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Flight has fascinated humans for millenia.
The aim of this course is to empower people to build robots. Students will build, pro-
gram, and fly an autonomous drone. This book covers everything needed to program
an autonomous robot, including safety, networking, state estimation, controls, and
high-level planning. Although the book focuses on an autonomous drone, we will
provide a broad overview of modern robotics, including some topics relating to au-
tonomous ground vehicles and robotic arms.
We will use the Duckiedrone to introduce concepts related to safety, control, state esti-
mation, networking and communications, and mapping. Each student will build and
program their own small quadcopter. After taking this course, students will be able to:
• Explain the space of designs for robotic communications, safety, state estimation,
and control.
• Apply that knowledge to construct programs for communications, safety, state es-
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timation, and control.
• Build, program, and operate an autonomous robot drone.
We assume you have seen some Python before, as well as some linear algebra. This
book contains text, assignments, projects, and slides for the course.

2



ContContentsents

PPartart AA -- IntrIntroductionoduction.................................................................................................................................................. 77
◦ UnitUnit AA-1-1 - AssignmentAssignment.................................................................................................................................................................... 88

PPartart BB -- SafetySafety...................................................................................................................................................................... 1111
◦ UnitUnit BB-1-1 - AssignmentAssignment................................................................................................................................................................ 1212

PPartart CC -- Linux and NLinux and Netwetworkingorking............................................................................................................ 1616
◦ UnitUnit C-1C-1 - PPart 1: Intrart 1: Introduction toduction to Linuxo Linux ...................................................................................................... 1717
◦ UnitUnit C-2C-2 - PPart 2: Nart 2: Netwetworkingorking........................................................................................................................................ 2020

PPartart DD -- MiddlewMiddlewararee ................................................................................................................................................ 2323
◦ UnitUnit DD-1-1 - AssignmentAssignment .............................................................................................................................................................. 2424

PPartart EE -- SensorsSensors................................................................................................................................................................ 2626
◦ Section 0.5 - Learning Objectives ............................................................................................................................ 2626
◦ UnitUnit E-1E-1 - YYour Rour Robot’obot’s Sensorss Sensors.................................................................................................................................. 2727
◦ UnitUnit E-2E-2 - Assignment: Sensors Theory OvAssignment: Sensors Theory Overviewerview .................................................................... 2929
◦ UnitUnit E-3E-3 - PPart 1: Estimating Height with the Time of Flight Sensorart 1: Estimating Height with the Time of Flight Sensor........ 3030
◦ UnitUnit E-4E-4 - PPart 2: Affart 2: Affine Tine Trransformationsansformations ................................................................................................ 3131
◦ UnitUnit E-5E-5 - PPart 3: Gimbal Lockart 3: Gimbal Lock .................................................................................................................................... 3636
◦ UnitUnit E-6E-6 - PPart 4: Estimating Vart 4: Estimating Velocity by Summing Optical Flow Velocity by Summing Optical Flow Vec-ec-
ttorsors ............................................................................................................................................................................................................................................ 4040
◦ UnitUnit E-7E-7 - PPart 5: Set up Dockart 5: Set up Dockerer.................................................................................................................................. 4242
◦ UnitUnit E-8E-8 - PrProject 2: Sensor Intoject 2: Sensor Interfacingerfacing ........................................................................................................ 4444

3



◦ UnitUnit E-9E-9 - Using yUsing your Timeour Time-of-flight Sensor-of-flight Sensor ........................................................................................ 4646
◦ UnitUnit E-10E-10 - IntInterfacing with the IMUerfacing with the IMU .............................................................................................................. 4747
◦ UnitUnit E-11E-11 - VVelocity Estimation via Optical Flowelocity Estimation via Optical Flow........................................................................ 4949
◦ UnitUnit E-12E-12 - PPosition Estimation via OpenCVosition Estimation via OpenCV’’s estimats estimateRigidTeRigidTrransformansform5151
◦ UnitUnit E-13E-13 - PrProject Checkoject Checkoffoff ............................................................................................................................................ 5555

PPartart FF -- PID ContrPID Controllersollers .................................................................................................................................... 5656
◦ UnitUnit FF-1-1 - PID ContrPID Controllers gollers genereneralitiesalities .......................................................................................................... 5757
◦ UnitUnit FF-2-2 - Assignment: PID TheoryAssignment: PID Theory .................................................................................................................... 6565
◦ UnitUnit FF-3-3 - PrProject 3: Implementing an Altitude PID Controject 3: Implementing an Altitude PID Controlleroller.......................... 7171
◦ UnitUnit FF-4-4 - PPart 1: Altitude PID in Simulationart 1: Altitude PID in Simulation...................................................................................... 7373
◦ UnitUnit FF-5-5 - PPart 2: Tart 2: Tuninguning ........................................................................................................................................................ 7676
◦ UnitUnit FF-6-6 - PrProject Checkoject Checkoffoff ................................................................................................................................................ 7777
◦ UnitUnit FF-7-7 - Appendix A: Altitude TAppendix A: Altitude Tuninguning...................................................................................................... 7878

PPartart GG -- UnscentUnscented Kalman Filted Kalman Filterer .................................................................................................. 8181
◦ UnitUnit G-1G-1 - BackBackgrgroundound .............................................................................................................................................................. 8282
◦ UnitUnit G-2G-2 - The UnscentThe Unscented Kalman Filted Kalman Filter: Ner: Nonlinear Statonlinear State Estimatione Estimation.. 9898
◦ UnitUnit G-3G-3 - StSteps teps to Design and Implement a Kalman Filto Design and Implement a Kalman Filter on a Rer on a Robotobot102102
◦ UnitUnit G-4G-4 - 2D UKF Design and Implementation2D UKF Design and Implementation...................................................................... 103103
◦ UnitUnit G-5G-5 - 7D UKF Design and Implementation7D UKF Design and Implementation...................................................................... 115115

PPartart HH -- Localization and SLAMLocalization and SLAM.................................................................................................... 123123
◦ UnitUnit H-1H-1 - Localization BackLocalization Backgrgroundound.............................................................................................................. 124124
◦ UnitUnit H-2H-2 - Our Localization ImplementationOur Localization Implementation ................................................................................ 129129
◦ UnitUnit H-3H-3 - Localization AssignmentLocalization Assignment .............................................................................................................. 133133
◦ UnitUnit H-4H-4 - SLAM BackSLAM Backgrgroundound .................................................................................................................................. 138138
◦ UnitUnit H-5H-5 - Our SLAM ImplementationOur SLAM Implementation .................................................................................................... 140140
◦ UnitUnit H-6H-6 - SLAM AssignmentSLAM Assignment .................................................................................................................................. 144144

4



PPartart II -- Motion PlanningMotion Planning.............................................................................................................................. 147147
◦ UnitUnit I-1I-1 - AssignmentAssignment .............................................................................................................................................................. 148148

PPartart JJ -- TTrransformsansforms ................................................................................................................................................ 150150
◦ UnitUnit J-1J-1 - AssignmentAssignment.............................................................................................................................................................. 151151

PPartart KK -- BibliogrBibliographaphyy.......................................................................................................................................... 155155

PPartart LL -- CommunicationsCommunications .......................................................................................................................... 156156
◦ Section 0.5 - Let’s Talk ............................................................................................................................................................ 156156
◦ UnitUnit L-1L-1 - AssignmentAssignment ............................................................................................................................................................ 157157

PPartart MM -- DebuggingDebugging .............................................................................................................................................. 159159
◦ UnitUnit M-1M-1 - AssignmentAssignment.......................................................................................................................................................... 160160

PPartart NN -- LecturLectureses........................................................................................................................................................ 163163
◦ Section 0.6 - Lecture 1: Introduction.............................................................................................................. 163163
◦ Section 0.7 - Lecture 2: Safety .................................................................................................................................... 163163
◦ Section 0.8 - Lecture 3: Hardware and Robot Design ........................................................ 163163
◦ Section 0.9 - Lecture 4: Networking ................................................................................................................ 163163

PPartart OO -- NNetwetworkingorking ............................................................................................................................................ 164164
◦ UnitUnit OO-1-1 - AssignmentAssignment .......................................................................................................................................................... 165165

5



PPartart PP -- Flight DynamicsFlight Dynamics.............................................................................................................................. 171171
◦ UnitUnit PP-1-1 - AssignmentAssignment ............................................................................................................................................................ 172172

6



✎

PPARARTT AA

IntrIntroductionoduction

Robots are the decathlon of computer science: to make a robot work, you need to un-
derstand robotics, which we define as a program that includes a sensor and an actu-
ator. Additionally though, you typically need to understand systems, because your ro-
bot will use multiple programs running on a computer to make its decisions; you need
to understand networking to make the computers talk; you need to worry about al-
gorithms to make efficient use of the computing resources and prove bounds on your
robot’s behavior; and you need to understand hardware, because hardware limits af-
fect all aspects of the robot behavior, and if your CPU overheats, your robot isn’t going
anywhere.
This textbook contains assignments, projects, and technical material related to the
Duckie Drone, a small autonomous Raspberry Pi drone. After taking this course, stu-
dents will be able to:
• Explain the space of designs for robotic communications, safety, state estimation,
and control.
• Apply that knowledge to construct programs for communications, safety, state es-
timation, and control.
• Build, program, and operate an autonomous robot drone.
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UUNITNIT AA-1-1

AssignmentAssignment

This assignment gives an introduction to our course and reviews some basic material
you will need. Hand ins will be noted in italics. Create an answers.txt file in your
Github repository (see handin instructions at the bottom of this page) in which to
write your answers.

1.1.1.1. CollaborCollaboration Pation Policyolicy
Please read and sign the collaboration policy for CS1951R. Submit the signed pdf with
filename collaboration_policy.pdf.

1.2.1.2. Safety PSafety Policyolicy
Please read and sign the safety policy for CS1951R. Submit the signed pdf with file-
name safety_policy.pdf

1.3.1.3. MotivMotivations (20 points)ations (20 points)
Submit the answers to these questions in answers.txt
Before you start putting a lot of time into this course, it is important to figure out what
you will get out of the course. Think about what you expect to learn from this course
and why it is worth investing a lot of time.
1. What is a robot?
2. If I can fly a drone by remote, what can I get out of programming it?

1.4.1.4. Matrices and TMatrices and Trransformations (20 points)ansformations (20 points)
Write the answers to these questions in the corresponding section of answers.txt.
Transformation matrices are fundamental to reasoning about sensors and actuators.
For example, the robot might detect a landmark with its camera, and we might want
to know the location of the landmark relative to the robot’s base. Or we might want
to know where we can expect the landmark to be located after the robot has moved
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forward. We will cover this in detail but for know are asking you to do a warmup on
these topics.
For this problem we strongly recommend you do these calculations by hand, because
they are warmup questions designed to remind you of some of the prerequisite mater-
ial for the class.
1. Multiply the matrix by the following vector:

2. Multiply the matrix by the following vector:

3. Imagine a robot is located in the coordinate plane at the origin . It uses
a sensor to detect an obstacle at a distance of and a heading of . The positive
y-axis represents , and the degrees increase when turning clockwise. What are the

coordinates of the obstacle? Give the coordinates in answers.txt. Then draw your
answer on a map and add it to your repo as map.png.

1.5.1.5. LaLaw of Leakw of Leaky Abstry Abstractions (20 points)actions (20 points)
Write your answers in the corresponding section of answers.txt
Read The Law of Leaky Abstractions. How might this be especially relevant to robot-
ics? Make sure you address:
1. Give an example of a system that you have worked with that had an abstraction
that “leaked.” Describe the abstraction, what it was hiding, and what went wrong so
that the abstraction broke down.
2. How can we use abstractions in light of these challenges?

1.6.1.6. HandinHandin
If you do not have a Github account, please create one at this link. We will be using
git repos throughout the course for versioning, moving code around, and submitting
assignments.

ASSIGNMENT 9
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Once you have a github account, click on this link to join our Github classroom. This
should ask you to select your name from the list and create a repository for you. Clone
the directory to your computer

git clone https://github.com/h2r/assignment-introduction-yourGithub-
Name.git

This will create a new folder. Before you submit your assignment, your folder should
contain
• collaboration_policy.pdf
• safety_policy.pdf
• answers.txt
• map.png
Commit and push your changes before the assignment is due. This will allow us to
access the files you pushed to Github and grade them accordingly. If you commit and
push after the assignment deadline, we will use your latest commit as your final sub-
mission, and you will be marked late.

cd assignment-introduction-yourGitHubName
git add collaboration_policy.pdf safety_policy.pdf answers.txt map.png
git commit -a -m 'some commit message. maybe handin, maybe update'
git push

Note that assignments will be graded anonymously, so don’t put your name or any oth-
er identifying information on the files you hand in.

10 ASSIGNMENT
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PPARARTT BB

SafetySafety

This unit asks you to think about safety considerations with robotics. For some of these
questions, there is no one correct answer; however we will publish our answers, and
our grading rubric will allow for multiple answers.
Safety is one of the most important considerations in robotics. Imagine that someone
throws the drone at a person as hard as they can. This sort of motion is what the robot
is capable of doing using its motors and accelerating at top speed. It is extremely im-
portant that whenever you fly your drone or operate any robot, that you keep yourself
and the people around you safe. Safety is everyone’s responsibility!
You are responsible for operating your drone in a safe manner. The most important
safety advice we can give is that each person is responsible for the safe operation. This
includes speaking up if you see an unsafe situation, acquiring information if you do
not know if something is safe, and taking care of yourself. (For example, don’t operate
your drone when you haven’t slept enough.)

https://github.com/duckietown/docs-brown/edit/daffy/book/doc-sky/20-safety-assignment/00-overview.md
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UUNITNIT BB-1-1

AssignmentAssignment

The goal of this assignment is to ask you to think critically about how to ensure robots
are operated safely, and to devise guidelines for operating your robot safely.

1.1.1.1. OSHA Safety Analysis (50 points)OSHA Safety Analysis (50 points)
Write your answers in answers.txt

Read the OSHA Technical Manual on Industrial Robots and Robot System Safety.
Perform a hazard analysis for the drone, based on the OSHA guidelines. Make sure
you answer each of the following subquestions in a few sentences (in your own words).
1. What tasks will the robot be programmed to perform?
2. What are the startup, command, or programming procedures?
3. What environmental conditions are relevant?
4. What are location/installation requirements to fly the drone?
5. What are possible human errors?
6. What maintenance is necessary?
7. What are possible robot and system malfunctions?
8. What is the normal mode of operation?

1.2.1.2. FFAA RAA Rules (20 points)ules (20 points)
Write the answers to these questions in the corresponding sections in answers.txt

In the United States, the Federal Aviation Administration regulates outdoor flight. (It
does not regulate flight indoors.) Read the FAA website on Unmanned Aircraft Sys-
tems. Take the TRUST test from any of the providers listed on the website. If you wish
to fly your drone outside, you may also register your drone with the FAA for $5 (not
covered by us). You do not need to fly outside for this class; if you only fly inside, you
do not need to register your drone.
Provide short answers to the following questions.
1. What procedures should you follow when flying your drone outside the CIT? (You
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might find it easiest to use the B4UFLY Smartphone App).
2. What is the closest airport to the CIT? Hint: Make sure to check for heliports as
well.
3. What are some risks of drone flight? How could people get hurt with the robot?
4. When do you need to report an accident to the FAA?

1.3.1.3. BrBrown Rown Rules/Community Guidelines (5 points)ules/Community Guidelines (5 points)
The FAA requires you to follow all community guidelines for flying drones. Brown
University has an Unmanned Aircraft System (UAS) Policy that we must follow to fly
on campus. Flying is already approved in our lab space, but must be approved to fly in
your dorm room or other places on campus.
Provide short answers to the following question:
If you want to fly a drone outside the CIT in the quad, what procedures should you
follow, with respect to Brown’s community guidelines?

1.4.1.4. Flying at Home (5 points)Flying at Home (5 points)
Write your answers in answers.txt.
Answer the following questions about flying at home over the duration of this semes-
ter.
We understand that students may be subject to different laws pertaining to how they
fly their drone, depending on where they live. We would like you to look into the local
laws so you can fly your drone legally.
1. Are there any region-specific rules in your area of residence that differs from the
FAA rules? Can you fly indoors in your place of residence? Is there an area nearby that
you may be able to fly outside? If so, does it need pre-approval?
2. What are the risks?
3. What should you do to plan?
4. What safety precautions should you take before you fly?

1.5.1.5. Soldering Station (10 points)Soldering Station (10 points)
We added this question when running the class remotely. Even though we are now
providing soldering space, it is still important to know the rules for soldering safely.

ASSIGNMENT 13
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Submit a photo of the lab if you will solder there, or the BDW, or wherever you will be
building your drone.
Submit a photo with the filename solder_station.jpg.
It is important for you to have a safe, well-ventilated area where you will be able to
solder your electronics.
Look for a designated area in your place of residence, or in the lab for you to soldier,
and take a picture of that area clearly showing the following:
1. Nearby a window or a ventilation fan that can suck away the smoke from the sol-
dering iron.
2. A fire extinguisher in the vicinity; safety first!
3. A wall plug or an extension cord with surge protection, to plug in the soldering
iron and fan.
4. A table to solder on! If it has a cover, make sure it is non-flammable.

1.6.1.6. Flight ArFlight Area (10 points)ea (10 points)
Submit a photo with the filename fly_area.jpg.
In order to fly your drone (and you definitely will in this course!), you will to think
about where to fly it safely. You may lose control of the drone and it might hit the ceil-
ing or the wall, so it is best to plan for those possible failiure modes and get a large
open space if possible.
Look for a designated area in your place of residence, and take a picture of that area
clearly showing the following:
1. A ceiling that does not have a lot of attachments (like dangling lights, chandeliers
etc that may fall and hurt you in cases of ceiling strikes).
2. A spacious area, at least 5ft by 5ft (or 1.5m by 1.5m).
3. An area where you can instruct people to keep a safe distance while flying your
drone. For example, an area right in the middle of a pedestrian street may not be a
good fit since young kids from your neighborhood may come running in at any time.

1.7.1.7. HandinHandin
Use this link to access the assignment on Github classroom. Commit the files to hand
in, as you did in the Introduction assignment.
Your handin should contain the following files:

14 ASSIGNMENT
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• answers.txt
• solder_station.jpg
• fly_area.jpg
If you are uncomfortable with submitting photos of your place of residence, please
reach out to the TAs so that we can confirm that you will be working in a safe, non-
hazardous environment for the duration of our course.

ASSIGNMENT 15
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PPARARTT CC

Linux and NLinux and Netwetworkingorking

The networking component of this assignment will help you understand how to
communicate with your drone. Fundamentally, robots are computers that are linked
through networks. In robotics, accounting for networking allows both more robust
and more efficient design. The networking part of this assignment describes how to
use basic networking with a focus on concepts most useful to robotics.
Networking may not seem like a topic in robotics, but it is one of the most common
reasons robots fail to work. If you cannot connect your base station to the robot, you
cannot see the robot’s status; you cannot see sensor output; you cannot send actuation
commands. Moreover networks in the wild can be set up in a variety of diverse ways
that may or may not allow your base station to connect to your robot. For example,
Brown’s default guest network does not allow peer-to-peer connections, so even if you
get your base station and the robot connected on that network, you still cannot talk to
the robot.
As a result, it is essential to be familiar with basic networking concepts in order to
make your drone, or any robot, work. This unit asks you to think and learn about some
networking concepts. We also cover helpful linux commands.
This assignment is comprised of two parts: Introduction to Linux (Part 1), Networking
(Part 2). Please complete all parts of this assignment. You can do this assignment in
the vscode shell on your drone, or on any machine with Python and the requisite shell
commands.
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UUNITNIT C-1C-1

PPart 1: Intrart 1: Introduction toduction to Linuxo Linux

The learning objectives of this assignment are to familiarize you with basic Linux shell
commands, standard input, standard output, standard error, and pipes. You will use
these ideas when interacting with the Linux shell to operate your drone. Additionally
you will use these ideas in the next section when working on the networking exercises.

1.1.1.1. BackBackgrground Informationound Information
When you enter a command in a shell, it executes a program. These programs read
from a stream, known as “standard input” and write to two output streams, “standard
output” and “standard error”. When you print in python, it writes its output to stan-
dard output. In another language, such as C, you use other functions, such as printf
to write to standard output.
In addition to writing to standard output, a program can read from standard input. The
program cat , short for concatenate, reads from standard input and writes the result
to standard output.

1.2.1.2. StandarStandard Output (10 points)d Output (10 points)
1. Write a python program that prints “Hello world” to standard output. Save the
program as hello1.py and submit it.
2. Write a python program that prints “Hello world” to standard output using
sys.stdout . Save the program as hello2.py and submit it.
3. Write a bash script that prints “Hello World” to standard output. Save the script as
hello.sh and submit it.

1.3.1.3. StandarStandard Input (10 points)d Input (10 points)
Write answers to questions 1-2 inshell.txt. Submit this file.
1. Run cat with no arguments. Why does cat seem like it is hanging?
2. When you run cat , type a message into your terminal, and press Control-D . De-
scribe what cat does. Make sure to include which streams are being used, and for
what purpose.
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3. Write a python program my_cat.py that reads a message from standard input and
prints to standard output, just as cat does. You only need to reproduce the behavior
of cat when run with no arguments. Submit this file.

1.4.1.4. Pipes (20 points)Pipes (20 points)
Pipes are used to redirect standard input, standard output, and standard error. First,
> is used to redirect standard output to a file. For example, echo "Hello World" >
test.txt will write the string Hello World to test.txt . Write answers to questions
1-4 in shell.txt. Submit this file.
1. Create files one.txt , two.txt and three.txt that contain the strings 1 , 2 , and
3 , respectively using echo and output redirect.
2. By convention, almost all shell programs read input from standard input, and
write their output to standard output. Any error messages are printed to standard er-
ror. You can chain shell programs together by using | . For example, the program ls
writes the contents of a directory to standard output. The program sort reads from
standard input, sorts what it reads, and writes the sorted content to standard output.
So you can use ls | sort to print out a sorted directory list. Read the man page for
sort ( man sort ) to learn how to sort in reverse order. What is the bash script (using | )
that prints the contents of a directory in reverse alphabetical order?
3. Use cat , | and echo to print hello world. Do not write to any files and use both
commands one time.
4. This is not the simplest way to print hello world. Can you suggest a simpler way?
(We asked you to do it the more complicated way to practice with pipes.)
5. Write a python script that reads from standard input, sorts lines in reverse alpha-
betical order, and prints the result. It should behave like sort -r . It does not need
to process any command line arguments. Submit your script in a file called my_re-
verse_sort.py . Do not submit this script in shell.txt

1.5.1.5. StandarStandard Errd Error (10 points)or (10 points)
In addition to standard input and standard output, there is a third stream, standard er-
ror. If there is an error in a chain of pipes, it will be printed to the terminal rather than
buried in the input to the next program.
1. Recall that ls -a | sort > sorted.txt puts all the names of files in a
directory sorted in alphabetical order into the file sorted.txt . If you modify the
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command to be ls -a -hippo | sort > sorted.txt , what text is in
sorted.txt , what is outputted as standard error, and why? Answer this question in
shell.txt . Submit this file.
2. Create a python script that prints reversed sorted output to standard error. Use
it to sort ls -a instead of sort . Submit the file containing the script as
my_sort_status.py .
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UUNITNIT C-2C-2

PPart 2: Nart 2: Netwetworkingorking

The learning objectives of this section are to familiarize you with how a TCP/IP server
works and how to explore a network to find what computers (and robots!) are around,
and then how to connect to them. We will use tools at a lower level than the robot
programming interface you will use in the rest of the course, in order to focus on the
general networking ideas.

