiineiieeiieeineeineeieeeeneeneee. 110

Unit F-2 - Using the EVAlUAtOrcccceeeeviiiieeiinierieieeneeeiieseeeeeeeeeneeeeennenns 112

Unit F-3 - Advanced submiSSion ODtONS ...eeeeeeeeeeeeiieeeeeeeeeeeeeeeeeeeeeseeeanees 114

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/00_part_manual.md

110

UNIT F-1
dts challenges CLI .

This section is a reference for how to interact with the challenges server with the com-
mand line.

1.1. Account info N
Use this command to see the status of your account:

$ dts challenges info

1.2. Local evaluation N

The evaluate command allows you to do a local evaluation of your submission:

$ dts challenges evaluate

1.3. Submitting a submission .
The submit command allows you to submit the solution in the current directory:

$ dts challenges submit

There are many options for this command, explained in Unit F-3 - Advanced submis-
sion options.

1.4. List submissions .
The list command allows you to see all of your submissions:

$ dts challenges list

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/30_sub_references.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/30_sub_references.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/30_sub_references.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/30_sub_references.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/30_sub_references.md

DTS CHALLENGES CLI 111

1.5. Reset a submission “

Resetting a submission means that you discard the evaluations already perfomed and
you force them to be done again.

$ dts challenges reset --submission
1.6. Retire a submission N
Retiring a submission means that you declare the submission void. It will not be eval-
uated and previous results will be discarded.

$ dts challenges retire --submission
1.7. Follow the fate of a submission .
The follow command polls the server to see whether there are updates:

$ dts challenges follow --submission
1.8. Defining a challenge N
The define command allows to define a challenge:

$ dts challenges define

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/30_sub_references.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/30_sub_references.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/30_sub_references.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/30_sub_references.md

UNIT F-2
Using the Evaluator :

This section describes how to use the Challenges evaluators.

2.1. Evaluators N
An evaluator is a machine that is in charge of evaluating the protocols.

2.2. Running your own evaluator .
We have several evaluators online that process jobs.
If you want to avoid waiting in the queue for to long, you can run your own evaluator.

The command line is:

$ dts challenges evaluator --continuous

This evaluator will connect to the server and execute preferentially your submissions.

2.3. Advanced options for evaluator N

1) Naming evaluator N

Use the option --name to name the evaluator instance:

$ dts challenges evaluator --name

Otherwise the name is going to be autogenerated.

For example:

$ dts challenges evaluator --name Instancel &
$ dts challenges evaluator --name Instance2 &

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/35_evaluator.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/35_evaluator.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/35_evaluator.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/35_evaluator.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/35_evaluator.md

USING THE EVALUATOR 113

2) Run a specific submission N

Run the evaluator on a specific submission:

$ dts challenges evaluator --submission

This evaluates a specific submission.
Note that to force re-evaluation of a submission, you must first reset the submission.

Also note that you cannot re-evaluate a submission that has been “retired”.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/35_evaluator.md

114

UNIT F-3
Advanced submission options :

This section describes additional options for the dts challenges submit command.

3.1. submission.yaml file .

Each submission directory has a file submission.yaml containing the following infor-
mation:

protocol: protocol # do not change
challenge: challenge name(s)
user-label: optional label
user-payload: optional user payload

You can override these using the command line, as explained below.
3.2. Specifying the challenge .
However you can also pass the name as a parameter --challenge:

$ dts challenges submit --challenge

The names of the challenges can be seen at this page.

For example, if you would only like to submit to submit to LF validation system, you
can do it as:

$ dts challenges submit --challenge EMeleRRRESInRENleFYalo)s!

If you would like to submit to multiple specific challenges, you can do it in the yaml
file:

protocol: aido2 dbl8 agent-z2 # do not change
challenge: [challengel name,challengeZname,...]

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/37_submit_advanced.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/37_submit_advanced.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/37_submit_advanced.md
https://challenges.duckietown.org/v4/humans/challenges

ADVANCED SUBMISSION OPTIONS 115

3.3. Metadata .
You can attach two pieces of metadata to your submission.
1. A human-readable label for your identification.

2. A small JSON payload that describes the details of your submission, such as the
parameters that you used for your algorithm.

To specify the label, use the option --user-label:

$ dts challenges submit --user-label "My label"

To specify the payload, use the option --user-meta and specify a JSON structure:

$ dts challenges submit --user-meta '{"param":"1"}

3.4. Skip Docker cache .

Use the option --no-cache to avoid using the Docker cache and re-build your con-
tainers from scratch:

$ dts challenges submit --no-cache

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/37_submit_advanced.md
https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/60_manual/37_submit_advanced.md

116

PART G
References .

[1] Edwin Olson. AprilTag: A robust and flexible visual fiducial system. In IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 3400-3407, 2011.