2.1.2.1. NNetetcat (20 points)cat (20 points)
The command nc is short for “netcat” and is similar to cat but works over network
connections. It reads from standard input and writes its contents not to standard out-
put, but to a specified server. Write your answers in the corresponding sections of net-
working.txt.
1. Point nc to google.com as follows: nc www.google.com 80 When you first con-
nect, it will be silent. Then type any arbitrary text and press enter. What is the error
number?
2. Now type some valid http into nc: GET / HTTP/1.1 . What is the output?
3. Now use nc to make a server. In one window, type nc -l 12345 . This will cause
nc to listen on port 12345. In another terminal on the same machine, type nc local-
host 12345 . You can type a message in one window and it will appear in the other
window (and vice versa). This trick can be very useful to test basic internet connec-
tivity - if the client and server can send packets at all. No answer is required for this
question.
4. By convention, roscore listens on port 11311. Try using nc to connect to port
11311 on a machine where roscore is running, such as the Pi on your drone. What
protocol is roscore using to communicate (think application layer)?

2.2.2.2. TTalking talking to Yo Your Rour Robot (10 points)obot (10 points)
So far, this assignment has required access to localhost , the local machine you are
connected to, and google.com .
Most commonly, the base station and robot are connected over TCP/IP to the same lo-

20

https://github.com/duckietown/docs-brown/edit/daffy/book/doc-sky/30-linux-networking-assignment/10-assignment.md
https://github.com/duckietown/docs-brown/edit/daffy/book/doc-sky/30-linux-networking-assignment/10-assignment.md
https://github.com/duckietown/docs-brown/edit/daffy/book/doc-sky/30-linux-networking-assignment/10-assignment.md


✎

✎

cal network. Then you can look up your machine’s IP address ( ifconfig in Unix; other
ways in other OSes), and your robot’s IP address, and connect them. How can you find
your robot’s IP address? Well it’s a chicken-and-egg problem. If you knew the IP ad-
dress, you can connect to the robot and run ifconfig and find the IP address, but you
don’t know the IP address.
What to do? There are several solutions. Write the answers to the following questions
in networking.txt.
1. Brainstorm how you can solve the chicken-and-egg program to connect to your ro-
bot. List three different solutions.

2.3.2.3. Look Ma, NLook Ma, No Into Internet! (10 points)ernet! (10 points)
But what about if there is no public internet connection? What if you want to fly your
drone in the wilderness? Well, there does exist cellular modems and satellite connec-
tions, but you can also tell your drone to act as a Wifi Hotspot. It can create a net-
work and run a DHCP server. You can configure this on your drone using the file
/etc/hostapd/hostapd.conf . Then you can connect your laptop’s base station using
the SSID and passphrase specified in that file, and connect to the drone.
Alternatively you can set up your laptop as the Wifi base station and configure the
drone to connect to its network. The details will vary depending on your laptop OS and
settings.
Your Pi is configured to be a Wireless AP Master by default. Connect to it with your
base station. Write the answers to the following questions in networking.txt.
1. Which machine is acting as the DHCP server?
2. What is the Pi’s IP address? What is yours?
3. Describe another network configuration for the wifi, other than the Pi being a
Wireless AP Master.
4. Describe three network configurations for a network allowing a basestation and
PiDrone to communicate with each other. Feel free to add additional devices, such as
a cell phone performing internet connection sharing.

2.4.2.4. HandinHandin
When you are done, use this link to create your assignment Github Repo.
Repo should include:
• hello1.py , hello2.py , hello.sh , my_cat.py , my_reverse_sort.py ,
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my_sort_status.py

• shell.txt , networking.txt
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PPARARTT DD

MiddlewMiddlewararee

This unit asks you to think and learn about middleware. For our drone, we use ROS
(Robot Operating System).
This assignment will help you understand how the different components of your
drone talk with each other. ROS is a framework (known as ‘middleware’) for robot
software development that is widely used on both industrial and commercial settings
and is currently the industry standard in research. You will go through a few tutorials
to gain exposure to the core concepts of ROS.
Before you begin the ROS component of this assignment, read through the ROS sec-
tion of the Software Architecture portion of the Operations Manual. This document
provides a general overview of ROS. Do not worry about understanding everything in
this section; we are asking you to read it only to expose you to the material you will be
covering in the assignment and throughout the course.
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UUNITNIT DD-1-1

AssignmentAssignment

First set up the docker image following these instructions.

1.1.1.1. CrCreating a Publisher and Subscriber (50 points)eating a Publisher and Subscriber (50 points)
Answer these questions in ros.txt and submit the ROS package you create.
1. Read understanding nodes.
2. Start the screen session we use to fly the drone. Use rosnode list to display
what nodes are running when you start the screen. If you wish, take a look at the soft-
ware architecture diagram and look at all of the blue ROS topics to gain a visual under-
standing of all of the nodes that are running. Once again, do not worry about under-
standing everything now, or knowing what each topic is used for- you will learn this
through experience as the course progresses. No answer is required for this question
3. Use rosnode info to find out more about as many nodes as you’d like. What is
the name of the time of flight (tof) node and what topics does it publish?
4. Do the ROS tutorial to create a package. Name your package ros_assign-
ment_pkg . Create it in the catkin_ws/src directory on your drone.
5. Do the building packages tutorial.
6. Follow the ROS publisher/subscriber tutorial using the workspace and package
you created above. Hand in the entire package.
7. Start the screen session we use to fly the drone. Use rostopic echo and
rostopic hz to examine the results of various topics. What is the rate at which we
are publishing the range reading?

1.2.1.2. MessagMessages (5 points)es (5 points)
Make all modifications in your ROS package from Problem 1 and hand in the package
1. Read Creating a ROS msg. You do not need to read the section on services.
2. In your package from question 1, create a ROS message called MyMessage with
a field for a string , called name , and a field for an array of float64 , called con-
tents . Edit files such as CMakeLists.txt to ensure your message is compiled
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and available for use. Make these modifications in the package from problem 1 and
hand it in.

1.3.1.3. RReading the Teading the TOF Sensor (15 points)OF Sensor (15 points)
1. Write a ROS subscriber on your drone to read the values from the time of flight
sensor topic and print them to stdout . Name the file my_echo.py and submit it.
2. Write a second ROS subscriber that listens to the time of flight sensor topic and
calculates the mean and variance over a ten second window using NumPy. Print these
values to stdout . Name the file mean_and_variance.py and submit it.

1.4.1.4. HandinHandin
When you are done, use this link to create your assignment Github Repo.
• my_echo.py , mean_and_variance.py
• ros.txt

• ros_assignment_pkg
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PPARARTT EE

SensorsSensors

Sensors are necessary for a robot to perceive its environment. Each sensor allows the
robot to know something more about the world around it based on the type of data
that the sensor provides. This means that a robot’s understanding of its surroundings
is limited by the types and numbers of sensors which provide information to the robot.
When designing a robot, a roboticist must select sensors that will allow the robot to
perceive enough information to perform its intended task. Since multiple sensors can
be used to provide the same data (at varying accuracies), the roboticist must take in-
to account the level of precision required for the robot’s intended task, as well as the
cost limitations of the sensors, and computational requirements. For example, when
choosing the sensors for your drone, the goal was to achieve the lowest cost flying au-
tonomous learning platform.

0.5.0.5. Learning ObjectivLearning Objectiveses
After finishing this project, students should be able to describe the sensors used on the
drone, how they work, and their function. Specifically, we will cover the time of flight
sensor sensor, which is used to estimate height, how it works, and how to calibrate it.
Then we will cover the Inertial Measurement Unit (IMU), which is used to measure
angular velocity and linear accelleration. Finally we will interface with the camera,
which is used to measure planar velocity and global position. This module focuses on
the interfacing necessary to obtain process sensor readings, calibrate them into metric
units (if necessary), and publish the readings on the appropriate ROS topics.
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UUNITNIT E-1E-1

YYour Rour Robot’obot’s Sensorss Sensors

Your drone is equipped with three sensors: an inertial measurement unit (IMU), an
time-of-flight sensor, and a downward facing camera. From these sensors, the drone
is equipped with enough understanding of its environment to control its flight and fly
autonomously. Each sensor is described below. By interfacing with each of these sen-
sors, you will gain exposure to core robotics concepts including frame conversions, in-
terpreting digital signals, and computer vision.

1)1) TimeTime-of-flight Sensor-of-flight Sensor

A range sensor is any sensor that measures the distance to an object. There are three
main types that are used on quadcopters: ultrasonic, infrared, and time-of-flight. For
ultrasonic and infrared, a wave is emitted from one element of the sensor and received
by the other. The time taken for the wave to be emitted, reflected, and be absorbed
by the second sensor allows the range to be calculated. Infrared is more accurate, less
noisy, and has a better range than the ultrasonic range sensor. The time-of-flight sen-
sor shines infrared light at the world and measures how long it takes to bounce back.
Your drone uses the time-of-flight (TOF) sensor because it accurately measures range
and does not require an extra analog to digital converter board as does the infrared
sensor.

2)2) Inertial MeasurInertial Measurement Unit (IMU)ement Unit (IMU)

An IMU is a device that uses accelerometers and gyroscopes to measure forces (via ac-
celerations) and angular rates acting on a body. The IMU on the PiDrone is a built-in
component of the flight controller. Data provided by the IMU are used by the state es-
timator, which you will be implementing in the next project, to better understand its
motion in flight. In addition, the flight controller board uses the IMU data to stabilize
the drone from small perturbations.
The IMU can be used to measure global orientation of roll and pitch (but not yaw).
This measurement is because it measures accelleration due to gravity, so it can mea-
sure the downward pointing gravity vector. However it does not have a global yaw
measurement. Many drones additionally include a magnetomitor to measure global
yaw according to the Earth’s magnetic frame, although our drone does not have this
sensor.
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Note that IMU does NOT measure position or linear velocity. The acceleration mea-
surements can be integrated (added up over time) to measure linear velocity, and these
velocity estimates can be integrated again to measure position. However without some
absolute measurement of position or velocity, these estimates will quickly diverge. To
measures these properties of the drone, we need to use the camera as described below.

3)3) CamerCameraa

Each drone is equipped with a single Arducam 5 megapixel 1080p camera. The camera
is used to measure motion in the planar directions. We face this camera down at the
ground to measure x, y, and yaw velocities of the drone using optical flow vectors that
are extracted from the camera images. This is a lightweight task, meaning that it does
not require much added computation, because these vectors are already calculated by
the Pi’s image processor for h264 video encoding. We also use the camera to estimate
the relative position of the drone by estimating the rigid transformations between two
images.
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UUNITNIT E-2E-2

Assignment: Sensors Theory OvAssignment: Sensors Theory Overviewerview

This assignment is comprised of three parts: Infrared Theory (Part 1), Affine Trans-
forms (Part 2), Rotation Representations (Part 3), and Optical Flow (Part 4). Please
complete all parts of this assignment. In Part 4, you will find a link to Github class-
room that will contain a solutions.tex template to submit your answers.
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UUNITNIT E-3E-3

PPart 1: Estimating Height with the Time of Flight Sensorart 1: Estimating Height with the Time of Flight Sensor

The time-of-flight (TOF) sensor on the drone ouptputs a distance estimate. ROS re-
quires all distances to be in meters.

3.1.3.1. QuestionsQuestions
1. Look on the data sheet for the TOF sensor on your drone. You can find the list of
datasheets for the class here. You will be using the recommended Python library to
read data from the TOF sensor. In what units does it output distances?
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UUNITNIT E-4E-4

PPart 2: Affart 2: Affine Tine Trransformationsansformations

4.1.4.1. BackBackgrground Informationound Information
In order to estimate the PiDrone’s position (a 2-dimensional column vector )
using the camera, you will need to use affine transformations. An affine transforma-
tion is any transformation of the form , where and

. The affine transformations we are interested in are rotation, scale, and transla-
tion in two dimensions. So, the affine transformations we will look at will map vectors
in to other vectors in .

Let’s first look at rotation. We can rotate a column vector about the origin by
the angle by premultiplying it by the following matrix:

Let’s look at an example. Below we have the vector . To rotate the vector , we
premultiply the vector by the rotation matrix:

A graphical representation of the transformation is shown below. The vector is
rotated about the origin to get the vector
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Figure 4.1. Rotating one point about the origin

Next, let’s look at how scale is represented. We can scale a vector by a scale fac-
tor by premultiplying it by the following matrix:

We can scale a single point by a factor of .5 as shown below:

Figure 4.2. Scaling one point

When discussing scaling, it is helpful to consider multiple vectors, rather than a single
vector. Let’s look at all the points on a rectangle and multiply each of them by the scale
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matrix individually to see the effect of scaling by a factor of .5:

Figure 4.3. Scaling multiple points

Now we can see that the rectangle was scaled by a factor of .5.
What about translation? Remember that an affine transformation is of the form

. You may have noticed that rotation and scale are represented by only a
matrix , with the vector effectively equal to 0. We could represent translation by
simply adding a vector to our vector . However, it would be convenient
if we could represent all of our transformations as matrices, and then obtain a single
transformation matrix that scales, rotates, and translates a vector all at once. We could
not achieve such a representation if we represent translation by adding a vector.
So how do we represent translation (moving in the direction and in the direc-
tion) with a matrix? First, we append a 1 to the end of to get . Then, we
premultiply by the following matrix:

Even though we are representing our and positions with a 3-dimensional vector,
we are only ever interested in the first two elements, which represent our and po-

PART 2: AFFINE TRANSFORMATIONS 33



✎

sitions. The third element of is always equal to 1. Notice how premultiplying by
this matrix adds to and to .

So this matrix is exactly what we want!
As a final note, we need to modify our scale and rotation matrices slightly in order to
use them with rather than . A summary of the relevant affine transforms is below
with these changes to the scale and rotation matrices.

4.2.4.2. Estimating PEstimating Position on the Pidrosition on the Pidroneone
Now that we know how rotation, scale, and translation are represented as matrices,
let’s look at how you will be using these matrices in the sensors project.
To estimate your drone’s position, you will be using a function from OpenCV called
esimateRigidTransform . This function takes in two images and and a boolean .
The function returns a matrix estimating the affine transform that would turn the first
image into the second image. The boolean indicates whether you want to estimate
the affect of shearing on the image, which is another affine transform. We don’t want
this, so we set to False .
estimateRigidTransform returns a matrix in the form of:

This matrix should look familiar, but it is slightly different from the matrices we have
seen in this section. Let , , and be the rotation, scale, and translation matrices
from the above summary box. Then, is the same as , where the bottom row of

is removed. You can think of as a matrix that first scales a vector
by a factor of , then rotates it by , then translates it by in the direction and
in the direction, and then removes the 1 appended to the end of the vector to output

.
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Wow that was a lot of reading! Now on to the questions…

4.3.4.3. QuestionsQuestions
1. Your PiDrone is flying over a highly textured planar surface. The PiDrone’s cur-
rent position is , its current position is , and its current yaw is . Using the
PiCamera, you take a picture of the highly textured planar surface with the PiDrone in
this state. You move the PiDrone to a different state ( is your position, is your

position, and is your yaw) and then take a picture of the highly textured planar
surface using the PiCamera. You give these pictures to esimateRigidTransform and
it returns a matrix in the form shown above. Write expressions for , , and .
Your answers should be in terms of , , , and the elements of . Assume that the
PiDrone is initially is located at the origin and aligned with the axes of the global co-
ordinate system.
(Hint 1: Your solution does not have to involve matrix multiplication or other matrix
operations. Feel free to pick out specific elements of the matrix using normal 0-index-
ing, i.e. . Hint 2: Use the function arctan2 in some way to compute the yaw.)
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UUNITNIT E-5E-5

PPart 3: Gimbal Lockart 3: Gimbal Lock

The orientation of an object in 3D space can be described by a set of three values:
, where is roll, is pitch, and is yaw.

Figure 5.1. Roll, pitch, and yaw

Mathematically, any point on an object that undergoes rotation will have a
new coordinate calculated as follows:

Where:

Ideally, we would hope that the parameters are enough to rotate any point
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(distance from the origin) to any other point (also distance from the origin, since
rotations do not change distance). Upon closer thought, it would seem as if we have
more than enough parameters to do this, since it only takes two parameters to
describe all points on the 3D unit sphere

Figure 5.2. Two parameters sweeping out a sphere

However, this intuition is a bit off. If any one parameter is held fixed, it may be im-
possible for to be rotated to some other by varying the remaining two parameters.
Moreover, if a certain parameter is set to a certain problematic value, then varying the
remaining two parameters will either sweep out a circle (not a sphere!), or not affect
at all, depending on what is. This result is way different from what we expected! The
name for this degenerate case is gimbal lock.

5.1.5.1. QuestionsQuestions
1. Suppose an airplane increases its pitch to (i.e. ):
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Figure 5.3. Airplane

Figure 5.4. Airplane with pitch at 90 degrees
Let denote the rotation matrix for . Prove that

2. Consider the point on the pitched airplane, i.e. the tip of the wing.
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Does there exist any such that:

For ?
Show your work and briefly explain your reasoning (1-2 sentences).

3. Consider the point on the pitched airplane, i.e. the tip of the wing.
Can we set such that:

For some on the XY unit circle (e.g. )?
You do not have to show any work, but briefly explain your reasoning (1-2 sentences).

4. Consider the point on the pitched airplane, i.e. the tip of the wing.
Can we set such that:

For some on the YZ unit circle (e.g. )?
You do not have to show any work, but briefly explain your reasoning (1-2 sentences).
5. Reflect on your answers to the previous 4 questions. What are the questions trying
to portray? Why are the answers different? Why is (i.e. a “certain problem-
atic value”? What would happen to an airplane that pitched that much? Could a pilot
recover from such a situation? Are 3 parameters enough to allow for rotations in all
situations?
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UUNITNIT E-6E-6

PPart 4: Estimating Vart 4: Estimating Velocity by Summing Optical Flowelocity by Summing Optical Flow
VVectectorsors

We want to estimate our and velocity using the PiDrone’s camera. Thankfully, op-
tical flow from the PiCamera is calculated on board the Raspberry Pi. All we have to
do is process the optical flow vectors that have already been calculated for us!
To calculate the velocity, we have sum the components of all of the optical flow
vectors and multiply the sum by some normalization constant. We calculate the ve-
locity in the same way. Let be the normalization constant that allows us to convert
the sum of components of optical flow vectors into a velocity.
How do we calculate ? Well, it must have something to do with the current height of
the drone. Things that are far away move more slowly across your field of view. If a
drone is at a height of .6 and a feature passes through its camera’s field of view in 1
second, then that drone is moving faster than another drone at a height of .1 whose
camera also passes over the same feature in 1 second. If we let be the altitude of the
drone, then the drone’s normalization constant must be , where is some num-
ber that accounts for the conversion of optical flow vectors multiplied by an altitude to
a velocity. You do not have to worry about calculating (the flow coefficient), as it is
taken care of for you.
In summary, to calculate the velocity, we have to sum the components of the op-
tical flow vectors and then multiply the sum by . The velocity is calculated in the
exact same way.

6.1.6.1. QuestionsQuestions
1. The Pi calculates that the optical flow vectors are [5 4], [1, 2], and [3, 2]. The flow
vectors are in the form [ -component, -component]. What are your and velocities

and ? You solution will be in terms of , the altitude, and , the flow coefficient.

6.2.6.2. HandinHandin
Use this link to access the assignment on Github classroom. Commit the files to hand
in, as you did in the Introduction assignment.
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Your handin should contain the following files:
• solutions.tex
• solutions.pdf
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UUNITNIT E-7E-7

PPart 5: Set up Dockart 5: Set up Dockerer

To make it possible for you to develop your own code on the drone, you need to set up
a docker workspace with our source code, pidrone_pkg.
To do this, you need to clone this repository to your drone’s SD card, then build the
Docker image needed to run the software (which is back on an older version of ROS,
ROS Kinetic).
Run ssh duckie@yourdrone to ssh into your drone. The password is quackquack .
Then from your home directory run the following commands:

sudo apt install rake
mkdir -p catkin_ws/src
cd catkin_ws/src
git clone https://github.com/h2r/pidrone_pkg
cd pidrone_pkg
git checkout ente

The next step will take a long time because it has to download all the preqrequisites for
the image. Make sure your Pi is plugged into external power either through the battery
or through the USB power supply.

rake build
# this step is fast
rake create

Once these steps are complete, you can start the container and go inside by running

rake start

Once in the container, run

screen -c pi.screenrc
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This will start a screen session with each of the ros nodes needed to run the drone and
make it fly.
When using this container, you will want to bring down all the other containers. We
recommend doing this from the Portainer page, stopping all the running containers.
Note that you will need to do this each time you reboot the drone.
You can read how to fly your drone in this mode here.
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UUNITNIT E-8E-8

PrProject 2: Sensor Intoject 2: Sensor Interfacingerfacing

8.1.8.1. OvOverviewerview
In this project, you will be interfacing with your drone’s sensors to extract data, parse
it into useful values, and publish the data on ROS topics. First, you will interface with
the infrared range sensor, thus providing the drone with knowledge of its height rela-
tive to the ground. Then, you will interface with the IMU through the flight controller
to extract the attitude of the drone (roll, pitch, and yaw), linear accelerations, and cal-
culate the angular rates. Finally, you will interface with the camera to extract velocities
using optical flow, and positions using rigid transforms. Woah, that’s a lot of data! This
is because you are in fact obtaining all of the information from each sensor that you
will need for the drone to fly autonomously. In the next project, you will write a state
estimator which fuses all of this sensor data to estimate the state of the drone.

8.2.8.2. How this prHow this project foject fits intits into softwo softwarare stacke stack
Take a look at the software architecture diagram and notice the hardware components:
Flight Controller, Infrared Sensor, and Camera. This is the hardware you’ll be inter-
facing with in this project. Also notice the corresponding ROS nodes in the diagram.
These are the ROS nodes you’ll be creating to extract and publish sensor values.

8.3.8.3. A notA note about how te about how to appro approach this proach this projectoject
These docs give a high-level overview of the project. You will find more detailed di-
rections in the stencil code. If you are unsure about what you have to do after reading
these docs, the stencil code should give you a clearer idea.

8.4.8.4. HandinHandin
Use this link to generate a GitHub repo for this project. Clone the directory to your
computer with git clone https://github.com/h2r/project-sensors-implementa-
tion-yourGithubName.git . This will create a new folder.
When you submit your assignment, your folder should contain modified versions of
the following files in addition to the other files that came with your repo:
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• student_infrared_pub.py
• student_analyze_flow.py
• student_analyze_phase.py
• student_flight_controller_node.py
Commit and push your changes before the assignment is due. This will allow us to ac-
cess the files you pushed to GitHub and grade them accordingly. If you commit and
push after the assignment deadline, we will use your latest commit as your final sub-
mission, and you will be marked late.

cd project-sensors-implementation-yourGithubName
git add -A
git commit -a -m 'some commit message. maybe hand-in, maybe update'
git push

Note that assignments will be graded anonymously, so please don’t put your name or
any other identifying information on the files you hand in.
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UUNITNIT E-9E-9

Using yUsing your Timeour Time-of-flight Sensor-of-flight Sensor

In this part of the project, you will learn how to estimate the drone’s height using its
time-of-flight sensor. The drone is equipped with a VL53L0X, which is used for esti-
mating the distance from the drone to the ground-plane. The sensor outputs a digital
signal containing the distance from the sensor and read in by the Raspberry Pi via the
GPIO pin using the associated Python library. The voltage value corresponds to dis-
tance, but we are going to need to do some work to convert it to real-world units.
SetupSetup
Change to ~/catkin_ws/src on your drone, and then git clone
https://github.com/h2r/project-sensors-implementation-yourGithubName . You
should create a github personal access token for your drone to make this possible. It
only needs permissions to read and write to repositories.
Change directories into ~/catkin_ws/src/project-sensors-implementation-your-
GithubName . You can rosrun project-sensors-yourGithubName stu-
dent_tof_pub.py . You may stop student_tof_pub.py with ctrl-c, edit it within that tab,
and then re-run rosrun project-sensors-yourGithubName student_tof_pub.py to
test your changes.

9.1.9.1. PrProblem 1: Publish yoblem 1: Publish your Tour TOF ROF Readingeading
In student_tof_pub.py, fill in the minimum range, maximum range, and current range
read from the sensor into the ROS message. When you run this node, You will be pub-
lishing a ROS Range message which is a standard message included with ROS.

9.2.9.2. CheckCheckoff:off:
Using rostopic echo /pidrone/range or the height graph on the web interface, verify
that:
• The TOF node is publishing a message with all of the fields you want
• The range field of the message is a roughly accurate measure of the drone’s altitude
You can now fly your drone with your own range node!
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UUNITNIT E-10E-10

IntInterfacing with the IMUerfacing with the IMU

Your drone is equipped with a Skyline32 Flight Controller which has a built in IMU. In
this part of the project, you will learn how to interface with the flight controller board
to extract the attitude, accelerations, angular rates of the drone from the built-in IMU.
In addition, you will extract the battery levels from the flight controller so that you’ll
be able to tell when you’re battery is too low.
SetupSetup Change directories into ~/ws/src/pidrone_pkg and modify pi.screenrc to start
up with your flight controller node by changing python flight_controller_node.py\
n to rosrun project-sensors-yourGithubName student_flight_controller_node.py\
n (or, alternatively, python \path\to\student_flight_controller_node.py\n ).

10.1.10.1. PrProblem 1: Extroblem 1: Extracting the Batacting the Batttery Dataery Data
The flight controller is capable of reading the voltage and current of the power source
plugged into the drone. This is possible because of the red and brown wire pair (i.e.
battery monitor wire pair) plugged into the FC. The power information is useful be-
cause it allows us to programmatically shut down the drone if the voltage is too low
(e.g. Lipo batteries are quickly ruined if discharged too low).
TTODOODO:
1. Take a look at Battery.msg in the ~/ws/src/pidrone_pkg/msg directory on your
drone. This is a custom message we’ve created to communicate the battery values. 2.
In student_flight_controller_node.py , do the following:
- Fill in each TODO regarding the battery_message in the __init__ method. - Fill in
each TODO in the update_battery_message method.

10.2.10.2. PrProblem 2: Extroblem 2: Extracting IMU dataacting IMU data
Linear accelerations and attitude (i.e. roll, pitch, yaw) can also be extracted from the
FC, thanks to the accelerometer and gyroscope. In addition, the angular rates (e.g.
change in roll over change in time) can be calculated by using the attitude measure-
ments.
TTODOODO:
1. Take a look at the Imu ROS message type to get an understanding of the data you’ll
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be collecting. 2. In student_flight_controller_node.py , do the following:
- Fill in each TODO regarding the imu_message in the __init__ method. - Fill in each
TODO in the update_imu_message method.
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UUNITNIT E-11E-11

VVelocity Estimation via Optical Flowelocity Estimation via Optical Flow

In this part of the project you will create a class that interfaces with the Arducam to
extract planar velocities from optical flow vectors.

11.1.11.1. Code StructurCode Structuree
To interface with the camera, you will be using the raspicam_node library. This library
publishes both images and optical flow vectors to ROS topics. You will estimate veloci-
ty using the flow vectors, and estimate small changes in position by extracting features
from pairs of frames. In the sensors project repo, we’ve included a script called stu-
dent_optical_flow.py which you will edit so it publishes the estimated velocity from
the flow vectors. Similarly a second script is student_rigid_transform.py which you
will edit so it subscribes to the image topic and publishes position estimates.

11.2.11.2. Analyze and Publish the Sensor DataAnalyze and Publish the Sensor Data
On your drones, the chip on the Raspberry Pi dedicated to video processing from the
camera calculates motion vectors (optical flow) automatically for H.264 video encod-
ing. Click here to learn more. You will be analyzing these motion vectors in order to
estimate the velocity of your drone.
ExExerercisescises
You will now implement your velocity estimation using optical flow by completing all
of the TODO ‘s in student_optical_flow.py. There are two methods you will be imple-
menting.
The first method is setup , which will be called to initialize the instance variables.
1. Create a ROS publisher to publish the velocity values.
The perspicacious roboticist may have noticed that magnitude of the velocity in global
coordinates is dependent on the height of the drone. Add a subscriber to the topic
/pidrone/state to your AnalyzeFlow class and save the z position value to a class vari-
able in the callback. Use this variable to scale the velocity measurements by the height
of the drone (the distance the camera is from what it is perceiving).
1. Create a ROS subscriber to obtain the altitude (z-position) of the drone for scaling
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the motion vectors.
The second method is motion_cb , which is called every time that the camera gets a set
of flow vectors, and is used to analyze the flow vectors to estimate the x and y veloci-
ties of your drone.
1. Estimate the velocities, using the TODO ‘s as a guide.
2. Publish the velocities.

11.3.11.3. Check yCheck your Measurour Measurementsements
You’ll want to make sure that the values you’re publishing make sense. To do this,
you’ll be echoing the values that you’re publishing and empirically verifying that they
are reasonable.
ExExerercisescises
Verify your velocity measurements
1. Start up your drone and launch a screen
2. Navigate to `4 and quit the node that is running
3. Run rosrun project-sensors-yourGithubName student_ana-
lyze_flow.py
4. Enter rostopic echo /pidrone/picamera/twist
5. Move the drone by hand to the left and right and forward and backward to verify
that the measurements make sense

11.4.11.4. CheckCheckoffoff
1. Verify that the velocity values are reasonable (roughly in the range of -1m/s to 1m/
s) and have the correct sign (positive when the drone is moving to the right or up, and
negative to the left or down).
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UUNITNIT E-12E-12

PPosition Estimation via OpenCVosition Estimation via OpenCV’’s estimats estimateRigidTeRigidTrrans-ans-
formform

In this part of the project you will create a class that interfaces with the picamera to
extract planar positions of the drone relative to the first image taken using OpenCV’s
estimateRigidTransform function.

12.1.12.1. EnsurEnsure image images ares are being passed inte being passed into the analyzero the analyzer
Before attempting to analyze the images, we should first check that the images are be-
ing properly passed into the analyze method
ExExerercisescises
1. Open student_rigid_transform_node.py and print the data argument
in the method image_callback . Verify you are receiving images from the camera.

12.2.12.2. Analyze and Publish the Sensor DataAnalyze and Publish the Sensor Data
To estimate our position we will make use of OpenCV’s estimateAffinePartial2D func-
tion. This will return an affine transformation between two images if the two images
have enough in common to be matched, otherwise, it will return None.
ExExerercisescises
Complete the TODOs in image_callback , which is called every time that the camera
gets an image, and is used to analyze two images to estimate the x and y translations
of your drone.
1. Save the first image and then compare subsequent images to it using cv2.esti-
mateAffinePartial2D. (Note that the fullAffine argument should be set to False.)
2. If you print the output from estimateAffinePartial2D , you’ll see a 2x3 ma-
trix when the camera sees what it saw in the first frame, and a None when it fails to
match. This 2x3 matrix is an affine transform which maps pixel coordinates in the first
image to pixel coordinates in the second image.
3. Implement the method translation_and_yaw , which takes an affine trans-
form and returns the x and y translations of the camera and the yaw.
4. As with velocity measurements, the magnitude of this translation in global coordi-
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nates is dependent on the height of the drone. Add a subscriber to the topic /pidrone/
state and save the value to self.altitude in the callback. Use this variable to
compensate for the height of the camera in your method from step 4 which interprets
your affineTransform.

12.3.12.3. AAccount for the case in which the fccount for the case in which the first frirst frame is not foundame is not found
Simply matching against the first frame is not quite sufficient for estimating position
because as soon as the drone stops seeing the first frame it will be lost. Fortunately we
have a fairly simple fix for this: compare the current frame with the previous frame to
get the displacement, and add the displacement to the position the drone was in in the
previous frame. The framerate is high enough and the drone moves slow enough that
the we will almost never fail to match on the previous frame.
ExExerercisescises
Modify your RigidTransformNode class to add the functionality described above.
1. Store the previous frame. When estimateAffinePartial2D fails to match on the first
frame, run estimateAffinePartial2D on the previous frame and the current frame.
2. When you fail to match on the first frame, add the displacement to the position
in the previous frame. You should use self.x_position_from_state and
self.y_position_from_state (the position taken from the pidrone/
state topic) as the previous coordinates.
NNototee The naive implementation simply sets the position of the drone when we see the
first frame, and integrates it when we don’t. What happens when we haven’t seen the
first frame in a while so we’ve been integrating, and then we see the first frame again?
There may be some disagreement between our integrated position and the one we find
from matching with our first frame due to accumulated error in the integral, so sim-
ply setting the position would cause a jump in our position estimate. The drone itself
didn’t actually jump, just our estimate, so this will wreak havoc on whatever control al-
gorithm we write based on our position estimate. To mitigate these jumps, you should
use a filter to blend your integrated estimate and your new first-frame estimate. Since
this project is only focused on publishing the measurements, worrying about these dis-
crepancies is unnecessary. In the UKF project, you will address this problem.

12.4.12.4. Connect tConnect to the Jo the JaavvaScript IntaScript Interfaceerface
Now that we’ve got a position estimate, let’s begin hooking our code up to the rest of
the flight stack.
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To connect to the JavaScript interface, clone pidrone_pkg on your base station ma-
chine. Point any web browser at the web/index.html directory. This will open up the
web interface that we will be using the rest of the semester.
1. Create a subscriber (in the setup function) to the topic /pidrone/re-
set_transform and a callback owned by the class to handle messages. ROS Empty
messages are published on this topic when the user presses r for reset on the JavaScript
interface. When you receive a reset message, you should take a new first frame, and
set your position estimate to the origin again.
2. Create a subscriber to the topic /pidrone/position_control . ROS Bool
messages are published on this topic when the user presses p or v on the JavaScript
interface. When we’re not doing position hold we don’t need to be running this re-
source-intensive computer vision, so when you receive a message you should enable
or disable your position estimation code.

12.5.12.5. MeasurMeasurement Visualizationement Visualization
Debugging position measurements can also be made easier through the use of a visu-
alizer. A few things to look for are sign of the position, magnitude of the position, and
the position staying steady when the drone isn’t moving. Note again that these mea-
surements are unfiltered and will thus be noisy; don’t be alarmed if the position jumps
when it goes from not seeing the first frame to seeing it again.
ExExerercisescises
Use the web interface to visualize your position estimates
1. Connect to your drone and start a new screen
2. Run rosrun project-sensors-yourGithubName stu-
dent_rigid_transform_node.py in `4.
3. Hold your drone up about .25m with your hand
4. In the web interface, press r and the p to engage position hold.
5. Use rostopic echo /pidrone/picamera/pose to view the output of your
student_analyze_phase class
6. Move your drone around by hand to verify that the values make sense.
7. Look at the web interface and see if it tracks your drone. Pressing r should set the
drone drone visualizer back to the origin.
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✎12.6.12.6. CheckCheckoffoff
1. Verify that the position values are reasonable (roughly in the range of -1m to 1m)
and have the correct sign (positive when the drone is moving to the right or up, and
negative to the left or down).
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UUNITNIT E-13E-13

PrProject Checkoject Checkoffoff

13.1.13.1. Functionality CheckFunctionality Check
1. Run student_tof_pub.py and open up the web interface. Move the drone up
and down and ensure that the height readings are reasonable.
2. Run student_optical_flow_node.py and student_rigid_trans-
form_node.py and open up the web interface. Turn on velocity control (enabled by
default). Slowly move the drone around over a highly textured planar surface and en-
sure that the raw velocity readings are reasonable.

13.2.13.2. QuestionsQuestions
You will be asked to answer one of the following questions:
1. What types of measurements does the flight controller report in order to describe
the orientation of the drone? What do we do to these measurements and why?
2. How does optical flow allow us to estimate the planar velocity of the drone? Why
do we need to fly over a textured surface?
3. Why do we have a state_callback in student_analyze_phase.py ?
What do we do with the state information?
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UUNITNIT FF-1-1

PID ContrPID Controllers gollers genereneralitiesalities

ContContentsents
Section 1.1 - Introduction .................................................................................................................................................................... 5757
Section 1.2 - Characteristics of the Controller .................................................................................................. 5757
Section 1.3 - High-Level Description of the Pi Drone PID Stack ...................................... 6262

1.1.1.1. IntrIntroductionoduction
A PID (proportional, integral, derivative) controller is a control algorithm extensively
used in industrial control systems to generate a control signal based on error. The
error is calculated by the difference between a desired setpoint value, and a measured
process variable. The goal of the controller is to minimize this error by applying a cor-
rection to the system through adjustment of a control variable. The value of the control
variable is determined by three control terms: a proportional term, integral term, and
derivative term.

1.2.1.2. CharCharactacteristics of the Contreristics of the Controlleroller

1)1) KKey Tey Terms and Deferms and Definitionsinitions

• PrProcess Vocess Variableariable: The parameter of the system that is being monitored and con-
trolled.
• SetpointSetpoint: The desired value of the process variable.
• ContrControl Vol Variable/Manipulatariable/Manipulated Ved Variableariable: The output of the controller that serves as
input to the system in order to minimize error between the setpoint and the process
variable.
• StSteadyeady-Stat-State Ve Valuealue: The final value of the process variable as time goes to infinity.
• StSteadyeady-Stat-State Erre Erroror: The difference between the setpoint and the steady-state value.
• Rise TimeRise Time: The time required for the process variable to rise from 10 percent to 90
percent of the steady-state value.
• SetSettling Timetling Time: The time required for the process variable to settle within a certain
percentage of the steady-state value.
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• OvOvershootershoot: The amount the process variable exceeds the setpoint (expressed as a
percentage).

2)2) GenerGeneral Algal Algorithmorithm

The error of the system , is calculated as the difference between the setpoint
and the process variable . That is:

The controller aims to minimize the rise time and settling time of the system, while
eliminating steady-state error and maximizing stability (no unbounded oscillations in
the process variable). It does so by changing the control variable based on three
control terms.
Proportional Term:
The first control term is the proportional term, which produces an output that is pro-
portional to the calculated error:

The magnitude of the proportional response is dependent upon , which is the
proportional gain constant. A higher proportional gain constant indicates a greater
change in the controller’s output in response to the system’s error.
Integral Term:
The second control term is the integral term, which accounts for the accumulated er-
ror of the system over time. The output produced is comprised of the sum of the in-
stantaneous error over time multiplied by the integral gain constant :

Derivative Term:
The final control term is the derivative term, which is determined by the rate of change
of the system’s error over time multiplied by the derivative gain constant :

Overall Control Function:
The overall control function can be expressed as the sum of the proportional, integral,
and derivative terms:
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In practice, the discretized form of the control function may be more suitable for im-
plementation:

The figure below summarizes the inclusion of a PID controller within a basic control
loop.

Figure 1.1. PID Controller Block Diagram

3)3) TTuninguning

Tuning a PID controller refers to setting the control parameters , , and to opti-
mal values in order to obtain the ideal control response. After understanding the gen-
eral effects of each control term on the control response, tuning can be accomplished
through trial-and-error or by other specialized tuning schemes, such as the Ziegler-
Nichols tuning method. A graph of the process variable or system error can display the
effects of the controller terms on the system; the control parameters can then be mod-
ified appropriately to optimize the control response. Although the independent effects
of each parameter are explained below, the three control terms may be correlated and
so changing one parameter may impact the influence of another. The general effects of
each term are therefore useful as reference, but the actual effects will vary depending
on the specific control system.

Effects of :
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For a given level of error, increasing will proportionally increase the control output.
This causes the system to react more quickly (thereby decreasing the rise time and
the settling time by a small amount). Even so, setting the proportional gain too high
could cause massive overshoot, which in turn could destabilize the system. Increasing

also has the effect of decreasing the steady-state error. However, as the value of
the process variable approaches the setpoint and the error decreases, the proportion-
al term will also decrease. As a result, with a P-controller (a controller with only the
proportional term), the process variable will asymptotically approach the setpoint, but
will never quite reach it. Thus, a P-controller cannot be used to completely eliminate
steady-state error.

Effects of :
The integral term takes into account past error, as well as the duration of the error.
If error persists for a long time, the integral term will continue to accumulate and
will eventually drive the error down. This has the effect of reducing and eliminating
steady-state error. However, the build-up of error can cause the value of the process
variable to overshoot, which can increase the settling time of the system, though it de-
creases the rise time.

Effects of :
By calculating the instantaneous rate of change of the system’s error and using this
slope for linear extrapolation, the derivative term anticipates future error. While the
proportional and integral terms both act to move the process variable to the setpoint,
the derivative term seeks to dampen their efforts and decrease the amount the system
overshoots in response to a large change in error (which would greatly affect the mag-
nitude of the proportional and integral contributions to the overall control output). If
set at an appropriate level, the derivative term reduces oscillations, which decreases
the settling time and improves the stability of the system. The derivative term has neg-
ligible effects on steady-state error and only decreases the rise time by a minor amount.
Summary of Control Terms:

Figure 1.2. General Effects of Control Terms

Ziegler-Nichols Closed-Loop Tuning Method:
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Ziegler and Nichols [1] developed two techniques for tuning PID controllers, a closed-
loop tuning method and an open-loop tuning method. With the closed-loop tuning
method, the PID controller is initially turned into a P controller with set to zero.

is slowly increased until the system exhibits stable oscillatory behavior, at which
point it is denoted , the ultimate or critical gain. As such, should be the small-
est value that causes the control loop to have regular oscillations. The ultimate or
critical period of the oscillations needs to be measured. Then, using the constants
determined experimentally by Ziegler and Nichols, the controller gain values can be
computed as follows:

Although the Ziegler-Nichols method may yield initial tuning values that work rela-
tively well, the system’s control loop can be tuned further by adjusting the controller
gain values based on the general effects of each control term as explained above.

4)4) PPototential Prential Problemsoblems

In real-world applications, the PID controller exhibits issues that require modifica-
tions to the general algorithm. In certain situations, one may find that a P-Controller,
PD-Controller (eliminating the integral term), or a PI-Controller (eliminating the de-
rivative term) are more advantageous controllers for the system. Alternatively, differ-
ent techniques can be employed to counteract the problems that may affect the usabil-
ity of a control term.
Integral Windup:
Integral wind-up occurs when, due to a large change in setpoint, the control output
causes the system’s actuator to become saturated. At this point, the integrated error
between the process variable and the setpoint will continue to grow (because the ac-
tuator is at its limit and cannot drive the process variable any closer to the setpoint).
In turn, the control output will continue to grow and will no longer have any effect on
the system. When the setpoint finally changes and the error changes sign (meaning
the new setpoint is now below the value of the process variable), the integral term will
take a while to “unwind” all of the error that it has accumulated before producing a
reverse control action that will move the process variable in the correct direction to-
wards the setpoint.
There exist numerous ways to address integral wind-up. One way is to keep the inte-
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gral term within predefined upper and lower bounds. Another way is to set the inte-
gral term to zero if the control output will cause the system’s actuator to saturate. Yet
another way is to reduce the integral term by a constant multiplied by the difference
between the actual output and the commanded output. If the actuator is not saturated,
then the difference between the actual and commanded output will be zero and will
not affect the integral term. If the actuator is saturated, then the additional feedback in
the control loop will drive the commanded output closer to the saturation limit. If the
setpoint changes and causes the error to change sign, then the integral term will not
need to unwind in order to produce an appropriate control action. Setpoint ramping
— in which the setpoint is increased or decreased incrementally to reach the desired
value — may also help prevent integral wind-up.
Derivative Noise:
Since the derivative term is proportional to the change in error, it is consequently high-
ly sensitive to noise (which would produce drastic changes in error). Using a low-pass
filter on the derivative term, or finding the derivative of the process variable (as op-
posed to the error), or taking a weighted mean of previous derivative terms could help
ensure that high-frequency noise does not cause the derivative term to adversely affect
the control output.

5)5) Cascaded ContrCascaded Controllersollers

When multiple measurements can be used to control a single process variable, these
measurements can be combined using a cascaded PID controller. In cascaded PID con-
trol, two PID controllers are used conjointly to yield a better control response. The
output of the PID controller for the outer control loop determines the setpoint for the
PID controller of the inner control loop. The outer loop controller controls the primary
process variable of the system, while the inner loop controller controls a system para-
meter that tends to change more rapidly in order to minimize the error of the outer
control loop. The two controllers have separate tuning values, which can be optimized
for the part of the system that they control. This enables an overall better control re-
sponse for the system as a whole.

1.3.1.3. High-LevHigh-Level Description of the Pi Drel Description of the Pi Drone PID Stackone PID Stack
The drone platform utilizes a number of PID controllers to autonomously control its
motion. The standard PID class implements the discrete version of the ideal PID con-
trol function. The control output returned is the sum of the proportional, integral, and
derivative terms, as well as an offset constant term, which is the base control output
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before being corrected in response to the calculated error. A specified control range
keeps the control output within predefined bounds.

1)1) Cascaded PCascaded Position and Vosition and Velocity Contrelocity Controllersollers

The flight command for the drone consists of four pulse-width modulation (pwm) val-
ues that are sent to the flight controller and translated into motor speeds to set the
drone’s roll, pitch, yaw, and throttle, respectively. When the drone attempts to hover
with zero velocity, or when a velocity command is sent from the web interface, the er-
ror between the commanded velocity and the actual velocity of the drone (determined
by optical flow) is calculated. The x-velocity error serves as input to the roll PID con-
trollers and the y-velocity error serves as input to the pitch PID controllers. For the
throttle PID controllers, the z-position error is used as input. The z-velocity error is not
used because the actual z-position of the drone is directly measured by the infrared
sensor, and is thus easier to control, while the camera estimation of the z-velocity is
not as accurate. The output of each controller is then used to set the roll, pitch, and
throttle commands to achieve the desired velocity.
To accomplish position hold on the drone, cascaded PID controllers are utilized. The
outer control loop is concerned with the position of the drone, and the inner control
loop changes the velocity of the drone in order to attain the desired position. The two
position PID controllers (one for front-back planar motion and the other for left-right
planar motion) each calculate a setpoint velocity based on position error, which serves
as input to the velocity PID controller. The roll, pitch, and throttle PID controllers then
compute the appropriate flight commands based on the difference between the cur-
rent velocity and this setpoint velocity.

2)2) Low and High IntLow and High Integregral Tal Termserms

The drone requires two PID controllers to control each of its roll, pitch, and throttle.
One controller has a fast-changing integral term with a high value, while the other
controller has a slow-changing integral term with a low value. The inclusion of the
low integral controller is intended to adjust for systemic sources of error, such as poor
weight distribution or a damaged propeller. If the magnitude of the calculated veloc-
ity error is below a certain threshold, the flight command is set to the control output
of its low integral controller and the integral term of its high integral controller is re-
set to zero. This helps to prevent integral wind-up for the high integral controller (the
throttle PID controllers also use an integral term control range to bound the the val-
ue of the integral term and prevent wind-up). If the calculated velocity error is above
the specified threshold, it is constrained within a preset range. The flight command is
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calculated by adding the integral term of the low integral PID controller to the overall
control output of the high integral PID controller.

3)3) DerivDerivativative Smoothinge Smoothing

In order to address the derivative term’s sensitivity to high-frequency noise, the deriv-
ative term is smoothed over by taking a weighted mean of the past three derivative
terms. A derivative term control range is also used to constrict the values of the deriv-
ative term for the throttle PID controllers.
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Assignment: PID TheoryAssignment: PID Theory
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2.1.2.1. The TThe True Vrue Value and Erralue and Error Curvor Curveses
The figure below shows a true value curve for a PID controller. Draw the correspond-
ing error curve for this graph. You can draw by hand and upload the picture. (Hint:
refer to the error definition equation from before)
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Figure 2.1. True Value Curve for A PID Controller. The orange dot line indicates the setpoint and the
black line is the true value curve.

2.2.2.2. Explain an EffectExplain an Effect
1. Answer the following questions (3-5 sentences each):

a. What will happen when the absolute value of is very large? What will hap-
pen when the absolute value of is very small?
b. Can be tuned such that the term stops oscillations? Why or why not?
c. Can the process variable stabilize at the setpoint (i.e. zero steady-state error)
with only the term and the term? Why or why not?