[2] Daniel Pickem, Paul Glotfelter, Li Wang, Mark Mote, Aaron Ames, Eric Feron, and Magnus Egerst-
edt. The Robotarium: A remotely accessible swarm robotics research testbed. In Robotics and Automa-
tion (ICRA), 2017 IEEE International Conference on, pages 1699-1706. IEEE, 2017.

https://github.com/duckietown/docs-AIDO/edit/daffy/book/AIDO/90_back_matter.md

	The AI Driving Olympics
	Introduction
	Quick links
	AI-DO 6 Urban League Challenges
	Computational resources
	Evaluation metrics

	The AI Driving Olympics
	History
	Leagues
	What’s new in the Urban League in AI-DO 6
	How to use this documentation
	How to get help
	How to cite

	The Duckietown Platform
	The Duckietown Platform
	Duckiebots and Duckietowns
	The Duckiebot
	The Duckietown
	Simulation
	Duckietown Autolabs

	The Challenges
	General rules
	Protocol
	Deployment technique
	Submission of entries
	Autolab test and validation
	Leaderboards

	Eligibility
	Intellectual property

	Performance metrics
	Performance criteria (P)
	Traffic law objective (T)
	Major infractions

	Comfort objective (C)
	Lateral deviation

	Challenge LF
	Templates and Baselines
	LF in Simulation
	aido-LF-sim-testing Details
	aido-LF-sim-validation Details

	LF in the Duckietown Autolab
	aido-LF-real-validation Details

	Challenge LFV
	LFV in Simulation
	Templates and Baselines
	aido-LFV-sim-testing Details
	aido-LFV-sim-validation Details

	LFV in the Duckietown Autolab
	aido-LFV-real-validation Details

	Challenge LFI
	LFI in Simulation
	Templates and Baselines
	aido-LFI-sim-testing Details
	aido-LFI-sim-validation Details

	LFI in the Duckietown Autolab
	aido-LFI-real-validation Details

	Challenge LFVI-multi-full
	LFVI_multi_full in Simulation
	Templates
	Templates and Baselines
	aido-LFVI_multi-sim-testing Details
	aido-LFVI_multi-sim-validation Details

	Getting Started
	Accounts needed
	Docker Hub account
	Duckietown account
	Stack Overflow account

	Software requirements
	Supported Operating Systems
	Ubuntu 20.04
	Other GNU/Linux versions
	Mac OS X
	Windows

	Docker
	Git
	Duckietown Shell
	Authentication token
	Docker Hub information
	Check dts configuration

	Make your first submission
	Checkout the submission repo
	Submit
	Monitor the submission
	Look at the leaderboard
	Local evaluation
	Troubleshooting

	Next steps towards winning the AI-DO
	Understand how the minimal template works
	Select the template that you need
	Try the baselines
	Understand the rules
	Try one of the harder challenges

	Run an agent on your Duckiebot
	Verifying that your Duckiebot is operational
	Run a local submission on the Duckiebot
	Run an image that is already built on the Duckiebot
	Local workflow using the Exercises API

	Object Detection Dataset
	Download
	Overview
	Category Details
	Traffic Cones
	Duckies
	Duckiebots

	Data Loading Scripts
	Data Collection Procedure
	Data Annotation Procedure

	Template Solutions
	Minimal pure-Python Template
	Quickstart
	Verify your submission(s)

	Anatomy of the submission
	submission.yaml
	requirements.txt
	solution.py

	ROS Template
	Quickstart
	Verify the submission:

	Anatomy of the submission
	Dockerfile
	solution.py
	rosagent.py
	launchers/
	submission_ws/

	TensorFlow Template
	Quickstart
	Verify your submission(s)

	Anatomy of the submission
	solution.py
	Model files

	PyTorch Template
	Quickstart
	Verify the submission(s)

	Anatomy of the submission
	solution.py

	Model files

	Baseline Algorithms
	Duckietown Baseline
	Quickstart
	Baseline Details
	Dockerfile
	solution.py
	launchers/
	submission_ws/

	Local Development Workflow
	Building your Code
	Running in Simulation
	Testing Your Algorithm on the Robot
	Starting Lane Following on Mac

	How to Improve your Submission
	Other Possibly Useful Utilities

	Reinforcement Learning
	Quickstart
	How to Train your Policy
	How to submit the trained policy
	How to improve your policy
	Sim2Real Transfer (Optional)
	Training headless
	Controlling which GPU is being used

	Behavior Cloning
	Introduction
	Quickstart
	The duckieSchool
	Installing duckietown Gym
	Use joystick to drive
	Options for joystick script
	Automated log generation using pure pursuit
	Log using an actual Duckiebot
	Process a log from an actual Duckiebot

	The duckieLog
	The log viewer
	The log combiner

	The duckieTrainer
	Folder structure
	Environment Setup
	Model Adjustment
	Before Training
	Train it
	Things to improve
	Troubeshooting

	The duckieModels
	The duckieChallenger
	Acknowledgement

	Dataset Aggregation
	Introduction
	Quickstart
	Local Development Workflow
	Option 1: Training with Collab
	Option 2: Training Locally
	Parameters that can affect training
	Local Evaluation
	Expected Results
	Tips to Improve your model

	References

	Residual Policy Learning
	Quickstart
	Baseline Overview
	How to train your policy
	How to submit the rained policy
	How to improve your policy
	Sim2Real Transfer (Optional)

	Reference manual
	dts challenges CLI
	Account info
	Local evaluation
	Submitting a submission
	List submissions
	Reset a submission
	Retire a submission
	Follow the fate of a submission
	Defining a challenge

	Using the Evaluator
	Evaluators
	Running your own evaluator
	Advanced options for evaluator
	Naming evaluator
	Run a specific submission

	Advanced submission options
	submission.yaml file
	Specifying the challenge
	Metadata
	Skip Docker cache

	References