2. Explain the following effects caused by , and (3-5 sentences each). For
example, here is a sample answer (though you do not need to follow the pattern):

◦ [Q:] *The rise time decreases when increases.*
◦ [A:] *When increases, the error at time step decreases. This is because
larger and larger results in larger and larger control signals at time step . This
drives the system to achieve a lower error at time step . As the error at time step
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decreases, the slope of the true value curve increases. Since the slope increas-
es, the rising time towards the setpoint should decrease (slightly).*
a. The rise time decreases when increases.
b. The settling time increases when increases.
c. The overshoot decreases when increases.

2.3.2.3. Start TStart Tuninguning
When designing a PID controller, it is important to choose a good set of , , and

; poor choices can result in undesirable behavior. The graphs in the figure below il-
lustrate behavior resulting from unknown sets of , , and . In each graph, the
orange dot line indicates the setpoint and the black line is the true value curve. For
each graph, answer the following (1-2 sentences each):
1. Which term(s) went wrong, if any? In other words, which term(s) are too high or
too low?
2. How can you correct the behavior?

ASSIGNMENT: PID THEORY 67

https://github.com/duckietown/docs-brown/edit/daffy/book/doc-sky/50-pid-project/10-pid-theory.md


68 ASSIGNMENT: PID THEORY



✎

✎

2.4.2.4. PID on the PiDrPID on the PiDroneone
Sometimes a PID controller will have an extra offset/bias term in the control func-
tion (see the equation below). For the drone, this is the base throttle needed to get
the drone off the ground.

1)1) Altitude ContrAltitude Controlol

Suppose you are implementing an altitude PID controller for your drone (i.e. up/down
movement).
1. If the setpoint is the desired height of the drone, then what is the process variable,
the error and the control variable for the altitude PID controller?
2. What could happen if is set too high?
NNotote:e: We are looking only for a higher level description to demonstrate understanding
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of the PID controllers.

2)2) VVelocity Contrelocity Controlol

Suppose you are implementing a velocity PID controller for your drone. In this case,
the drone only moves forward/backward and left/right. Your (hypothetical) controller
is implemented so that when ‘L’ is pressed, the drone moves left at a constant velocity,
and when ‘L’ is released, the drone stops moving.
1. What is the setpoint, process variable, error and control variable for the velocity
PID controller?
2. How do these key terms change to cause the drone to move when you press ‘L’?
NNotote:e: We are looking only for a higher level description to demonstrate understanding
of the PID controllers.

2.5.2.5. HandinHandin
Use this link to access the assignment on Github classroom. Commit the files to hand
in, as you did in the Introduction assignment. You’ll find a template ‘answers.tex’ files
for your answers.
Your handin should contain the following files:
• answers.tex
• answers.pdf
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PrProject 3: Implementing an Altitude PID Controject 3: Implementing an Altitude PID Controlleroller

3.1.3.1. OvOverviewerview
For this project, you will be implementing a one-dimensional PID controller to control
the drone’s altitude (movement along the drone’s z-axis). In part one, you will write
your PID class and test it using a drone simulator. In part two, you will answer ques-
tions about control.
There is one section that is not required for this project. In Appendix A, we explain
how to transfer the altitude PID controller you wrote in part 1 to your drone and tune
it to achieve stable flight.

3.2.3.2. HandinHandin
Use this link to generate a Github repo for this project. Clone the directory to your
computer git clone https://github.com/h2r/project-pid-implementation-your-
GithubName.git This will create a new folder. The README.md in your repo provides
short descriptions of each project file.
When you submit your assignment, your folder should contain the following files (that
you modified) in addition to all of the other files that came with your repo:
• answers_pid.md
• student_pid_class.py
• z_pid.yaml
Commit and push your changes before the assignment is due. This will allow us to
access the files you pushed to Github and grade them accordingly. If you commit and
push after the assignment deadline, we will use your latest commit as your final sub-
mission, and you will be marked late.

cd project-pid-implementation-yourGitHubName
git add -A
git commit -a -m 'some commit message. maybe handin, maybe update'
git push

Note that assignments will be graded anonymously, so please don’t put your name or
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PPart 1: Altitude PID in Simulationart 1: Altitude PID in Simulation

In this part of the project, you will be implementing a PID controller for a simulated
drone that can only move in one dimension, the vertical dimension. You can control
the speed the motors spin on the drone, which sets the thrust being generated by the
propellers. In this system, the process variable is the drone’s altitude, the setpoint is
the desired altitude, and the error is the distance in meters between the setpoint and
the drone’s altitude. The output of the control function is a PWM (pulse-width mod-
ulation) value between 1100 and 1900, which is sent to the flight controller to set the
drone’s throttle.
You should implement the discretized version of the PID control function in stu-
dent_pid_class.py:

Notice that there is an extra offset term added to the control function. This is the
base PWM value/throttle command before the three control terms are applied to cor-
rect the error in the system.
To tune your PID, set the parameters ( ) in z_pid.yaml.
To test your PID, run python sim.py on your base station or a department computer
but not on your drone, since it requires a graphical user interface to visualize the out-
put. The PID class in student_pid_class.py will automatically be used to control the
simulated drone. The up and down arrow keys will change the setpoint, and r resets
the simulation.
You will need numpy, matplotlib, and yaml to run the simulation. To install these de-
pendencies, run pip install numpy matplotlib pyyaml .
Write brief answers to all exercises in answers_pid.md.
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4.1.4.1. PrProblem 1: Implement an Idealized PIDoblem 1: Implement an Idealized PID
ExExerercisescises
1. Implement the step method to return the constant . At what value of does
the drone takeoff? Set to 1300 for the remainder of the questions.
2. Implement the P term. What happens when is 50? 500? 5000?
3. Implement the D term. Set to zero. What happens when is 50? 500? 5000?
4. Now tune and so that the drone comes to a steady hover. Describe the trade-
off as you change the ratio of to .
5. Implement the I term and observe the difference between PD and PID control.
What role does the I term play in this system? What happens when and are set
to zero?
6. Implement the reset method and test its behavior. If implemented incorrectly,
what problems can you anticipate reset causing?
7. Finally, tune the constants in your PID controller to the best of your abilities.
When the setpoint is moving, the drone should chase the setpoint very closely. When
the setpoint is still, the drone should converge exactly at the setpoint and not oscillate.
Report your tuning values.

4.2.4.2. PrProblem 2: Toblem 2: Tuning a PID with Latuning a PID with Latencyency
Now, we introduce latency! Run the simulation as python sim.py -l 6 to introduce
24 milliseconds of latency (six steps of latency running at 25 hz).
ExExerercisescises
1. Tune the constants in your PID controller to the best of your abilities. The drone
should chase the setpoint very closely, but will converge more slowly when the set-
point is still. Report your tuning values.
2. Compare your tuning values to the values you obtained in problem 1.
3. Explain the effect of latency on each control term.

4.3.4.3. PrProblem 3: Toblem 3: Tuning a PID with Latuning a PID with Latencyency, N, Noise, and Droise, and Dragag
In the most realistic mode, you will tune a controller with latency, noise, and a drag
coefficient. You can do this with the command line arguments python sim.py -l 3
-n 0.5 -d 0.02 to be most realistic to real-world flight.
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ExExerercisescises
1. Tune with these arguments to be as good as possible. Report your tuning values.
2. Compare your tuning values to the values from problems 1 and 2.
Run python sim.py -h to see the other simulator parameters. We encourage you to
experiment with those and observe their effects on your controller.
AftAfter yer you fou finish this part of the prinish this part of the project, makoject, make sure sure that ye that you push the fou push the final vinal versions ofersions of
the fthe files that yiles that you modifou modified tied to yo your Github rour Github repoepo..
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PPart 2: Tart 2: Tuninguning

Write brief answers to all exercises in answers_pid.md.

5.1.5.1. PrProblem 1: Ziegleroblem 1: Ziegler-Nichols Method-Nichols Method
Imagine you are flying your drone and observing its flight for tuning it. Ideally, you
would tune the by slowly increasing its value between flights until you can see the
drone moving up and down with uniform oscillations. The final value that causes
uniform oscillations is termed as , the ultimate gain. While, the time difference be-
tween these two peaks during osciallations is termed as , the ultimate period.
ExExerercisescises 1. Given = 500, = 10. Use your and values to compute , ,
and using Ziegler-Nichols Method.

5.2.5.2. PrProblem 2: Flying with Voblem 2: Flying with Velocity Contrelocity Controlol
In velocity control, we use planar velocity measure from the camera as the process
variable. The keyboard keys are used to set the setpoints.
ExExerercisescises 1. Now suppose you are flying in velocity mode over a blank white poster
board. How do you expect the drone to behave and why will it behave this way? Hint:
think about why we fly over a highly textured planar surface.
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PrProject Checkoject Checkoffoff

6.1.6.1. Functionality CheckFunctionality Check
1. The output of step() function in student_pid_class.py should be be-
tween 1100 and 1900.
2. The simulated drone should converge exactly at the setpoint and not oscillate for:
3. Idealized PID, python sim.py ,
4. PID with latency, python sim.py -l 6 ,
5. PID with latency, noise and drag, python sim.py -l 3 -n 0.5 -d 0.02

6.2.6.2. QuestionsQuestions
You will be asked to answer one of the following questions:
1. In step() function in student_pid_class.py , which lines of your code re-
late to P/I/D term and how do you calculate u(t)?
2. In reset() function in student_pid_class.py , which variables you up-
dated and why?
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Appendix A: Altitude TAppendix A: Altitude Tuninguning

In this part, you will be transferring the altitude PID you created in part 1 onto your
drone. You will then tune the PID gains on your drone as you did in the simulator.

7.1.7.1. Flying with Our PIDFlying with Our PID
When you first flew the drone, in the Duckietown stack, you were directly setting the
PWM “stick” levels with the keyboard and mouse. This translates to moving the throt-
tle, roll, and pitch sticks on an RC receiver to fly the drone. There is a PID running on
the flight controller that interprets these stick commands as desired rolls, pitches, and
yaws, and then controls the motor spinning to achieve this.
Now, you will instead fly with a higher level of autonomy and use our PID controller to
fly with velocity and height control. You will use the camera to estimate velocity with
Optical Flow, and the range sensor to estimate height. Then the PID controller will set
the PWMs to achieve these targets: either a fixed velocity of 0 m/s in X and Y, or a fixed
velocity based on what keys are pressed on the keyboard. We are doing positio control
for the height, so it adjusts the throttle to maintain a target height above the ground
using an altitude sensor.

1)1) Bring Down the ContainersBring Down the Containers

First, bring down all the containers. Run docker ps -a and the docker stop on each
container. Then reboot, and run docker update --restart=no my-container for each
container that automatically restarts. Reboot again. When you are done, docker ps
-a should show no containers running.

2)2) UpdatUpdate pidre pidrone_pkone_pkgg

Now update and rebuild the pidrone_pkg container. Run git pull in pidrone_pkg
and then rake build , rake create and rake start . The build this time will be much
faster, because it will not have to download everything from scratch.

3)3) Fly!Fly!

Follow the instructions in the operations manual in order to fly here.
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Make sure this works before trying to tune your own PID.

7.2.7.2. SSTTOP HEREOP HERE
Please stop here for now. These instructions have not been tested with the new version
of the drone.
You will now be using your altitude PID to control the height of the drone. To tune
your altitude PID, you will first use the Ziegler-Nichols tuning method to generate an
initial set of tuning parameters. You will then fine tune these parameters similar to
how you tuned the drone in simulation.
To use your PID, you’ll be running student_pid_controller.py instead of pid_con-
troller.py. This will allow your PID to run alongside our planar PIDs; your PID will be
responsible for keeping the drone flying steady vertically.
SetupSetup
Change directories to ~/catkin_ws/src . Run git clone https://github.com/h2r/
project-pid-implementation-yourGithubName.git . In your repo, change
“pidrone_project3_pid” to “project-pid-implementation-yourGithubName” in pack-
age.xml and “project(pidrone_project3_pid)” to “project(project-pid-implementation-
yourGithubName)” in CMakeLists.txt. Also remove the msg folder, and comment out
“add_message_files” in CMakeLists.txt. Then change directories back to ~/ws/ and
run catkin_make --pkg project-pid-implementation-yourGitHubName .
OR
Use the scp command to transfer student_pid_class.py, student_pid_controller.py,
and z_pid.yaml from the repo on your base station to the scripts folder of your drone
( ~/catkin_ws/src/pidrone_pkg/scripts/ ). In the instructions below, instead of us-
ing rosrun , you may use python to execute your scripts.
Change directories into ~/catkin_ws/src/pidrone_pkg and modify pi.screenrc to
start up with your altitude pid by changing python pid_controller.py\n to rosrun
project-pid-implementation-yourGitHubName student_pid_controller.py\n . Pre-
pare your drone to fly and then navigate to `4 of the screen. Press ctrl-c to quit stu-
dent_pid_controller.
In this screen (`4), modify ~/catkin_ws/src/project-pid-implementation-your-
GitHubName/z_pid.yaml by setting to 1250 and the rest of the gain constants to 0.
Now run rosrun project-pid-implementation-yourGitHubName student_pid_con-
troller.py to fly with your altitude PID.
ExExerercisescises
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Fly your drone and observe its flight. Tune by slowly increasing its value between
flights until you can see the drone moving up and down with uniform oscillations.
Each time you will need to quit the controller, edit ~/catkin_ws/src/project-pid-
implementation-yourGitHubName/z_pid.yaml , and then run rosrun project-pid-
implementation-yourGitHubName student_pid_controller.py again to use the new
PID gains.
1. Record your final value that causes uniform oscillations as , the ultimate
gain.
2. Fly your drone and pause the altitude graph on the web interface when you see
two peaks. Find the time difference between these two peaks and record this value as

, the ultimate period.
3. Use your and values to compute , , and . Refer to the equations in
the Ziegler-Nichols section in the introduction to this project. Record these values and
change z_pid.yaml accordingly.
4. Fly your drone with the set of tuning values generated by the Ziegler-Nichols
method. Note that the Ziegler-Nichols method should enable safe flight, but will prob-
ably not control your drone’s altitude very well! Empirically tune the gain constants in
z_pid.yaml on your drone as you did in the simulator portion of this project. 2 Record
your final tuning values.
FFootnotootnoteses
22 Use the graph on the web interface to observe the drone’s behavior as it oscillates
around the 0.3m setpoint the drone’s ability to hover at the setpoint. When observing
the drone itself, try to get eye-level with the drone to just focus on the the altitude and
ignore the planar motion; it is easier to focus on one axis at a time when tuning the
PIDs. The planar axes can be re-tuned after you tune your altitude pid if need be.
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PPARARTT GG

UnscentUnscented Kalman Filted Kalman Filterer

The fundamental issue of state estimation impacts widespread robotics applications.
Sensors give us an imperfect view of the world, as they tend to contain noise in their
readings. Similarly, when a robot moves in the physical world, its motion has some
amount of uncertainty, deviating randomly from the ideal model that we predict it
might follow. Rather than ignoring these uncertainties and forming a naive state es-
timate, we will be harnessing the power of probability to yield mathematically opti-
mal estimates using the Unscented Kalman Filter (UKF) algorithm. The Kalman Fil-
ter (KF) algorithm and its variants such as the UKF comprise part of the field of proba-
bilistic robotics, which aims to account for uncertainties that the robot will inherently
face as it interacts with the world with imperfect information. An entire course could
be taught only on the topics of filtering and state estimation.
In this project, we give a high-level overview of the necessary foundations to under-
stand the UKF algorithm. Then, you will implement a UKF with a simple one-dimen-
sional model of the drone’s motion to estimate its position and velocity along the verti-
cal axis. Later on in the project, we will expand the model to three spatial dimensions.
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UUNITNIT G-1G-1

BackBackgrgroundound

1.1.1.1. MotivMotivationation
Recall that control systems abstract away lower-level control and can be leveraged to
build autonomous systems, in which is the process variable, i.e. the measurement
of behavior we care about controlling. For example, would be the altitude of a
drone in an altitude controller. Figure 1.1 shows an example feedback control system
of the form.

Figure 1.1. A feedback control system

So far, we have naively been using raw sensor data as our measurement. More
specifically, we’ve been using the range reported by the drone’s downward facing IR
sensor as the “ground truth” measurement of altitude.
However, there are a few prfew problemsoblems with this:
• In the real world, actual sensor hardware is not perfect – there’s noise in sensor
readings. For example, a $10 TOF sensor might report a range of 0.3m in altitude,
when in reality the drone is at 0.25m. While a more expensive sensor would be less
susceptible to noise, it would still not be perfect.
• The sensor readings may not really represent the behavior we wish to control.
For example, it might seem like a downward facing TOF would be a good repre-
sentation of a drone’s altitude, but suppose the drone rolls a non-trivial amount

(See Figure 1.2).
• No one sensor may be enough to measure the we really care about. For exam-
ple, two 2D cameras would be needed to measure depth for a depth controller.
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Figure 1.2. An example of inaccurate sensor reading

These problems imply that we need a higher-level abstraction for our , namely one
that accounts for: noise, robot motion, and sensor data. Let be such an abstraction
called state. For example, for the purposes of altitude control.
To account for noise, we should consider the distribution of possible states at time t:

Furthermore, let represent readings from all sensors from time 1 to . Likewise, let
represent all robot motions from time 1 to . Then we can account for robot mo-

tion and sensor data on our distribution via conditioning:

Let this distribution be known as , i.e. the belief of the state of our dynamic sys-
tem at time . Suppose, hypothetically, that we knew the distribution (though
we haven’t discussed how to determine it yet). Then we could change in our con-
trol system from a naïve sensor reading to:

For a specific in the state vector (e.g. the altitude element in ). Consequently,
this would make in a feedback control system:

1.2.1.2. UnderstandUnderstand
Although seems to solve all our problems, it is unclear how to determine it ex-
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plicitly. One way to do so is to decompose it into quantities that are easier to deter-
mine. Furthermore, it may prove helpful to make a few reasonable assumptions that
will simplify the decomposition. In this vain, consider instead the distribution:

which is called the measurmeasurement modelement model. It is probably reasonable to assume that
knowing the state at time is enough to determine the distribution of our sensor data;
knowing all previous states, motions, and sensor data probably won’t add any new in-
fo. So our first simplification is a Markov assumption about the measurement model:

Likewise, consider the distribution:

Which is called the motion modelmotion model. It is probably reasonable to assume that the state
at time t only depends on the previous state and the motion that happened since. So
another simplification is the Markov assumption about the motion model:

Why did we bother with an aside about these distributions and assumptions? Because
they allow us to decompose as follows:

where

and is a constant. This decomposition gives rise to the BaBayyes Filtes Filter alger algorithmorithm (see
sections below). So effectively, it has reduced the challenge of determining the un-
known (and difficult to figure out) distribution into figuring out the dis-
tributions and , i.e. measurement and motion models respec-
tively.
Fortunately, these distributions are easier to figure out than ; we can either de-
termine these distributions experimentally for a robot or we can make assumptions
about the PDF class of these functions (see next section).
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✎1.3.1.3. BaBayyee’’s Filts Filter Exter Extensionension
So far we’ve reduced the challenge of determining explicitly to instead deter-
mining and . One way to “determine” these is to purposefully
assume they are distributions from well known parameterized PDF classes. A popular
choice would the class of Gaussians, i.e. , which is a class parameterized by
mean and variance ; each pair gives a different-shaped bell curve.
So we assume:

where and are linear functions, and are some pre-determined variances. To-
gether, these assumptions lead to being a Gaussian as well:

Which gives rise to the Kalman Filter algorithm (see sections below). Note that the KF
algorithm has the same form as the Baye’s Filter algorithm (since the base derivation
is the same), but the KF algorithm only needs to find and at each time step .
Practically, using a Kalman Filter means providing linear functions and as input.
What are and ?
• is a function that captures the motion dynamics of a system. Simply put, can
be thought of as calculating the “predicted” after motion. For example, suppose we
have a drone that moves only horizontally. Let state be the horizontal position
at time t, be the horizontal velocity (i.e. the control signal we send the drone),
and is the predicted state due to motion. Then:

• is a function that transforms the state into something that can be compared to the
sensor data . Simply put, , i.e. a “predicted” sensor reading based on the
current state. For example: suppose a drone is rolled by , for a range report-
ed by an IR sensor, and is for an altitude of and roll of :
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Figure 1.3. An example of ir measurement calculation

Then a non-linearnon-linear woould be:

A key requirement of the Kalman Filter algorithm is that and need to be linear
functions. This is necessary in order for the various Gaussians to multiply such that

is still a Gaussian. Under the assumption of linearity, the Kalman Filter is prov-
ably optimal.
However, most systems which have non-linearities. For example, the drone’s update
function involves nonlinear trigonometric functions like sin and cosine. Many people
use the Extended Kalman Filter(EKF) algorithm instead. The EKF handles non-linear
functions by basically doing a first-order Taylor expansion (to create a linear approxi-
mation) on and , then passing them to the Kalman Filter algorithm. To perform this
approximation, the Jacobian matrix of and must be computed (e.g., the deriviative
with respect to every input variable.) This Jacobian matrix must be derived and then
implemented in code, an non-trivial effort.
Fortunately, another alternative is the Unscented Kalman Filter(UKF) algorithm,
which is a sampling-based variant of the Kalman Filter. Like the EKF, the UKF can
handle non-linear and . The UKF is not only simpler to implement than the EKF, it
also performs better, although it is not provably optimal.

1.4.1.4. BackBackgrground beforound before UKFe UKF
Before we dive into the UKF, there are some foundations that we should build up:
• Estimating by averaging
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• The Bayes Filter
• Gaussians
• The Kalman Filter
The basis for the Kalman Filter lies in probability; as such, if you want to better under-
stand some of these probabilistic algorithms, you may find it helpful to brush up on
probability. A useful reference on probability and uncertainty is [2].
Since the UKF is an adaptation of the standard Kalman Filter, a lot of our discussion
will apply to Kalman Filters in general.

1)1) Estimating by AEstimating by Avvereragingaging

Imagine a simple one-dimensional system in which your drone moves along the -axis
by adjusting its thrust. The drone has a downward-pointing infrared (IR) range sensor
that offers you a sense of the drone’s altitude, albeit with noise, as the sensor is not
perfect. You are aware of this noise and want to eliminate it: after all, you know by
empirical observation that your drone does not oscillate as much as the noisy IR range
readings suggest, and that the average value of a lot of IR readings gets you a close es-
timate of the actual height. What can you do? A simple solution is to average recent
range readings so as to average out the noise and smooth your estimate. One way to
implement this is with a moving amoving avvereragagee that computes a weighted sum of the previ-
ous average estimate and the newest measurement.

where is the weighted average of the drone’s state (here, just its height) at time
computed by weighting the previous average by a scalar between and and
the new measurement (here, just the raw IR reading) by . A higher will re-
sult in a smoother estimate that gives more importance to the previous average than
the new measurement; as such, a smoother estimate results in increased latency.
This approach works for many applications, but for our drone, we want to be able to
know right away when it makes a sudden movement. Averaging the newest sensor
reading with past readings suffers from latency, as it takes time for the moving average
to approach the new reading. Ideally we would be able to cut through the noise of the
IR sensor and experience no latency. We will strive for this kind of state estimation.
As a related thought experiment, imagine that you do not have control of the drone
but are merely observing it from an outsider’s perspective. In this scenario, there is
one crucial bit of information that we lack: the contrcontrol inputol input that drives the drone. If
we are controlling the drone, then presumably we are the ones sending it commands
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to, for example, accelerate up or down. This bit of information is useful (but not nec-
essary) for the Bayes and Kalman Filters, as we will discuss shortly. Without this in-
formation, however, employing a moving average to estimate altitude is not a bad ap-
proach.

2)2) The BaThe Bayyes Filtes Filterer

To be able to get noise-reduced estimates with less latency than a via an averaging
scheme, we can look to a probabilistic method known as the Bayes Filter, which forms
the basis for Kalman filtering and a number of other probabilistic robotics algorithms.
The idea with a Bayes Filter is to employ BaBayyes’ Theores’ Theoremem and the corresponding idea
of conditional probability to form probability distributions representing our belief in
the robot’s state (in our one-dimensional example, its altitude), given additional infor-
mation such as the robot’s previous state, a control input, and the robot’s predicted
state.
Say we know the drone’s state at the previous time step as well as the most recent
control input , which, for example, could be a command to the motors to increase
thrust. Then, we would like to find the probability of the drone being at a new state

given the previous state and the control input. We can express this with conditional
probability as:

This expression represents a prpredictionediction of the drone’s state, also termed the priorprior, as
it is our estimate of the drone’s state before incorporating a measurement. Next, when
we receive a measurement from our range sensor, we can perform an updatupdatee, which
looks at the measurement and the prior to form a postposteriorerior state estimate. In this step,
we consider the probability of observing the measurement given the state estimate

:

By Bayes’ Theorem, we can then derive an equation for the probability of the drone
being in its current state given information from the measurement:

After a little more manipulation and combining of the predict and update steps, we
can arrive at the Bayes Filter algorithm [3]:
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The filter calculates the probability of the robot being in each possible state (hence
the loop). The prediction is represented as and embodies the prior belief
of the robot’s state after undergoing some motion, before incorporating our most re-
cent sensor measurement. In the measurement update step, we compute the posterior

. The normalizer is equal to the reciprocal of ; alternatively, it can be com-
puted by summing up over all states . This normalization ensures
that the new belief integrates to 1.

3)3) GaussiansGaussians

Bayes Filter is a useful concept, but often it is too difficult to compute the beliefs, par-
ticularly with potentially infinite state spaces. We want to then find a useful way to
represent these probability distributions in a manner that accurately represents the re-
al world while also making computation feasible. To do this, we exploit GaussianGaussian func-
tions.
We can represent the beliefs as Gaussian functions with a mean and a covariance ma-
trix. Why? The state variables and measurements are random variables in that they
can take on values in their respective sample spaces of all possible states and measure-
ments. By the Central Limit Theorem, these random variables will be distributed nor-
mally (i.e., will form a Gaussian probability distribution) when you take a lot of sam-
ples. The Gaussian assumption is a strong one: think of a sensor whose reading fluc-
tuates due to noise. If you take a lot of readings, most of the values should generally be
concentrated in the center (the mean), with more distant readings occurring less fre-
quently.
We use Gaussians because they are a good representation of how noise is distributed
and because of their favorable mathematical properties. For one, Gaussians can be de-
scribed by a mean and a covariance, which require less bookkeeping. Furthermore,
Gaussian probability density functions added together result in another Gaussian, and
products of two Gaussians (i.e., a joint probability distribution of two Gaussian distri-
butions) are proportional to Gaussians [4], which makes for less computation than if
we were to use many samples from an arbitrary probability distribution. The conse-
quence of these properties is that we can pass a Gaussian through a linear function
and recover a Gaussian on the other side. Similarly, we can compute Bayes’ Theorem
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with Gaussians as the probability distributions, and we find that the resulting proba-
bility distribution will be Gaussian [4].
In the Bayes Filter, we talked about the predict and update steps. The prediction uses
a statstate tre transition functionansition function, also known as a motion modelmotion model, to propagate the state esti-
mate (which we can represent as a Gaussian) forward in time to the next time step. If
this function is linear, then the prior state estimate will also be Gaussian. Similarly, in
the measurement update, we compute a new distribution using a measurement func-
tion to be able to compare the measurement and the state. If this function is linear,
then we can get a Gaussian distribution for the resulting belief. We will elaborate on
this constraint of linearity when we discuss the usefulness of the Unscented Kalman
Filter, but for now you should be comfortable with the idea that using Gaussians to
represent the drone’s belief in its state is a helpful and important modeling assump-
tion.
Multivariate Gaussians:
Most of the time when we implement a Kalman Filter, we track more than one state
variable in the state vector (we will go over what these terms mean and some intu-
ition for why we do this in the next section). We also often receive more than one con-
trol and measurement input. What this means is that, as you may have noticed in the
above equations which contain boldface vectors, we want to represent state estimates
in more than one dimension in state space. As a result, our Gaussian representations
of these state estimates will be multivmultivariatariatee. We won’t go into much detail about this
notion except to point out, for example, that tracking multiple state variables with a
multivariate Gaussian (represented as a vector of means and a covariance matrix) al-
lows us to think about how different state variables are correlated. Again, we will cov-
er this in greater detail as we talk about Kalman Filters in the following section—now
you know, however, that there is motivation for using multi-dimensional Gaussians. If
you want to learn more about this topic, we recommend Labbe’s textbook, which also
contains helpful graphics to understand what is going on with these Gaussians intu-
itively.

4)4) The Kalman FiltThe Kalman Filterer

High-Level Description of the Kalman Filter Algorithm:
Recall from the Bayes Filter the procedure of carrying out predictions and measure-
ment updates. The Kalman Filter, an extension of Bayes Filter with Gaussian assump-
tions on the belief distributions, aims to fuse measurement readings with predicted
states. For example, if we know (with some degree of uncertainty) that the drone is
moving upward, then this knowledge can inform us about the drone’s position at the
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next time step. We can form a prpredictionediction of the drone’s state at the next time step giv-
en the drone’s current state and any control inputs that we give the drone. Then, at
the next time step when we receive a new measurement, we can perform an updatupdatee of
our state estimate. In this update step, we look at the difference between the new mea-
surement and the predicted state. This difference is known as the residual. Our new
state estimate (referred to in literature as the posterior) lies somewhere between the
predicted state, or prior, and the measurement; the scaling factor that accomplishes
this is known as the Kalman gain [4]. Figure 1.4 depicts this process of prediction and
measurement update.
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Figure 1.4. Predict-Update Cycle for a Kalman Filter Tracking a Drone's Motion in One Dimension
StatState Ve Vectector and Covor and Covariance Matrixariance Matrix
The KF accomplishes its state estimate by tracking certain statstate ve variablesariables in a state vec-
tor, such as position and velocity along an axis, and the covcovariance matrixariance matrix correspond-
ing to the state vector. In the first part of this project, your UKF’s state vector will track
the drone’s position and velocity along the -axis and will look like:

where and are the position and velocity of the drone along the -axis, respectively.
Figure 1.4 depicts a contrived example in which the drone is hovering above a table.
We will describe why we show this contrived example shortly when we discuss the
measurement function, but for now, you should focus on the fact that we want to know
the drone’s position along the -axis (where the ground is 0 meters) and its velocity.
Why did we decide to track not only position but also velocity? What if we were only
interested in the drone’s position along the -axis? Well, while in some cases we might
only be immediately interested in, say, knowing the robot’s position, the addition of
is also important. is known as a hidden variable: we do not have a sensor that allows
us to measure this quantity directly. That said, keeping track of this variable allows us
to form better estimates about . Why? Since position and velocity are correlated quan-
tities, information about one quantity can inform the other. If the drone has a high
positive velocity, for instance, we can be fairly confident that its position at the next
time step will be somewhere in the positive direction relative to its previous position.
The covariances between position and velocity allow for a reasonable estimate of ve-
locity to be formed—as does any information about acceleration, for example. Chapter
5.7 of Labbe’s textbook [4] describes the importance of this correlation between state
variables such as position and velocity. In addition, as you will see when we discuss
the state transition model of a Kalman Filter, the control input impacts the prior state
estimate. In this particularly instance, the control input is a linear acceleration value,
which can be integrated to provide information about velocity.
The state vector tracks the mean of each state variable, which—as we noted in the
section on Gaussians—we assume is normally distributed about . To characterize
the uncertainty in this state estimate, we use an covariance matrix where is the
size of the state vector. For this state vector, then, we define the covariance matrix as:
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where , for example, denotes the variance in the position estimates and
denotes the covariance between the position and velocity esti-

mates. As mentioned above, position and velocity are typically positively correlated, as
a positive velocity indicates that the drone will likely be at a more positive position at
the next time step.
The first frame of Figure 1.4 illustrates a state estimate and the standard deviation of
that height estimate.
StatState Te Trransition Model for the Pransition Model for the Prediction Stediction Stepep
The part of the KF that computes a predicted state is known as the state transition
function. The prediction step of the UKF uses the state transition function to propa-
gate the current state at time to a prediction of the state at the next time step, at
time . In standard Kalman Filter literature for linear systems, this transition function
can be expressed with two matrices: a state transition matrix and a control func-
tion that, when multiplied with the current state vector and with the control
input vector , respectively, sum together to output the prediction of the next state.

We give and each a subscript to indicate that these matrices can vary with time.
Often, these matrices will include one or more terms in order to properly propagate
the state estimate forward in time by that amount. If our control input, for example,
comes in at a varying frequency, then the time step will change.
More generally, in nonlinear systems—where the UKF is useful, which we will de-
scribe later—a single transition function can express the prediction of
what the next state will be given the current state estimate , the control input ,
and the time step [9]. For robotic systems such as the PiDrone, the state transition
function often involves using kinematic equations to form numerical approximations
of the robot’s motion in space.

The control input that you will use for this project is the linear acceleration along the
-axis being output by the IMU. While the distinction between this control input

and other measurements might seem vague, we can think of these acceleration values
as being commands that we set when we control the drone. Indeed, since we control
the drone’s throttle and thus the downward force of the propellers, we do control the
drone’s acceleration by Newton’s Second Law of Motion:
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That said, even though in practice people do successfully use IMU accelerations as
control inputs, research [10] indicates that in certain cases it may be better to use IMU
data in the measurement update step; this is an example of a design decision whose
performance may depend on the system you are modeling. We choose to use the IMU’s
acceleration as the control input :

Expressing Newton’s Second Law in terms of our control input, we have:

which denotes that the net force acting on the drone is equal to its mass (assumed
to be constant) multiplied by the acceleration in the direction (i.e., along the -ax-
is).
The second frame of Figure 1.4 shows the result of the state transition function: the
drone’s state estimate has been propagated forward in time, and in doing so, the uncer-
tainty in its state has increased, since its motion model has some degree of uncertainty
and the new measurement has not yet been incorporated.
MeasurMeasurement Functionement Function
After the prediction step of the KF comes the measurement update step. When the
drone gets a new measurement from one of its sensors, it should compute a new state
estimate based on the prediction and the measurement. In the -axis motion model for
the first part of this project, the sensor we consider is the infrared (IR) range sensor.
We assume that the drone has no roll and pitch, which means that the IR reading di-
rectly corresponds to the drone’s altitude. The measurement vector, then, is defined as:

where is the IR range reading.
In our contrived example shown in Figure 1.4, however, the IR range reading does not
directly correspond to the drone’s altitude: there is an offset due to the height of the
table .
As depicted in the third frame of Figure 1.4, part of the measurement update step is
the computation of the residual . This value is the difference between the measure-
ment and the predicted state. However, the measurement value lives in measurement
space, while the predicted state lives in state space. For your drone’s particular 1D ex-
ample (without the table beneath the drone), the measurement and the position esti-
mate represent the same quantity; however, in more complicated systems such as the
later part of this project in which you will be implementing a UKF to track multiple
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spatial dimensions, you will find that the correspondence between measurement and
state may require trigonometry. Also, since the sensor measurement often only pro-
vides information pertaining to part of the state vector, we cannot always transform a
measurement into state space. Chapter 6.6.1 of Labbe’s textbook [4] describes the dis-
tinction between measurement space and state space.
Consequently, we must define a measurement function that transforms the prior
state estimate into measurement space. (For the linear Kalman Filter, this measure-
ment function can be expressed as a matrix that gets multiplied with .) As an
example, our diagrammed scenario with the table requires the measurement function
to account for the height offset. In particular, would return a matrix whose
singular element is the measurement you would expect to get with the drone posi-
tioned at a height given by the value in the prior :

This transformation allows us to compute the residual in measurement space with the
following equation:

Once the residual is computed, the posterior state estimate is computed via the follow-
ing equation:

where is the Kalman gain that scales how much we “trust” the measurement ver-
sus the prediction. Once this measurement-updated state estimate is calculated, the
filter continues onto the next predict-update cycle.
The fourth frame of Figure 1.4 illustrates this fusion of prediction and measurement in
which a point along the residual is selected for the new state estimate by the Kalman
gain. The Kalman gain is determined mathematically by taking into account the co-
variance matrices of the motion model and of the measurement vector. While we do
not expect you to know exactly how to compute the Kalman gain, intuitively it is rep-
resentative of a ratio between the uncertainty in the prior and the uncertainty in the
newly measured value.

At a high level, that’s the Kalman Filter algorithm! Below is the general linear Kalman
Filter algorithm [9] [3] [4] written out in pseudocode. We include as an argument
to the function since it so often is used there. We use boldface vectors and
matrices to describe this algorithm for the more general multivariate case in which we
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are tracking more than one state variable, we have more than one measurement vari-
able, et cetera. We also have not yet introduced you to the and matrices; you will
learn about them later in this project when you implement your first filter. Also, we
did not previously mention some of the equations written out in this algorithm (e.g.,
the computation of the Kalman gain); fret not, however, as you are not responsible for
understanding all of the mathematical details. Nonetheless, we give you this algorithm
for reference and for completeness. As an exercise, you might also find it helpful to
compare the KF algorithm to the Bayes Filter algorithm written above.
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UUNITNIT G-2G-2

The UnscentThe Unscented Kalman Filted Kalman Filter: Ner: Nonlinear Statonlinear State Estima-e Estima-
tiontion

1)1) Limitations of the StandarLimitations of the Standard (Linear) Kalman Filtd (Linear) Kalman Filterer

So far, we have discussed the standard Kalman Filter algorithm. However, we have not
mentioned its limitations. The standard Kalman Filter assumes that the system is both
linear and Gaussian. In other words, the uncertainties in the motion and measure-
ment models are assumed to be normally distributed about a mean in order to produce
optimal estimates, which allows us to represent the state estimate as a Gaussian with
mean and variance. For many systems, the Gaussian assumption is a good one. Intu-
itively, one can imagine that a sensor’s noise, for example, varies more or less symmet-
rically about a true mean value, with larger deviations occurring less frequently.
The greater constraint, however, is the assumption that the system is linear. What we
mean by this is that the state transition function and measurement function are linear
functions, and as a result, when we pass Gaussian distributions through these func-
tions, the output remains Gaussian or proportional to a Gaussian. An arbitrary non-
linear function, on the other hand, will not output another Gaussian or scaled Gauss-
ian, which is a problem since so much of the Kalman Filter math depends on the state
estimate being Gaussian. The Unscented Kalman Filter was expressly designed to ro-
bustly handle this issue of nonlinearity.
In this project’s -axis UKF, the functions are linear, so indeed a standard Kalman Fil-
ter would suffice. However, for the second UKF that you will be implementing, there
are nonlinearities due to the drone’s orientation in space. To make the transition easi-
er from the first part to the second part of this project, we are asking you to implement
a UKF even for a linear system. The UKF estimates will be the same as a KF; the only
downsides might be code complexity and computation time. That said, you will be us-
ing a Python library called FilterPy (written by Labbe, author of Kalman and Bayesian
Filters in Python [4]) that handles and hides most of the filtering math anyway.
You might also be wondering what the term “unscented” has to do with a Kalman
Filter that applies to nonlinear systems. There is no greater technical meaning to the
word; the inventor claims it is an arbitrary choice that resulted from his catching a
glimpse of a coworker’s deodorant while trying to come up with a name for his filter
[16].
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2)2) Underlying Principle of the UKFUnderlying Principle of the UKF

To handle the nonlinearities, the UKF uses a sampling scheme. An alternative to the
UKF known as the Extended Kalman Filter (EKF) uses Jacobians to linearize the non-
linear equations, but the UKF takes a deterministic sampling approach that in many
cases results in more accurate estimates and is a simpler algorithm to implement [9].
The UKF uses a function to compute so-called sigma pointssigma points, which are the sample
points to pass through the state transition and measurement functions. Each sigma
point also has corresponding wweightseights for the sample’s mean and covariance. The sigma
points are generated so that there are of them, where is the size of the state
vector. Imagine a one-dimensional state vector, for example, which we represent as a
single-variable Gaussian. In this instance, sigma points are chosen. One
of these points is the mean of the Gaussian, and the two other points are symmet-
ric about the mean on either side. The exact distance of these points from the mean
sigma point will vary depending on parameters passed into the sigma point function,
but we do not expect you to worry about these parameters. The idea, though, is that
these sigma points and their weights are sufficiently representative of the
Gaussian distribution.
Next, these points that represent the Gaussian state estimate are passed through a non-
linear function (i.e., the state transition or measurement functions), which can scatter
the points arbitrarily. We then want to recover a Gaussian from these scattered points,
and we do so by using the unscentunscented tred transformansform, which computes a new mean and
covariance matrix. To compute the new mean, the unscented transform calculates a
weighted sum of each sigma point with its associated sample mean weight.

3)3) UKF in the PrUKF in the Prediction Stediction Stepep

The UKF formulates the prior state estimate by specifying a set of sigma points
according to the current state estimate and then propagating these points through
the state transition function to yield a new set of sigma points , which are passed
through the unscented transform to produce the prior state estimate.

4)4) UKF in the UpdatUKF in the Update Ste Stepep

Below is the algorithm for the Unscented Kalman Filter [9] [4]. Note that the sigma
point weights denoted by and can be computed as part of a number of sig-
ma point algorithms. We will use Van der Merwe’s scaled sigma point algorithm to
compute the sigma points and weights [20] [4]. The sigma points get computed at each
prediction, whereas the weights can be computed just once upon filter initialization.
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UUNITNIT G-3G-3

StSteps teps to Design and Implement a Kalman Filto Design and Implement a Kalman Filter on a Rer on a Ro-o-
botbot

To apply a Kalman Filter (linear KF or UKF) to a specific robot, there are certain parts
of the algorithm that we need to define.
1. StatState Ve Vectector:or: The first aspect of the KF design process specific to the robot applica-
tion is the selection of state variables to track in the state vector.
2. Motion Model:Motion Model: The motion model of the robot demands careful thought when de-
signing a KF, as it determines the state transition function.
3. MeasurMeasurement Model:ement Model: The robot’s sensor suite plays a significant role in how the
robot forms state estimates. Its sensors determine the measurement function.
4. PrProcess Nocess Noise and Measuroise and Measurement Covement Covariance Matrices:ariance Matrices: The process noise and mea-
surement covariance matrices must be determined from the motion model and sensor
suite, respectively.
5. Initialization of the FiltInitialization of the Filter:er: The filter must have initial values on which to perform
the predictions and measurement updates.
6. AsynchrAsynchronous Inputs:onous Inputs: Sometimes, the KF has to be adapted to handle asynchro-
nous inputs from real-world sensors, whose data rates are not strictly fixed.
7. TTuning and Tuning and Testing:esting: Finally, once a filter is implemented, it is a good idea to tune
and test it in simulation and then on the real robot, quantifying its performance if pos-
sible.
We will be going over these design decisions and implementation details step-by-step
as you implement your filters in one and three spatial dimensions on the drone.
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UUNITNIT G-4G-4

2D UKF Design and Implementation2D UKF Design and Implementation

Figure 4.1. 2D UKF Height Estimates Visualized in the JavaScript Web Interface

It is time for you to design and implement a 2D UKF specific to the PiDrone! For
the implementation, we will have you use the Python library FilterPy, which abstracts
away most of the nitty-gritty math. If needed, you can refer to the FilterPy documenta-
tion and source code here.

4.1.4.1. HandinHandin
Use this link to generate a Github repo for this project. Clone the directory to your
computer git clone https://github.com/h2r/project-ukf-2020-yourGithub-
Name.git This will create a new folder.
Commit and push your changes before the assignment is due. This will allow us to
access the files you pushed to Github and grade them accordingly. If you commit and
push after the assignment deadline, we will use your latest commit as your final sub-
mission, and you will be marked late.

cd project-ukf-2020-yourGithubName
git add -A
git commit -a -m 'some commit message. maybe handin, maybe update'
git push

Note that assignments will be graded anonymously, so please don’t put your name or
any other identifying information on the files you hand in.

4.2.4.2. Design and Implement the 2D FiltDesign and Implement the 2D Filterer
This part of the project has twtwo delivo delivererablesables in your repository, which are to be ac-
cessed and submitted via GitHub Classroom:
1. A PDF document ukf2d_written_solutions.pdf , generated from
ukf2d_written_solutions.tex , with the answers to the UKF design and im-
plementation questions.
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2. Your implementation of the UKF written in the state_estimators/stu-
dent_state_estimator_ukf_2d.py stencil code. In this stencil code file, we
have placed “TODO” tags describing where you should write your solution code to the
relevant problems.
In addition to implementing the UKF in code, we want you to learn about the design
process, much of which occurs outside of the code that will run the UKF. Plus, we have
some questions we want you to answer in writing to demonstrate your understanding
of the UKF. Hence, you will be writing up some of your solutions in . We are
having you write solutions in because it will in particular enable you to write
out some of the UKF math in a clear (and visually appealing!) format. In these docu-
ments, please try to follow our math notation wherever applicable.
TTask:ask: From your repository, open up the ukf2d_written_solutions.tex file in your
favorite editor. This could be in Overleaf, your Brown CS department account,
or locally on your own computer. Before submitting your document, please make sure
it is compiled into a PDF. If you are having trouble with , please seek out the
help of a TA.

4.3.4.3. StatState Ve Vectectoror
For this part of the project, we are going to track the drone’s position and velocity along
the -axis:

4.4.4.4. StatState Te Trransition Functionansition Function
For this UKF along the -axis, your state transition function will take into account a
control input defined as follows:

is the linear acceleration reading along the -axis provided by the IMU.
TTask (Wask (Writrittten Section 1.2.2):en Section 1.2.2): Implement the state transition function
by filling in the template given in Section 1.2.2 of ukf2d_written_solutions.tex with
the correct values to propagate the current state estimate forward in time. Remember
that for the drone, this involves kinematics (hint: use the constant acceleration kine-
matics equations). Since there is a notion of transitioning the state from the previous
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time step, this function will involve the variable .
TTask:ask: Translate the state transition function into Python by filling in the state_tran-
sition_function() method in state_estimators/student_state_estima-
tor_ukf_2d.py . Follow the “TODO”s there. Note the function’s type signature for the
inputs and outputs.

4.5.4.5. MeasurMeasurement Functionement Function
At this stage, we are only considering the range reading from the IR sensor for the
measurement update step of the UKF, so your measurement vector will be the fol-
lowing:

TTask (Wask (Writrittten Section 1.3.2):en Section 1.3.2): In ukf2d_written_solutions.tex , implement the mea-
surement function to transform the prior state estimate into measurement space.
For this model’s state vector and measurement vector, can be implemented as a

matrix that is multiplied with the state vector, outputting a matrix: the
same dimension as the measurement vector , which allows for the computation of
the residual.
TTask:ask: As before, translate the measurement function into code, this time by filling in
the measurement_function() method. Follow the “TODO”s there. Note the function’s
type signature for the inputs and outputs.

4.6.4.6. PrProcess Nocess Noise and Measuroise and Measurement Covement Covariance Matricesariance Matrices
The process noise covariance matrix represents how uncertain we are about our
motion model. It needs to be determined for the prediction step, but you do not need
to determine this yourself, as this matrix can be notoriously difficult to ascertain. Fea-
sible values for the elements of are provided in the code.
On the other hand, the measurement noise covariance matrix has a more tangible
meaning: it represents the variance in our sensor readings, along with covariances if
sensor readings are correlated. For our 1D measurement vector, this matrix just con-
tains the variance of the IR sensor.
The interplay between and dictates the value of the Kalman gain , which
scales our estimate between the prediction and the measurement.
TTask:ask: Characterize the noise in the IR sensor by experimentally collecting data from
your drone in a stationary setup and computing its variance. To do so, prop the drone
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up so that it is stationary and its IR sensor is about 0.3 m from the ground, pointing
down, unobstructed. To collect the range data, execute the following commands on
your drone:
Navigate to pidrone_pkg and start the code:

$ roscd pidrone_pkg
$ ./start.sh

After navigating to a free screen, echo the infrared ROS topic and extract just the range
value. To automatically log a lot of IR range readings, you must redirect standard out-
put to a file like so:

$ rostopic echo /pidrone/infrared/range > ir_data.txt

We have provided a script ir_sample_variance_calculation.py that reads in the
range readings from the file (so make sure this file is named ir_data.txt and is in the
same directory as ir_sample_variance_calculation.py ), computes the sample vari-
ance, and plots the distribution of readings using matplotlib . If you want to run this
on your drone, then you will have to ensure that your ssh client has the capabili-
ty to view pop-up GUI windows in order to view the plot. If you have XQuartz in-
stalled on your base station, for example, then this should allow you to run ssh -Y
pi@192.168.42.1 . Otherwise, you can run this script on a computer that has Python,
matplotlib , and numpy installed.
Your plot should look somewhat Gaussian, as in Figure 4.2.

106 2D UKF DESIGN AND IMPLEMENTATION



✎

Figure 4.2. Sample Distribution of Infrared Range Data

When running ir_sample_variance_calculation.py , you can pass in command-line
arguments of -l to plot a line chart instead of a bar chart and -n followed by a positive
integer to indicate the number of intervals to use for the histogram (defaults to 100 in-
tervals).
TTask (Wask (Writrittten Section 1.3.3):en Section 1.3.3): Record the resulting sample variance value in
ukf2d_written_solutions.tex . Also include an image of your histogram in
ukf2d_written_solutions.tex .
TTask:ask: Enter this sample variance value into the code for self.ukf.R in the initial-
ize_ukf_matrices() method.

4.7.4.7. Initialize the FiltInitialize the Filterer
Before the UKF can begin its routine of predicting and updating state estimates, it
must be initialized with values for the state estimate and state covariance matrix

, as the first prediction call will rely on propagating these estimates forward in time.
There is no set way to initialize the filter, but one common approach is to simply take
the first measurements that the system receives and treat them as the best estimate of
the state until we have estimates for each variable.
TTask:ask: For your drone, you want to wait until the first IR reading comes in and then set
the corresponding position value equal to this measurement. This only accounts for
one of the two state variables. For now, initialize . Go ahead and implement
this state estimate initialization in code in the ir_data_callback() method, which
gets called each time this ROS node receives a message published by the IR sensor.
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TTask:ask: In addition to initializing the state estimate, you must initialize the time value
corresponding to the state estimate. We provide a method initialize_input_time()
that accomplishes this, but you must call it in the appropriate location.
Another aspect of the filter that can be initialized upon the first receipt of a measure-
ment is the state covariance matrix . How do we know what values to use for this
initialization? Again, this is a design decision that can vary by application. We can di-
rectly use the variance of the IR sensor to estimate an initial variance for the height
estimate. We won’t worry about initializing the velocity variance or the covariances. If
we always knew that we were going to start the filter while the drone is at rest, then
we could confidently initialize velocity to 0 and assign a low variance to this estimate.
TTask:ask: Initialize the matrix in the ir_data_callback() method with the variance of
the IR sensor for the variance of the position estimate. FilterPy initializes instance
variables for you, but you should assign these variables initial values. You can refer to
the FilterPy documentation to figure out what variable names to use.
TTask (Wask (Writrittten Section 2.1):en Section 2.1): How else could you initialize the estimate for given the
raw range readings from the IR sensor? Recall that the range readings are an estimate
for , and you can differentiate to get . Describe in ukf2d_written_solutions.tex
what you would do and the potential pros and cons of your approach. Do not imple-
ment this in code.
It is unlikely that the filter initialization will be perfect. Fret not—the Kalman Filter
can handle poor initial conditions and eventually still converge to an accurate state es-
timate. Once your predict-update loop is written, we will be testing out the impact of
filter initialization.

4.8.4.8. AsynchrAsynchronous Inputsonous Inputs
The traditional Kalman Filter is described as a loop alternating between predictions
and measurement updates. In the real world, however, we might receive control inputs
more frequently than we receive measurement updates; as such, instead of throwing
away information, we would prefer to perform multiple consecutive predictions. Ad-
ditionally, our inputs (i.e., control inputs and sensor data) generally arrive asynchro-
nously, yet the traditional Kalman Filter algorithm has the prediction and update steps
happen at the same point in time. Furthermore, the sample rates of our inputs are typ-
ically not constant, and so we cannot design our filter to be time invariant. These are
all problems that should be considered when transitioning from the theoretical algo-
rithm to the practical application.
TTask (Wask (Writrittten Section 2.2):en Section 2.2): Describe why, in a real-world Kalman Filter implementa-
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tion, it generally makes sense to be able to perform multiple consecutive predictions
before performing a new measurement update, whereas it does not make sense algo-
rithmically to perform multiple consecutive measurement updates before forming a
new prediction. It might be helpful to think about the differences between what hap-
pens to the state estimate in the prediction versus the update step. Write your answer
in ukf2d_written_solutions.tex .
TTask:ask: Implement the predicting and updating of your UKF, keeping in mind the issue
of asynchronous inputs. These steps will occur in two ROS subscriber callbacks: 1)
imu_data_callback when an IMU control input is received and 2) ir_data_callback
when an IR measurement is received. Remember that we want to perform a predic-
tion not only when we receive a new control input but also when we receive a new
measurement in order to propagate the state estimate forward to the time of the mea-
surement. One way to do this prediction without a new control input is to assume that
the control input remains the same as last time (which is what we suggest); another
potential approach might be to not include a control input in those instances (i.e., set
it to zeros). The method for our FilterPy UKF object that you want to use to perform
the prediction is self.ukf.predict() , which takes in a keyword argument dt that
is the time step since the last state estimate and a keyword argument u , correspond-
ing to the argument u of state_transition_function() , that is a NumPy array with
the control input(s). The method to do a measurement update is self.ukf.update() ,
which requires a positional argument consisting of a measurement vector as a NumPy
array. Call self.publish_current_state() at the end of each callback to publish the
new state estimate to a ROS topic.
Note that these callbacks get called in new threads; therefore, there is the potential
for collisions when, say, both IMU and IR data come in almost at the same time and
one thread has not had the opportunity to finish its UKF computations. We don’t want
both threads trying to simultaneously alter the values of certain variables, such as
the matrix when doing a prediction, as this can cause the filter to output nonsen-
sical results and break. Therefore, we have implemented a simple callback blocking
scheme—using the self.in_callback variable—that ignores a new callback if anoth-
er callback is going on, essentially dropping packets if there are collisions. While this
may not be the optimal or most stable way to handle the issue (one could imagine
the IMU callback, for example, always blocking the IR callback and hence preventing
measurement updates), it at least gets rid of the errors that would occur with colli-
sions. If you so desire, feel free to implement your own callback management system
that perhaps balances the time allocated to different callbacks.
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4.9.4.9. TTune and Tune and Test the Filtest the Filterer
In this problem, you will be testing your UKF that you have implemented thus far. You
will start by testing on simulated drone data. We have set up the simulation to pub-
lish its data on ROS topics so that your UKF program interfaces with the drone’s ROS
environment and will be able to be applied directly to real, live data coming from the
drone during flight. The output from the UKF can be evaluated in the JavaScript web
interface (see pidrone_pkg/web/index.html ).

1)1) In SimulationIn Simulation

To run your UKF with simulated drone data, you first have to make sure that your
package is in the ~/ws/src directory on your drone. Your package has a unique name,
so you will need to modify some files. There are two places near the top of pack-
age.xml where you should replace pidrone_project2_ukf with your repo name, and
similarly there is one place near the top of the CMakeLists.txt file where you should
do the same. Then, in ~/ws , run catkin_make to build your package. By running this
command, you will be able to run ROS and access nodes from your package. If you ex-
perience issues with catkin , please do not hesitate to reach out to the TAs.
In order to test your UKF within our software stack, navigate to the file in
pidrone_pkg/scripts called state_estimator.py and edit the line that assigns a val-
ue to student_project_pkg_dir , instead inserting your project repo name project-
ukf-2020-yourGithubName .
Next, run ROS as usual with the ./staart_pidrone_code.sh file in the pidrone_pkg .
Upon start-up, go ahead and terminate the IR and flight controller nodes, as these
would conflict with the drone simulator’s simulated sensors. In the state estimator
screen, terminate the current process and then run the following command:

$ python state_estimator.py --student --primary ukf2d --others simula-
tor --ir_var IR_VARIANCE_ESTIMATE

with your computed estimate of your IR sensor’s variance that you used to determine
the matrix in your UKF in place of IR_VARIANCE_ESTIMATE . This command will
automatically run your 2D UKF as the primary state estimator, along with the drone
simulator. The EMA filter will also be run automatically with the 2D UKF, since the
2D UKF does not provide a very complete state vector in three-dimensional flight sce-
narios. This will also by default allow you to compare the output of your UKF to the
EMA filter on altitude. Note the --student flag, which ensures that your UKF script
is run.
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Now in the web interface, once you connect to your drone, you should see four curves
in the StandarStandard Viewd View of the Height Readings chart as in Figure 4.3.

Figure 4.3. Standard View of the Height Readings Chart with Drone Simulated Data

1. Raw IR Readings: the orange curve that shows the drone simulator’s simulated
noisy IR readings
2. UKF Filtered Height: the blue curve that shows your UKF’s height estimates,
along with a shaded region indicating plus and minus one standard deviation, which
is derived from the position variance in the covariance matrix
3. EMA-Smoothed Altitude: the pink curve that shows the EMA filter’s estimates
4. Ground Truth Height: the black curve that is the simulated drone’s actual height
that we are trying to track with the UKF
If you click on the UKF AnalysisUKF Analysis button, the chart will change over to reveal different
datasets, shown in Figure 4.4.
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Figure 4.4. UKF Analysis View of the Height Readings Chart with Drone Simulated Data

With this chart, we can analyze the performance of the UKF. The orange curve repre-
sents the error between the UKF and ground truth from the simulation; the closer to
zero this value, the better the UKF estimates are tracking the actual altitude of the sim-
ulated drone. The blue shaded region indicates plus and minus one standard deviation
of the UKF’s position estimates. If the system is indeed behaving in a nice Gaussian
manner and the UKF is well tuned, then we expect to see about 68% of the points in
the orange dataset lying in the blue shaded region. Also note that on the left side of
Figure 4.4, the standard deviation and error start off relatively high; this is because the
filter is starting out, improving its estimates from initial values.
If you are seeing that your UKF altitude estimates are lagging significantly behind the
simulated data in the Height Readings chart, then this is likely due to computation
overhead. The UKF takes time to compute, and if it tries to compute a prediction and/
or update for each sensor value that it receives, it can sometimes fall behind real time.
In this case, you should run the state estimator with the IR and IMU data streams
throttled:

$ python state_estimator.py --student --primary ukf2d --others simula-
tor --ir_var IR_VARIANCE_ESTIMATE --ir_throttled --imu_throttled

Make sure your UKF is producing reasonable outputs that seem to track ground truth
pretty well. In the UKF Analytics view of the chart, you should see about two-thirds
of the points in the error dataset lying within one standard deviation, based on your
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UKF’s state covariance, relative to ground truth.
To test out your UKF’s robustness in the face of poor initialization, you can compare
how long it takes the state estimates to converge to accurate values with good initial
conditions and with poor initial conditions. You do not have to report or hand in any-
thing for this task; it is just for your understanding of the capabilities of the UKF.

2)2) Manually Moving the DrManually Moving the Drone Up and Downone Up and Down

Next, you will step out of the realm of simulation and test your UKF on your drone,
manually moving it along the vertical axis to test out the response you get with your
IR sensor. For this step, the command you want to use is:

$ python state_estimator.py --student --primary ukf2d

with the --ir_throttled and --imu_throttled flags as needed. You want to make
sure your IR sensor and flight controller nodes are actually running. First, quit any ex-
isting screens, then calibrate your accelerometer with:

$ roscd pidrone_pkg
$ python scripts/calibrateAcc.py

Debugging TDebugging Task:ask: Test out your UKF by moving your drone up and down and exam-
ining the Height Readings chart. Does it behave as you expect? Does the estimated
height seem to have more or less noise than the raw IR sensor reading? If there are
unexpected deviations or spikes from the measurements, consider why this might be,
especially in comparison to the results you saw when running the UKF in simulation.
A possible cause is that the prediction step without a measurement update is not be-
ing modeled well or is getting poor/noisy control inputs to the point where the process
noise that we assigned was too low. Try tuning the scalar that multiplies the values
of the matrix self.ukf.Q in the initialize_ukf_matrices() method to better re-
flect the variance of the process. You should see a greater standard deviation as well as
smaller spikes in the estimates.
Another aspect that you should consider is the prediction that occurs in your IMU
callback. Note that the unthrottled sample rate of the IR sensor is around 80 Hz, while
the IMU only comes in at about 30 Hz. Therefore, the control input is being changed
less frequently than the predictions and measurement updates occur in the IR call-
back. While in the Asynchronous Inputs section we indicated that you should do a
prediction whenever you get a new control input, in this application, it might make
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sense to save computation and only do predictions right before measurement updates.
Plus, the accelerometers are noisy, and it can be difficult in a discrete domain to in-
tegrate these accelerations and expect accurate position estimates reported before in-
cluding the measurement update. To keep our estimates reasonable, we can wait for
the measurement update step to fuse the noisy prior prediction with the new measure-
ment—and since this step can actually occur more frequently than the control input,
we can maintain good measurement-informed estimates while saving on prediction
computation. To simplify the problem, we can move the prediction and update out of
a sensor callback and in its own loop in the main thread of the program.
TTask:ask: Modify your UKF to only do predictions and updates in a loop in the main thread
of your program, using rospy.Rate(self.loop_hz) to regulate the rate at which the
UKF tries running (feel free to look up documentation on how to use rospy.Rate() ).
You will want to store the data that come in from the IMU and IR sensor in instance
variables that you can use in your main loop. Note that you should now use the -hz
flag followed by a number (defaults to 30), rather than the various sensor throttle flags,
to alter the rate of your UKF. Visually compare your UKF output to the EMA output.
TTask:ask: Visually compare the UKF output with and without the IMU running. You
should notice a difference in how well/quickly the UKF tracks the measurements
when there is no control input to better inform the prediction step.
TTask (Wask (Writrittten Section 2.3):en Section 2.3): In ukf2d_written_solutions.tex , describe how a (well-
tuned) Kalman Filter outperforms an exponential moving average (EMA) filter ap-
plied to raw sensor data. Test this out by moving your drone up and down and com-
paring the UKF and EMA estimates. Once your UKF seems to outperform the EMA,
attach an image of the Height Readings graph to your ukf2d_written_solutions.tex
document showing this difference between your UKF and the EMA, and briefly de-
scribe the different features.

3)3) In FlightIn Flight

It’s time to fly your drone with the UKF providing it with real-time filtered estimates
of its position and velocity along the -axis.
TTask:ask: Fly your drone while running:

$ python state_estimator.py --student --primary ukf2d

with the -hz flag as needed. Evaluate its performance using the web interface as you
did for the manual motion testing.
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UUNITNIT G-5G-5

7D UKF Design and Implementation7D UKF Design and Implementation

While tracking the drone’s position and velocity is helpful, it is a simplified model
of the drone and does not encapsulate as many of the degrees of freedom of the drone
as we might like. For this reason, you are now going to develop a UKF that tracks the
drone in three spatial dimensions with a 7D state vector. Your code from the 2D UKF
will be a useful reference, and many parts will be reusable for the 7D UKF.
This part of the project has twtwo delivo delivererablesables in your project-ukf-2020-yourGithub-
Name repository, which are to be accessed and submitted via GitHub Classroom:
1. A PDF document ukf7d_written_solutions.pdf , generated from
ukf7d_written_solutions.tex , with the answers to the UKF design and im-
plementation questions.
2. Your implementation of the UKF written in the state_estimators/stu-
dent_state_estimator_ukf_7d.py stencil code. In this stencil code file, we
have placed “TODO” tags describing where you should write your solution code to the
relevant problems.

5.1.5.1. StatState Ve Vectectoror
Just as you tracked position and velocity along one axis in the 2D UKF, now you
will track position and velocity along three global-frame axes. You will also track the
drone’s yaw value . Changes to the drone’s orientation will cause nonlinearities that
the UKF was designed to address.

We don’t ask you to track the drone’s attitude (roll and pitch ), as that makes for an
even larger state vector and adds complexity. Also, the IMU incorporates its own filter
to produce its estimates of roll and pitch, so there may not be much benefit to adding
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these variables to our UKF. As such, you will use these roll and pitch values as strong
estimates to inform the state transition and measurement functions.

5.2.5.2. StatState Te Trransition Functionansition Function
We define a control input populated by linear accelerations from the IMU:

As noted in the background section, one could treat these acceleration values as mea-
surements instead of control inputs; for relative ease of implementation, we have cho-
sen to use accelerations as control inputs. The linear accelerations are in the drone’s
body frame, denoted by the superscript , so we need to rotate these vectors into the
global frame based on the yaw variable that we are tracking and the IMU’s roll and
pitch values. This transformation will occur in the state transition function.
To accomplish this rotation, you will use quaternion-vector multiplication (to be im-
plemented in the stencil code in the apply_quaternion_vector_rotation() method).
What does this operation look like, and why use this instead of Euler angles? For one,
Euler angles are prone to gimbal lock, which is an issue we want to avoid in robotics.
Therefore, many people in robotics and other fields such as computer graphics make
use of the quaternion to avoid gimbal lock and (arguably) more elegantly encode an
object’s orientation or rotation. Even though your drone probably will not encounter
gimbal lock in its relatively constrained envelope of operation (i.e., we are not doing
flips—yet!), we want to introduce you to using quaternions in a practical calculation.
Here is a visualization that might help you better grasp the admittedly unintuitive idea
of the quaternion.
In particular, we are interested in rotating a vector described relative to the drone’s
body frame into the global frame. For example, as the drone yaws, its body-frame -ax-
is will rotate relative to the global frame, so a linear acceleration value sensed by the
IMU along the drone’s body-frame -axis will not always correspond to the same di-
rection in the global frame. You can imagine that roll and pitch only complicate this
mapping between body and global frame.
In the state transition function, you will be rotating the body-frame linear acceleration
vector from the IMU into the global frame. The computation to do this with a quater-
nion is as follows:
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where is the linear acceleration control input in the global frame, is the quater-
nion that rotates a vector from body to global frame, is your body-frame control
input that you get from the IMU, and is the conjugate of . Note that, for correct
dimensionality, and should be 4-element vectors to match the quaternion’s

components and should have the real component equal to , making these
vectors “pure” quaternions.
The steps to implement this rotation in the apply_quaternion_vector_rotation()
method, then, looks something like this:
1. Create a quaternion from Euler angles using tf.transformations.quater-
nion_from_euler(roll, pitch, yaw) , with the appropriate values for roll,
pitch, and yaw (radians). The output of this function is a quaternion expressed as an
array of . It represents the drone’s orientation and can be thought of as the
quaternion to rotate a vector or frame from the global frame to the body frame. We
want a quaternion that does the opposite rotation.
2. Invert the quaternion to get a quaternion that rotates a vector from the body frame
to the global frame. To do this, simply negate the component (i.e., the fourth element
of the first quaternion).
3. Express the vector to be rotated as a “pure” quaternion, which means appending a
zero to the vector.
4. Carry out by applying the following functions appropriately:
tf.transformations.quaternion_multiply and tf.transforma-
tions.quaternion_conjugate .
5. Drop the fourth element of the result of this computation, and return this 3-ele-
ment array.
TTask (Wask (Writrittten Section 1.2.2):en Section 1.2.2): Implement the state transition function in
ukf7d_written_solutions.tex . Remember that for the drone, this involves kinemat-
ics, and since we are now tracking yaw and additionally considering the roll and pitch
from the IMU, a rotation will be necessary so that we track state variables in the glob-
al frame. Your implementation will use quaternion-vector multiplication as described
above to accomplish this rotation. We do not expect you to write out the details of the
transformation, but in your notation, you should be clear about the frame in which the
control input is described (e.g., you could indicate global frame by notating the control
input as ).
TTask:ask: Translate the state transition function into Python by filling in the state_tran-
sition_function() method in state_estimators/student_state_estima-
tor_ukf_7d.py . Follow the “TODO”s there. Be sure to implement apply_quater-
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nion_vector_rotation() as well. As usual, note the functions’ type signatures for the
inputs and outputs.

5.3.5.3. MeasurMeasurement Functionement Function
The measurements that are considered are the IR slant range reading , and pla-
nar position estimates and yaw estimates from the camera, and the velocities
along the - and -axes provided by optical flow, which you learned about and imple-
mented in the sensors project. Note that in the 2D UKF, we took the IR reading to be a
direct measure of altitude; here, in three spatial dimensions, you will use the roll and
pitch values directly from the IMU (i.e., not estimated in our UKF) to convert between
the slant range, which is what the IR sensor actually provides, and altitude in the mea-
surement function.

At the start of your 2D UKF implementation, we asked you to take into account the
notion of asynchronous inputs and to do predictions and updates when these values
came in. As you later found out, this approach might not yield the best results in our
particular application, due to computation limitations and also poor estimates when
doing dead reckoning (i.e., predicting based on the current state estimate and motion
of the drone) alone in a time step. In this 7D UKF, a similar issue can arise if trying to
do a prediction and update cycle in each callback. The sporadic updates, although the-
oretically feasible, impose the added burden of CPU load inherent in the UKF predict
and update steps. A possible solution to this issue is to drop packets of data by throt-
tling down the sensor inputs to the UKF, which will degrade our estimates across the
board. Also, by implementing callbacks that block one another, there is the potential
that important updates are not being executed as often as they should be, and the sys-
tem can become unreliable.
The alternative solution to this issue that we have found works better and that you will
implement is to reduce the amount of computation done with each sensor input. In-
stead of throttling the data as it comes in, you will essentially be throttling the predict-
update loop—as you ended up doing in the 2D UKF—using the -hz flag. When new
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data come in, you should store these values as the most recent values for the relevant
measurement variables. Then, in a single thread, a predict-update loop will be running
and using these measurements. This approach suffers from the fact that the measure-
ments will not be incorporated into the state estimate at the exact time at which the
inputs were received, but the predict-update loop will be running at a fast rate any-
way as it will only run in one thread, so the latency should be negligible. In addition,
this approach should make the algorithm simpler to implement, as you will be fol-
lowing the standard predict-update loop model using a single measurement function
and measurement noise covariance matrix. An asynchronous approach requires that
specific versions of the measurement function and covariance matrix be used for each
specific sensor update, as stated by Labbe in chapter 8.10.1 of [4].
TTask (Wask (Writrittten Section 1.3.2):en Section 1.3.2): In ukf7d_written_solutions.tex , implement the mea-
surement function to transform the prior state estimate into measurement space
for the given measurement vector. Be sure to convert altitude to IR slant range based
on the drone’s orientation in space. This requires some trigonometry with the roll and
pitch angles.
TTask:ask: Translate the measurement function into code by filling in the measure-
ment_function() method. Follow the “TODO”s there. Note the function’s type signa-
ture for the inputs and outputs.

5.4.5.4. PrProcess Nocess Noise and Measuroise and Measurement Covement Covariance Matricesariance Matrices
As in the 2D UKF, we do not expect you to derive reasonable values for the process
noise.
TTask (Wask (Writrittten Section 1.3.3):en Section 1.3.3): In ukf7d_written_solutions.tex , define the measure-
ment noise covariance matrix with reasonable estimates for the variances of each sen-
sor input. You already have an estimate for the IR sensor variance that you experi-
mentally determined in the previous part of the project; for the other sensor readings,
you can provide intuitive estimates and potentially attempt to later derive experimen-
tal values for these variances if your filter is not performing well.
TTask:ask: Enter these sample variance values into the code for self.ukf.R in the ini-
tialize_ukf_matrices() method.

5.5.5.5. Initialize the FiltInitialize the Filterer
As with the 2D UKF, we must initialize our filter before it can engage in its predicting
and updating.
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TTask:ask: Initialize the state estimate and the state covariance matrix with values as
sensor data come in.

5.6.5.6. AsynchrAsynchronous Inputsonous Inputs
We touched upon this in the MeasurMeasurement Functionement Function section. To handle asynchronous
inputs, you should update instance variables with the most recent data collected and
run a loop to form predictions and updates with these data.
TTask:ask: Implement the predict-update loop. It might be useful to refer to the rospy doc-
umentation on setting loop rates and sleeping.
TTask:ask: Complete any remaining “TODO”s in the 7D UKF source code.

5.7.5.7. TTune and Tune and Test the Filtest the Filterer
It is now time to put your 7D UKF to the test.

1)1) In SimulationIn Simulation

To run your 7D UKF with simulated data, you need to run ROS on your Raspberry Pi
and terminate certain nodes upon running the screen:
• flight_controller_node.py

• vision_flow_and_phase.py

The simulation is only in two dimensions in the -plane, so to also test position es-
timates, you should keep the infrared_pub.py node running to see your filter work
on real IR data.
Next, in the state estimator screen, terminate the current process and then run the fol-
lowing command:

$ python state_estimator.py --student -p ukf7d -o simulator ema --sdim 2

If performance is clearly sub-optimal, consider using the -hz flag.
This command will run your 7D UKF as the primary state estimator, along with the
2D drone simulator and the EMA filter for comparison. If you do not want to run the
EMA filter, simply omit the ema argument when running the state_estimator.py
script.
TTask:ask: Make sure your UKF is producing reasonable outputs, especially in the TTop Viewop View
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chart in which the simulation and its nonlinear behavior are occurring. You should
qualitatively feel confident that your UKF marker (the blue marker) is more closely
tracking the Ground Truth marker (black) with less noise than the Raw Pose Measure-
ment marker (orange).

2)2) Manually Moving the DrManually Moving the Droneone

In this part of the project, you will move your drone around with your hand, holding
it above a highly-textured planar surface so that the downward-facing camera can use
its optical flow and position estimation to provide information about the drone’s pose
and twist in space. You should ensure that the following nodes are running:
• flight_controller_node.py

• infrared_pub.py

• vision_flow_and_phase.py

Then, you should run your UKF with this command:

$ python state_estimator.py --student -p ukf7d -o ema

using the -hz flag as needed.
TTask:ask: Use the web interface to verify visually that the height estimates and the , ,
and yaw estimates appear to have less noise than the sensor readings, and that these
estimates appear to track your drone’s actual pose in space. Compare your UKF to the
EMA estimates for altitude and the raw camera pose data in the TTop Viewop View chart.

3)3) In FlightIn Flight

Now you are going to fly with your 7D UKF, using both velocity control and position
hold.
TTask:ask: Test your drone’s stability in position hold and velocity control 1) while running
just the EMA filter for state estimation and 2) while running your 7D UKF. You can
use the web interface to move your drone around and send it other commands.

5.8.5.8. Final Hand-InFinal Hand-In
Before the project deadline, you must ensure that final versions of your solution files
and code are handed in via GitHub Classroom. These files are:
FFrrom the 2D UKF section:om the 2D UKF section:
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• ukf2d_written_solutions.pdf (compiled from ukf2d_written_solutions.tex )
• student_state_estimator_ukf_2d.py in the state_estimators directory
FFrrom the 7D UKF section:om the 7D UKF section:
• ukf7d_written_solutions.pdf (compiled from ukf7d_written_solutions.tex )
• student_state_estimator_ukf_7d.py in the state_estimators directory
Then come to TA hours to show us your working UKF code. Note that we will ask you
to explain one random TODO section that you filled out.
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Localization and SLAMLocalization and SLAM

Having a good estimate of position is necessary for most tasks in autonomous mobile
robotics. A self driving car, a delivery drone, or even a Roomba is not very useful with-
out knowledge of its own location. The task of determining the location of a robot is
known as localization. In this project, we will implement two algorithms for localiza-
tion on the PiDrone: MontMonte Carlo localizatione Carlo localization and FFastSLAM.astSLAM.
Note that the Bayes filter setup, with observation model and measurement model is
exactly the same for the Kalman filter and the localization/SLAM particle filter. The
particle filter is another way to handle non-Gaussian density functions. In many ways
it is simpler to implement, because each particle is transitioned/updated assuming its
state values are ground truth, and covariance is maintained over the entire set of parti-
cles rather than updating a covariance matrix. However it requires more computation
as performance/accuracy scales with the number of particles. Notably particle filters
are capable of representing multimodal distributions, making them a good fit for lo-
calization, where you may have multiple peaks (for example as the robot goes down a
corridor and sees identical observations), that then resolve as it reaches a disambigua-
tion location.
These algorithms cover two important cases: one in which the robot has a map of its
environment available beforehand, and a second in which it does not. In this second
case, the robot must use its sensors to simultaneously develop a map of its surround-
ings and localize itself relative to that map. Not surprisingly, this is referred to as the
simultaneous localization and mapping problem, hereafter referred to as SLAM.
Please use this link to generate your Github classroom repository and pull the stencil
code. Use the Github repo created to handin your assignment and backup any changes
you make.
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UUNITNIT H-1H-1

Localization BackLocalization Backgrgroundound

1.1.1.1. BaBayyes Filtes Filterer
Monte Carlo Localization is a type of Bayes filter. You’ll remember the general Bayes
Filter algorithm from the UKF project earlier in the course. This material is also cov-
ered in the EdX lectures for the class, which also contains mathematical derivations
for the filter.
The Bayes Filter incorporates information available to the robot at each point in time
to produce an accurate estimate of the robot’s position. Its core idea is to take advan-
tage of data from two sources: the controls given to the robot and the measurements
detected by the robot’s sensors.
At each new time step, the Bayes filter recursively produces a state estimate, represent-
ed as a probability density function called the belief. The belief assigns to every possi-
ble pose in the state space of the robot the probability that it is the robot’s true location.
This probability is found in two steps called prpredictionediction and updatupdatee.
The prediction step incorporates controls given to the robot between the previous state
and the current one. It finds the probability of reaching a new state given the previ-
ous state and the control (hence recursion). The model used to find this probability is
known as a state transition model and is specific to the robot in question.
The state transition model:

ie. the probability that the most recent control will transition the previous state
to the current state
It is possible to estimate the state of the robot using only the prediction step and not
incorporating the measurements taken by the robot’s sensors. This is known as dead
reckoning. The dead reckoning estimate may be made more accurate by incorporating
measurements from the robot’s sensors.
The Bayes filter does this in the update step by finding the probability that the current
measurements are observed in the current state. The model used for this is known as
a measurement model and is specific to the robot in question.
The measurement model:

ie. the probability that the current measurement is observed given the state
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You may have noticed that each of the above steps required computing a probability
stated like “the probability of x given y.” Such a probability is denoted and may
be calculated by the famous Bayes Theorem for conditional probabilities, hence the
name of the algorithm.
Now, let’s take a look at the Bayes Filter:

ie compute a belief by finding the probability of each possible new state. For each state,
incorporate both the probability that the control transitions the previous state to this
one and that the current measurements are observed in this state.

The first step is the motion prediction. rep-
resents the belief before the measurement is incorporated. The integral is computed
discretely and becomes:

The second step is the measurement update. This computa-
tion is straightforward, the normalizer is the reciprocal of the sum of
over all . This factor will normalize the sum.

1.2.1.2. MontMontee-Carlo Localization-Carlo Localization
The phrase “Monte Carlo” refers to the principle of using random sampling to model
a complicated deterministic process. Rather than represent the belief as a probability
distribution over the entire state space, MC localization randomly samples from the
belief to save computational time. Because it represents the belief as samples, it is ca-
pable of representing multimodal distributions. For example when localizing, if the
robot is teleported (i.e., turned off, and moved, and then turned on), its initial believe
is uniform over the entire map. The Gaussian distribution has a hard time represent-
ing this, because its weight is centered on the mean (although you could approximate
it with a very very large covariance). Another example is if the robot is experiencing
aliasing. For example, if it is going down a long corridor, its observations at different
points down the corridor will be exactly the same, until it reaches a distinguishing
point, such as an intersection or the end of the corridor. Particle filters can represent
this by having particles all along the corridor; whereas a Gaussian distribution will
struggle because of the need to pick one place to center the distribution with the mean.
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MC localization is a particle filter algorithm. In our implementation, we will use sev-
eral particlesparticles which each represent a possible position of the drone. In each time step
(for us defined as a new frame captured by the drone’s camera) we will apply a mo-
tion prediction to adjust the poses of the particles, as well as a measurement update
to assign a probability or weight to each particle. This process is analogous to Bayes
Filtering.
Finally, at each time step we resample the particles. Each particle has a probability of
being resampled that is proportional to its weight. Over time, particles with less accu-
rate positions are weeded out, and the particles should converge on the true location
of the drone!
To retrieve a position estimate of the drone at any time, we can take a simple idea from
probability and compute the expectation of the belief distribution: the sum over each
particle in the filter of its pose times its weight.
The expectation of a random variable X:

is the probability that the true pose of the drone is equal to a particle’s esti-
mate of the pose, ie, the weight of the particle. For example, if we wanted to retrieve
the pose estimate for the drone along the x axis, we would take the weighted mean of
each particle’s x value, where the weight is the weight of each particle.
The following diagram shows the operation of MC Localization. In the diagram, our
friendly H2R robot is trying to localize himself relative to a long table with some nuts
and bolts, which are very useful to a robot!
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Figure 1.1. Monte Carlo Localization. Vertical lines represent particles whose height represents the
weight of the particle. p(z|x) is the measurement function. Figure inspired by Probabilistic Robotics.

• a. The robot starts in front of the first bolt. A set of particles are initialized in ran-
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dom positions throughout the state space. Notice that the particles have uniform ini-
tial weights.
• b. We weight the set of particles based on their nearness to the bolts using the mea-
surement function.
• c. The robots moves from the first bolt to the second one, the motion model causes
all particles to shift to the right. In this step, we also resample a new set of particles
around the most likely positions from step b.
• d. Again, we weight the particles based on their nearness to the bolts, we can now
see a significant concentration of the probability mass around the second bolt, where
the robot actually is.
• e. The robot moves again and we resample particles around those highest weighted
from part d. We can now see that the belief distribution is heavily concentrated around
the true pose of the robot.
If you are feeling shaky about the MC localization algorithm, we recommend studying
the diagram above until things start to make sense!
In answers.md provide answers to the following questions

1.3.1.3. PrProblem 1 - Localization Theory Questionsoblem 1 - Localization Theory Questions
Q1- What is the advantage of particle filters relative to the Gaussian representation
used by the Kalman filter?
Q2- Can Monte Carlo Localization approximate any distribution? If no, explain why?
If yes, describe what controls the nature of approximation?
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UUNITNIT H-2H-2

Our Localization ImplementationOur Localization Implementation

To complete our understanding of how we will implement a particle filter on the drone
for localization, we need to address specific state transition and measurement models.

2.1.2.1. OpenCV and FOpenCV and Featureatureses
The drone’s primary sensor is its downward-facing camera. To process information
from the camera, we will use a popular open source computer vision library called
OpenCV. We can use opencv to extract features from an image. In computer vision,
features are points in an image where we suspect there is something interesting going
on. For a human, it is easy to identify corners, dots, textures, or whatever else might be
interesting in an image. But a computer requires a precise definition of thing-ness in
the image. A large body of literature in computer vision is dedicated to detecting and
characterizing features, but in general, we define features as areas in an image where
the pixel intensities change rapidly. In the following image, features are most likely to
be extracted at the sharp corner in the line. Imagine looking at the scene through the
red box as it moved around slightly in several directions starting in each of the three
points shown below. Through which box would you see the scene change the most?

When we extract features from the drone’s camera feed, OpenCV will give us a kkey-ey-
pointpoint and descriptdescriptoror for each feature. The keypoint holds the (x,y) coordinate of the
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feature in the image frame. The descriptor holds information about the feature which
can be used to uniquely identify it, commonly stored as a binary string.

Figure 2.1. An image taken on the drone's camera, shown with and without plotting the coordinates of
200 features detected by ORB

The specific feature detector we will be using is called ORB, you may read more about
it here: https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_orb/
py_orb.html.
Using OpenCV, we are able to perform some powerful manipulations on features. For
example, panoramic image stitching can be achieved by matching feature descriptors
from many overlapping images, and using their corresponding keypoints to precisely
line up the images and produce a single contiguous scene.
We will use OpenCV features to implement both the motion (state transition) and
measurement models for localization. We can find the movement of the drone for the
motion update by measuring how far it moves between consecutive camera frames.
This is done by matching the descriptors between two frames, then using their key-
point positions to compute a transformation between the frames. This transformation
will give us an x, y, and yaw displacement between two frames. Note that this requires
some overlap between two image frames.
To find the probability for each particle, we would like to measure the accuracy of the
particle’s pose. We will do this by comparing the camera’s current image to the map
of the drone’s environment. Remember, this is a localization algorithm, meaning that
we have a map available beforehand. In our case, the map is an image of the area over
which the drone will fly. We can match the descriptors from the current image to the
descriptors in the map image, and compute the transformation between the sets of
corresponding keypoints to obtain a global pose estimate. The probability that a given
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particle is the correct pose of the drone is proportional to the error between the global
pose estimate and the particle’s pose.

Figure 2.2. Computing the transformation from the drone's current view to the map in order to deter-
mine global pose

The following algorithm formulates precisely how we will use the ability visualized
above to compute the global pose to weight the particles in MC localization. We ob-
serve features and attempt to match them to the map. If there enough matches, we
compute the global pose of the drone, and compute q, the probability of the particle. q
is equal to the product of the probabilities of the error between the particle’s pose and
the computed global pose in x, y, and yaw.

One final consideration for our implementation of MC Localization is how often to
perform the motion and measurement updates. We ought to predict motion as often as
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possible to preserve the tracking of the drone as it flies. But the measurement update
is more expensive than motion prediction, and doesn’t need to happen quite so often.
A naive solution is to perform updates after every set number of camera frames. But
since we are already computing the distance between each frame, it is straightforward
to implement a system which waits for the drone to move a certain distance before
updating. This idea is known as a kkeyfreyframeame scheme and is useful in many scenarios
when computations on every camera frame are not feasible. It will be useful later on
in SLAM to have the threshold for distance between two keyframes equal to the length
of the camera’s field of view, so we will implement such a system here.
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UUNITNIT H-3H-3

Localization AssignmentLocalization Assignment

3.1.3.1. GetGetting Set Upting Set Up
You should have cloned the GitHub Classroom link to receive the deliverables for this
project.
You should receive a directory named “project-localization-yourGithubName.” The
only part of this assignment which you must run on the drone is localization (the last
assignment on this page). To do this, place your directory in the /ws/src folder on your
drone. You should find the “package.xml” and “CMakeLists.txt” files which you will
need to modify to build the package. On line 3 of “package.xml” you should replace
yourGithubName with your GitHub name so it matches the name of your directory.
Do the same on line 2 of “CMakeLists.txt” Finally, you should navigate to the /ws fold-
er and run

catkin_make --pkg project-localization-slam-2019-yourGithubName

to build your package so it is ros-runnable from the pidrone_pkg. You should only
need to do this step one time.

3.2.3.2. DependenciesDependencies
In order to complete this project, we will make use of the following libraries: Numpy
for computations, OpenCV for computer vision, and MatPlotLib for creating plots and
animations. You are welcome to run on your drone the parts which do not require vi-
sualization, ie the OpenCV assignment. However, the particle filter assignment will
require you to view a MatPlotLib animation. To accommodate this, you may either in-
stall the required dependencies on your own computer (optional!) or work on a de-
partment machine which already has them. If you install OpenCV yourself, make sure
the version is 2.4.9. The easiest way to work on this project is to work over ssh on your
computer and use XQuartz (what the -Y is for when you type ssh -Y) which will allow
you to view animations over ssh. As a reminder, to access your account on the depart-
ment machines, open a terminal and run “ssh -Y your_login@ssh.cs.brown.edu.” You
may use cyberduck or your preferred method to transfer files from your computer to
the department machines.
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✎3.3.3.3. PParticle Filtarticle Filterer
First, you will complete a series of quick exercises which will guide you through im-
plementing a simplified particle filter. This part of the assignment must be completed
on a computer with matplotlib and numpy installed. You will be given two files:

student_particle_filter.py
animate_particle_filter.py

In student_particle_filter you will implement a particle filter which causes a set of ran-
domly generated points on a 2d plane to converge on a specific point. student_parti-
cle_filter will write the particles’ poses to a text file, which animate_particle_filter will
read and use to generate an animation.
Note that there are more detailed instructions for each step in the comments of stu-
dent_particle_filter.
PrProblem 1: Setupoblem 1: Setup Define a Particle class to represent the particles in the filter. Each
particle should store its position (x,y) and its weight.
Define a ParticleFilter class to store the set of particles, the desired pose, and the meth-
ods which operate on the particle set. Create an initinit method which takes the number
of particles as input and creates a set of particles at random positions.
PrProblem 2: Motionoblem 2: Motion Implement a method for the ParticleFilter class which adds some
random Gaussian noise to the x and y positions of each particle in the filter. Be sure
that the noise is different for each particle. Hint: try numpy.random.normal.
PrProblem 3: Measuroblem 3: Measurement Updatement Updatee Implement a method for the ParticleFilter class
which sets the weight of each particle inversely proportional to the particle’s distance
from the desired pose.
PrProblem 4: Toblem 4: Testest Try running your code! If it works properly, the particle poses should
be written to a file called “particle_filter_data.txt.” You can then run the file “ani-
mate_particle_filter” to view an animation of your particle filter converging on the de-
sired pose which you set.
PrProblem 5: Optimization OPTIONoblem 5: Optimization OPTIONAL SAL STEPTEP Now that your filter is running, let’s con-
sider how we can optimize this process so that the localization particle filter will run
quickly in real time on your drones.
Python data structures and their operations are relatively slow compared to their
Numpy counterparts because Numpy is written in C. You will use Numpy arrays to
avoid storing the set of particle poses and their weights as lists of Python objects. You
may comment out the Particle class entirely and replace the list of particle objects with
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two Numpy arrays for poses and weights stored in the ParticleSet class. Adjust the rest
of the code accordingly. This step is meant to help you understand the optimizations
(which are done in the same way) in the localization code.

3.4.3.4. OpenCVOpenCV
This part of the assignment may be completed on your drones, or any computer with
OpenCv and NumPy.
Now we that know the basics of how a particle filter uses weights and resampling to
converge on a target, we need to address how to use OpenCV to estimate the motion
and global position of the flying drone. To do this, you will complete a short assign-
ment using OpenCV functions to compute the translation in the plane between two
drone poses, represented by two overlapping images taken on a real drone. You will be
provided with the following files:

image_A.jpg
image_B.jpg
student_compute_displacement.py

student_compute_displacement.py will indicate the infrared reading taken by the
drone at the time images A and B were taken. This is important because the real-world
dimensions of a pixel in the image will vary based on the height of the drone. Why is
this?
Your job is to write code in student_compute_displacement.py that will extract fea-
tures from both images and compute a transformation between them. Use this trans-
formation to compute the x,y, and yaw displacement in meters between the two im-
ages. This is exactly how you will implement the motion model for localization: we
consider the meter displacement between two drone images to be the motion of the
drone between the poses at which the images were taken.

3.5.3.5. Appendix: Implement Localization on the PiDrAppendix: Implement Localization on the PiDroneone
Feel free to give this a try; we haven’t worked through the bugs and this part of the as-
signment is optional.
We are now ready to implement localization on the drone.
You will be given two files:
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student_run_localization.py
student_localization_helper.py

student_run_localization runs localization on the drone and is complete, you will not
need to implement any code in that file. However, you may adjust the NUM_PAR-
TICLE and NUM_FEATURE values to experiment with the speed/accuracy tradeoff
concerning the number of particles in the filter and the number of features extracted
by OpenCV. You may also edit this file if you need to change the map over which you
want to localize.
student_localization_helper contains the particle filter class and its methods. Many of
the methods are not implemented. The docstrings describe the intended functionality
of each function, and the TODOs indicate tasks to be completed. Your assignment is to
follow the TODOs and implement the missing functionality of the particle filter. Much
of the code you just wrote can be used here!
Tip: we recommend that you read through the parts of the code which we are not ask-
ing you to implement, as this will help you to understand what is going on with the
code and will likely save you debugging time. For example, we are not asking you to
implement “resample_particles” or “initialize_particles” for localization, but it might
help you to understand how they work! The same goes for the SLAM project.
Note that for both this part of the assignment and for SLAM, there is not any “correct”
universal implementation of the code as long as your solutions work.

1)1) TTestingesting

To test the functionality of your localization code, you may fly the drone while running

rosrun project_localization_slam_2019_yourGithubName student_run_local-
ization.py

in the vision window. Follow the Mapping and Localization instructions in the opera-
tions manual to see how to change the map. You should see poses printed out which
correspond to the drone’s position over the map.
You may also use animate_particle_filter.py to view the animation of your particle fil-
ter. Print the (x,y) pose of each particle on separate lines in a text file to be read by
animate_particle_filter, put x and y pose coordinates on separate lines. Make sure you
adjust animate_particle_filter.py to reflect the number of particles you are using! (us-
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ing the visualizer here is optional)

2)2) CheckCheckoffoff

We will verify that your code has the following functionality:
1. You can run student_run_localization.py and take off with your drone.
2. While flying, you can hit ‘r’ and the poses will begin printing to the terminal. You
can hit ‘r’ again and localization will restart.
3. While flying, you can hit ‘p’ to toggle position hold on and off.
4. Run student_run_localization.py while holding the drone over a mapped area. Do
not arm the drone. As you move the drone around, verify that the poses reflect the
movement. Verify visually that the poses are close to the actual position of the drone
in the map. For example, if you are holding the drone above the bottom left corner of
the mapped area, the pose should be close to (0,0).
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UUNITNIT H-4H-4

SLAM BackSLAM Backgrgroundound

Congratulations! You have implemented a real-time localization algorithm for a flying
drone.
While this code tends to work pretty well, consider the limitations of a localization al-
gorithm which only works when a map of the environment is available beforehand. In
the future, we will see autonomous robots operating in our schools and homes. Such
robots will have no access to maps of their environments beforehand; they will need to
map their environments in real time!
To provide this functionality to the drone, we will extend the localization particle filter
such that each particle will not just estimate the path of the drone, but a map of the
drone’s environment.
The algorithm that accomplishes this is called FastSLAM. A map in FastSLAM is rep-
resented by a set of landmarks.landmarks. A Gaussian approximates the pose of the landmark.
For us, this is a pose (x,y) and a 2x2 covariance matrix. In our implementation, a single
landmark in the map corresponds to a single feature extracted by OpenCV.
Most SLAM algorithms seek to approximate the following probability distribution:

where is the map consisting of N landmarks
is the path of the robot
is the sequence of measurements
is the sequence of controls,

ie approximate the path of the drone and the map of its environment given all past
measurements and controls.
The main mathematical insight of FastSLAM is the ability to factor the above belief
distribution by landmark:

This factorization asserts the fact that landmark positions in the map are conditionally
independent of one another if the path of the robot is known. Hence the product over
n for each landmark .
With this insight, we can represent the map with many 2-dimensional Gaussians, one
for the pose of each landmark. Otherwise, as in the popular EKF SLAM algorithm,
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we would have to store and update a 2N-dimensional Gaussian, for N as the number
of landmarks in the map. As you will see, our maps will grow to include hundreds
of landmarks. Updating a covariance matrix with entries for N=500 landmarks
would not be so fun!
The basic steps of FastSLAM will closely resemble those of MC Localization: generate
a set of particles and in each time step: update their positions with motion data, weight
them based on their accuracy, and resample.
The following animation shows FastSLAM running on the PiDrone:
https://www.dropbox.com/s/ywwm24ax3dxfsjo/SLAM.mp4?dl=0
In grey are all of the landmarks in the map, in blue are the features being observed by
the drone during each moment in time, and in red are the poses of the FastSLAM par-
ticles (our belief about the location of the drdroneone).
Notice that as the drone moves throughout the plane, newly observed features,
marked in blue, are added to the map as grey particles. As areas of the map are revis-
ited by the drone, the algorithm updates those areas with the new information, and
you can see the landmarks shift. Remember that the pose of each landmark is filtered
with an EKF, so as we revisit a landmark more times, we incorporate more informa-
tion about it and our certainty about the map increases.
Please provide answers to the following questions in answers.md

4.1.4.1. PrProblem 2 - Foblem 2 - FastSLAM questionsastSLAM questions
Q1- Why is the property of the landmark positions being conditionally independent
important for FastSLAM?
Q2- Does FastSLAM include EKF’s? If yes, how are they part of the algorithm?
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UUNITNIT H-5H-5

Our SLAM ImplementationOur SLAM Implementation

As mentioned before, each particle holds a complete estimate of the map. Altogether,
our FastSLAM particles will consist of a pose (x,y), a list of landmark objects, and a
weight. The landmark objects will each store a pose (x,y), a 2x2 covariance matrix, a
descriptor, and a counter. We will discuss the descriptor and counter shortly.
The motion prediction, resampling, and pose estimation steps in FastSLAM will not
be different than in MC Localization. In fact, you can reuse much of your code from
MC Localization for these steps!
The measurement update, however, is a little more involved. Since we no longer have a
map of the environment available to compare with the current camera frame to weight
each particle, we will need some way to judge the confidence of a particle based on the
set of landmarks.
To accomplish this, we will attempt to match the current features extracted from the
camera feed with the landmarks stored in each particle. This is why we store a feature
descriptor with each landmark object.
When updating each particle, we will attempt to match each newly observed feature
with only those landmarks which lie in a close range around the particle’s pose. This
step is very important as it will ensure that the map stored in each particle is condi-
tioned on the robot pose represented by that particle. Otherwise, all particles will have
the same weights and having a filter with many particles would be pointless!
Each observed feature will either match with a landmark in the particle or it will not.
If the feature matches a landmark that was already observed, you should “reward” that
particle by increasing its weight. This is because we are more confident that a particle’s
pose is correct if the landmarks in the map around that particle are matching with the
features we currently observe. At this time, you must also update the pose and covari-
ance of the landmark using data from the newly observed feature.
If the observed feature does not match an existing landmark, you should add it to this
landmark’s map and “punish” the particle’s weight because extending the map with
new landmarks decreases our confidence in its correctness.
We would also like to have some scheme to ensure that dubious landmarks in the map
get discarded. Otherwise, the map will grow too large to store. To implement this, each
landmark will have a counter. Increment the counter each time the landmark gets re-
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visited, and decrement it if the landmark was in a close range to the pose of the par-
ticle, yet not matched to. If the counter goes below a certain threshold, remove that
landmark from the map. This ensures that landmarks which should have been seen,
yet were not, are removed. Removing a landmark from the map is also a good time to
punish the weight of that particle.
The exact weighting scheme for the measurement update will be left up to you. HintHint:
when you punish a particle, rather than reduce its weight, you should increase it by a
positive value that is relatively smaller than the “reward” value. This ensures that the
weights of the particles all have the same sign.
The last part of the implementation we have not covered is the process of setting the
pose and covariance of new landmarks, and updating them when a landmark is revis-
ited. To do this, FastSLAM uses the EKF or Extended Kalman Filter. The EKF is very
similar to the UKF which you implemented in project 3, but with a different scheme
for linearizing the motion and measurement functions. Since you have already imple-
mented similar code in that project, you will be provided with two functions:

add_landmark
update_landmark

which will take care of all of the EKF linear algebra for you.

5.1.5.1. MorMore Fe Formally:ormally:
The state is the drone’s position and yaw, assuming we are mostly horizontal:

We assume velocity control, so we move in the plane, up and down, and yaw. This is
set with the Mode messages in pidrone_pkg. (Note that the in the Mode message is
a position and not a velocity. However I want to change this, and propose we ignore
for now anyway - just keep a constant height.)
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Then the transition function is:

Following Thrun 2005, we assume that we can process a camera image and localize
each feature in the image, if it is present. We will then obtain a range, and bearing,
for the features in the image. We assume access to a map,

the set of all landmarks. Each is the location consisting of the location of the
th landmark.

We assume each feature is an independent measurement:

Then the measurement model for each feature is:

Number of features, the feature detection and computation method (currently ORB,
can be sift or surf), number of particles, could be changed for better performance.
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Figure 5.1. Algorithm 1: Landmark model known correspondence (x, y, yaw)

This math follows: Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization
and mapping:part i. IEEE robotics and automation magazine, 13(2):99110, 2006.
Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MITpress,
2005.

OUR SLAM IMPLEMENTATION 143



✎

UUNITNIT H-6H-6

SLAM AssignmentSLAM Assignment

The assignment is slightly different than the localization project due to some compu-
tational constraints. Unfortunately, SLAM is not fast enough to run in real time on
board the raspberry pi. Instead, you will implement SLAM to run on some pre-record-
ed flight data (lists of keypoints, descriptors, and IR data). Your SLAM will run of-
fline on the data, and you can judge the correctness of your implementation using an-
imate_slam.py to view the animation of the flight. We will provide you with the ani-
mation produced by our solution code for comparison.
If you try to run your SLAM program offline on the drone, you will find that the pro-
gram takes up to 15 minutes to run! Instead, we recommend that you use the depart-
ment machines to develop your solution, as they have opencv, numpy, and matplotlib
pre-installed and only take a few moments to run SLAM on sample data. Alternative-
ly, you are welcome to install these dependencies on your own computers.
After you have implemented your solutions offline, you may optionally use your solu-
tion code to generate maps onboard the drone, then fly the drone localizing over the
map. To do this, you may use a modified version of the localization code, called MATL
(mapping and then localization) which will be provided for you. See the more detailed
instructions for this below.
We will provide you with the following files:

slam.py
student_slam_helper.py
utils.py
map_data.txt
animate_slam.py
animation.mp4

slam.py and utils.py contain fully implemented helper code that you are welcome to
read but do not need to edit. You may, however, edit the number of particles in slam.py
to experiment with the speed/accuracy tradeoff for FastSLAM. You should find that 15
particles are plenty.
utils contains add_landmark and update_landmark as promised, as well as some other
helper code.
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map_data.txt contains data from a previous flight. It stores keypoints, descriptors, and
IR data from each camera frame. The helper code included in slam.py will read the da-
ta from map_data, create a FastSLAM object imported from student_slam_helper.py
(your code), and run the data through your SLAM implementation.
slam_data.txt will hold data generated by your SLAM implementation including par-
ticle poses, landmark poses, and currently observed feature poses. slam_helper.py will
write these data as it runs through the saved flight data with your SLAM implementa-
tion. You can use animate_slam.py to view the animation from your SLAM.
animation.mp4 is the animation generated by our solution code with which you can
compare your own animations.
The only thing left for you to do is implement the missing parts of the slam_helper file,
which are indicated with TODOs. The intended functionality of each missing method
is indicated in the docstrings. You will find that you have already implemented much
of the functionality of SLAM in your localization code.

6.1.6.1. DependenciesDependencies
Similar to the particle filter assignment, developing SLAM offboard will require the li-
braries NumPy, OpenCV, and MatPlotLib. Again, you are welcome to install these de-
pendencies on your own machines or use the department machines to implement this
program. The easiest way to work on this project is probably to work over ssh on your
laptops and use XQuartz (what the -Y is for when you type ssh -Y) which will allow
you to view animations over ssh!

6.2.6.2. CheckCheckoffoff
You should develop your SLAM implementation, on the department machines or
your own computer, using the provided helper code. When you want to test your im-
plementation, you should first run slam.py to run through your implementation in
slam_helper.py with the sample data (takes 1-2 minutes to run) and then run ani-
mate_slam.py to read from slam_data.txt and create your animation. If your anima-
tion closely follows that from the solution code, you’ve done a great job!
The checkoff for this project is simple, run your slam_helper.py implementation on
the sample data for a TA. Show the TA the corresponding animation. An easy way to
do this is to login to your account on the department machines with “ssh -Y” and if
you have xquartz installed on your computer, you can run your animation from the
terminal over ssh.
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6.3.6.3. On-BoarOn-Board Offline on the Drd Offline on the Droneone
SLAM can run but it is quite slow on the Raspberry Pi. We have gotten it to work on
board the pi, but offline. So you fly, record data, land, and then make a map and local-
ize. Details are in the operation manual, and there are a lot of rough edges.

6.4.6.4. HandinHandin
Please be sure to push your finished project directory to GitHub classroom to handin.
For your final handin, you should have edited all of the following files:

student_slam_helper.py
student_localization_helper.py
student_compute_displacement.py
student_particle_filter.py
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PPARARTT II

Motion PlanningMotion Planning

This unit focuses on the problem of motion planning for robotics. This is the problem
of moving through space without colliding. It typically abstracts sensing and percep-
tion and assumes perfect ability to move in the space. The problem is to find a trajec-
tory through the space for the robot (which may be a drone, a vehicle or an arm) that
avoids collisions.
Formally, the input to motion planning is the model of the robot, a model of obstacles
in the environment, and a start state, and a goal state. The output is a trajectory
through space that causes the robot to move from start state to goal state without col-
liding with obstacles in its environment. A real-life example of motion planning is
when a person parallel parks a car. This trajectory is not obvious, and takes time to
learn, because of the car’s movement constraints.
Avoiding obstacles is a key part of robotics. The Skydio drone’s advance over the state-
of-the-art was its ability to accurately detect and avoid obstacles in its environment.
In our work so far with the drone, we have modeled the robot as a point, and ignored
obstacles. Indeed, the drone does not have sensors pointed in any direction but down-
wards and has no awareness of obstacles in its environment. However we will model
this problem by creating virtual obstacles that the drone will avoid as it flies.
A second important domain for motion planning is robotic arms. A robotic arm is
modeled as a number of joints and arm geometry. Each joint is parameterized as a joint
angle (and in general, joint velocity). This parameter can be set to move the arm to a
particular joint, and read using joint encoders. Given the joint states and arm geome-
try, we can compute the end effector pose. This problem is called forward kinematics
and has a closed form solution. We would also like to solve the inverse problem: given
an end effector pose we would like to find joint states that result in the end effector
attaining that position. This problem is called inverse kinematics and does not have a
closed form solution.
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UUNITNIT I-1I-1

AssignmentAssignment

1.1.1.1. ConfConfiguriguration Spaceation Space
1.1. Imagine an arm moving in three dimensions with three joints, and , and .
What is the configuration space?
1.2. Imagine a diameter circular robot moving in a room with four walls, one at

, a second at , a third at and a fourth at . The robot’s posi-
tion is indexed at its center and it is omnidirectional (that is, it can move in any direc-
tion without turning). All these coordinates are in meters. What is the robot’s configu-
ration space?

1.2.1.2. Manual Motion PlanningManual Motion Planning
The following problems will use the arm.py code(in the Github Classroom). First we
ask you to perform motion planning manually. This is surprisingly useful for under-
standing the robot’s degrees of freedom and what it can do. It is also notable that man-
ual motion planning is how the Canada Arm on the International Space Station is
used today. They check each plan manually and tweak it by hand, because collisions
between the arm and the station would be catastrophic.
1. Move the arm from its start location to as close as possible to so that it
does not collide with the circle. Describe how you had to move the arm in words (for
example using words like clockwise and counter clockwise) and also submit four im-
ages showing the sequence of positions the arm went through.

1.3.1.3. Implementing the RRImplementing the RRTT
Implement the skeleton methods for a 2d RRT in python following this paper and
rrt.py(found in the Github Classroom).
Use the RRT to find a motion plan for a 2d robot for the same point as above. The r
key starts running the RRT to expand it, and then pressing r again stops it from ex-
panding.
3.1. First run the RRT for a second or two. Describe in words what the RRT does, and
submit four images showing its intermediate progress.
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3.2. Now run it for a long time, 10 or 20 seconds. Describe in words what the RRT does,
and submit four images showing its intermediate progress.
3.3. The motion of the robot with the RRT should differ from your planned motion/
ideal motion. Does it find the shortest path of the arm to the goal? Why or why not?
3.4. How does the motion of the robot with the RRT when run for a short time differ
from when run for a long time?

1.4.1.4. HandinHandin
When you are done, use this link to create your Motion Planning Github Repo. Com-
mit and push the relevant files:
• answers.md
• All images, named by question number and
• Any python files that you implemented your RRT
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PPARARTT JJ

TTrransformsansforms

This unit focuses on transforms in robotics. In our experience, a significant fraction
of effort in robotics programming is spent making sure transforms are correct. If you
have an incorrect transform between a sensor and the robot’s body, it is much harder
to use the sensor information. Inaccurate transforms directly translates to less precise
information from the sensor. A useful reference on this topic is [23].
The process of finding a transform between the robot’s body and a sensor is called ex-
trinsic calibration.
In this assignment we will practice using transformation matrices to compute the lo-
cation of points in different coordinate systems as well as methods for performing ex-
trinsic calibration. This topic is closely related to graphics, which uses the full power of
a transformation matrix to shear, reproject etc. In robotics, the main activity is trans-
lation and rotation of rigid bodies. For example, after driving forward at 2 meters per
second for 1 second, we want to estimate the robot’s new position. Or for example, af-
ter yawing at 10 degrees per second for 5 seconds, we want to find the robot’s updated
rotation in the global space.
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UUNITNIT J-1J-1

AssignmentAssignment

1.1.1.1. TTrranslations (33 points)anslations (33 points)
A translation can be represented as a tuple corresponding to the amount a
point moves in each direction. Write the answers to the following questions in an-
swers.md.

1. The robot is at the origin, . It drives forward for 5 seconds at 2.5 meters per

second. So its velocity is . How many meters has the robot driven, and what is

its new position? Represent its new position as a 3-vector.
2. Assume the robot is omnidirectoral; that is it can move in any direction without
turning. This means we can ignore the rotation. The robot drives at m/s for 10 s,
so its velocity is . How many meters has the robot driven, and what is its new
position? Represent its new position as a 3-vector.
3. To fix this problem, we add an extra entry to the position vector which is always .
Position at the origin is represented with the vector:

We can represent a transformation as a matrix , where

To translate the robot, one performs the following multiplication: . Where
is the position at the next timestep and is the position at the current timestep.
For this problem, the robot starts at the origin. It moves right meters in the direc-
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tion, flies up in meters, and then moves backward in the direction meter (for
a net transform of in ).
4.1. Draw the robot’s trajectory in three dimensions on a labeled coordinate frame. You
can draw it by hand and take a picture or scan it, or use an image editor or drawing
program. Submit this picture as trajectory.png.
4.2. Write out the transformations as three separate transformation matrices. Write
this answer in answers.md.
4.3. Multiply the matrices together to get one single transform. Write this answer in
answers.md.
4.4. Multiply the matrix by the robot’s position vector to get its new location. Write this
answer in answers.md.
Show all of your work

1.2.1.2. Understanding a PUnderstanding a Point Cloud (33 points)oint Cloud (33 points)
The robot observes the following point cloud, denoted in the form

:

For frame of reference, use

is off to the robot’s right,

is straight ahead, and

is to the robot’s left.
For the following problems, assume this is all points the robot can see in the world, so
do not worry about new things that might be out of frame.
5.1. Draw a graph with the robot at facing forward along the axis and draw the
points that the robot sees. Submit this graph as an image titled question_5_1.png.

152 ASSIGNMENT

https://github.com/duckietown/docs-brown/edit/daffy/book/doc-sky/90-transforms-assignment/10-assignment.md


✎

5.2. Now assume the robot drives forward one meter. Provide the new sensor readings,
assuming perfectly accurate sensors and a perfectly accurate motion model. Draw
them in a new version of the graph above. Submit this graph as an image titled ques-
tion_5_2.png.
5.3. Now assume the robot rotates in place from its current location by 30 degrees
(clockwise). Draw what it would see. Submit this graph as an image titled ques-
tion_5_3.png.

1.3.1.3. RRobotic Arms (33 points)obotic Arms (33 points)
A 2D linear robot has three joints as depicted below. The distance between the first
and second joint is 3m, the second and third is 5m, and the third and end is 2m.

6.1. Implement the transformations in the skeleton code (provided in the GitHub
Classroom), so that the arm joints move correctly and the base transformations are
drawn. After you have implemented the transforms correctly, you should be able to see
the arm’s state as shown in the example image below. You should be able to move joint
one forward and backward with ‘i’ and ‘k’, and joint two forward and backward with
‘j’ and ‘l’ and joint three forward and backward with ‘a’ and ‘d’ and see the arm update
its state. We recommend drawing the trigonometry out on paper before implementing!
When the joint angles are , the arm should be pointed horizontally along the X
axis.
6.2. Where is the arm when the joint angles are ? Give the position of each joint
in the base coordinate system.
6.3. Provide joint angles that result in the end effector of the arm being at location

.
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6.4. Is the positioning in question 6.3. possible in real life? Why or why not?

1.4.1.4. HandinHandin
When you are done, use this link to create your Transforms GitHub Repo. Commit and
push the relevant files:
• arm.py
• answers.md
• trajectory.png
• question_5_1.png
• question_5_2.png
• question_5_3.png
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PPARARTT KK
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PPARARTT LL

CommunicationsCommunications

This unit focuses on the Robot Operating System (ROS). ROS is a framework for robot
software development that is widely used on both industrial and commercial settings,
and is currently the industry standard in research.

0.5.0.5. Let’Let’s Ts Talkalk
Now that you’re drone is built and all of the hardware is assembled, it’s time to under-
stand how all of the components talk to one another. The majority of this communica-
tions challenge is addressed by robot middleware. In the ensuing assignment, you’ll go
through a few tutorials to gain exposure to the core concepts of ROS. Before you begin
the assignment, read through the ROS section of the Software Architecture portion of
the Operations Manual. This document provides a general overview of ROS. Do not
worry about understading everything in this section; we are asking you to read it only
to expose you to the material you will be covering in the assigment and throughout the
course.
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UUNITNIT L-1L-1

AssignmentAssignment

1.1.1.1. CrCreating a Publisher and Subscriber (50 points)eating a Publisher and Subscriber (50 points)
Fill in the corresponding sections in the answers.txt in your handin repository and
submit the ROS package you create.
1. Read understanding nodes.
2. Start the screen session we use to fly the drone. Use rosnode list to display
what nodes are running when you start the screen. If you wish, take a look at the soft-
ware architecture diagram and look at all of the blue ROS topics to gain a visual under-
standing of all of the nodes that are running. Once again, do not worry about under-
standing everything now, or knowing what each topic is used for- you will learn this
through experience as the course progresses.
3. Use rosnode info to find out more about as many nodes as you’d like. What top-
ics does /pidrone/infrared publish?
4. Do the ROS tutorial to create a package. Name your package ros_assign-
ment_pkg .
5. Do the building packages tutorial.
6. Follow the ROS publisher/subscriber tutorial using the workspace and package
you created above. Hand in the entire package.
7. Start the screen session we use to fly the drone. Use rostopic echo and ros-
topic hz to examine the results of various topics. What is the rate at which we are
publishing the infrared range reading?

1.2.1.2. MessagMessages (5 points)es (5 points)
Make all modifications in your ROS package from Problem 1 and hand in the package
1. Read Creating a ROS msg. You do not need to read the section on services.
2. In your package from question 1, create a ROS message called MyMessage with a
field for a string , called name , and a field for an array of float64 , called contents .
Edit files such as CMakeLists.txt to ensure your message is compiled and available
for use. Make these modifications in the package from problem 1 and hand it in.
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1.3.1.3. RReading the IR Sensor (15 points)eading the IR Sensor (15 points)
1. Write a ROS subscriber on your drone to read the values from the infrared sensor
topic and print them to stdout . Name the file my_echo.py and submit it.
2. Write a second ROS subscriber that listens to the infrared sensor topic and calcu-
lates the mean and variance over a ten second window using NumPy. Print these val-
ues to stdout . Name the file mean_and_variance.py and submit it.

1.4.1.4. HandinHandin
Hand in your answers using this link. Make sure you hand in: - answers.txt -
my_echo.py - mean_and_variance.py - ros_assignment_pkg : the ROS package you
created
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PPARARTT MM

DebuggingDebugging

This unit focuses on methods and strategies for debugging robots.
Most of the time spent writing a program is spent debugging that program. This issue
is particularly challenging for robotics because a robot will not work unless everything
else works. During the development of this drone project, we have had our robots fail
because of:
• a bug in our program
• a bug in the library we were calling
• bad electrical wiring
• inadequate cooling
• inadequate circuits
Despite ours and your best efforts, you will encounter bugs when building and flying
your drone. We expect this to happen, and part of the goal for this assignment is
to teach methods and strategies for debugging a robot. Fundamentally, debugging is
about checking your assumptions and localizing the problem. You need to be system-
atic and verify each part of the system is working (or not) when finding a bug.
Often, bugs are present in a sequence: one bug masks a second one. So if you fix the
first bug, it still doesn’t work, because now a second problem comes into play. Don’t
let this get you down! Expect it. As you work on each project, you should expect that
you did ten things wrong, that you’ll have to find and fix. So if you find one thing and
fix it, expect that there are nine more things you’ll have to fix before you can fly.
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UUNITNIT M-1M-1

AssignmentAssignment

Read Richard Feynman’s 1974 Caltech Commencement address, entitled Cargo Cult
Science. In many ways carrying out experiments in science is like debugging a robot.
The example of the experiment by Young in 1937 about rats running through mazes
is a beautiful example of debugging. In both cases you are carrying out experiments in
order to test hypotheses to determine the problem.
Below we present four strategies (and problems) for debugging that are useful to try
when you encounter a problem.

1.1.1.1. Decompose the PrDecompose the Problemoblem
Decomposing the problem means breaking it down to smaller components.
For example, if your drone won’t fly, try to decompose it into smaller problems.
- Have you verified that each part works? Does the Pi power on? - Is your flight con-
troller talking to the motors? - Can it connect to your laptop via CleanFlight? - Does
the IR sensor light turn on?
You want to try to isolate which parts are working and which parts are not working
in order to zero in on where the bug is. To decompose the problem it is essential to be
systematic and think through ways to check each part of a system that is failing, sepa-
rately.
For each of the below conditions: 1) Describe a test that verifies whether or not the
component is functioning 2) Carry out your verification on the drone and describe the
results of your test 3) Change something about the drone so that just that component
stops working and describe what you changed to cause it to stop working 4) Carry out
your test again and describe the results
Write your answers in answers.md for each condition.
1. The motors are powering on.
2. The Pi is receiving data from the camera

1.2.1.2. Visualize the StatVisualize the Statee
To figure out what is wrong, it helps to visualize the state of the robot and the system.
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- Can you see the output from each sensor? - Is the output what you expect? - Is there
a “human friendly” way to draw what is going on?
Often one spends as much time writing visualizers as one does implementing the al-
gorithm or functionality on the robot. An incorrect transform might be impossible to
debug if you print out the matrix, but instantly obvious as soon as you draw it in a 3D
visualizer.
For each condition below: 1) Use the Javascript interface to visualize the state or out-
put 2) Describe a procedure to verify the output works as expected 3) Carry out the
procedure using your drone and describe the results
Submit screenshots from the Javascript interface as visualize_[INSERT CONDITION
NUMBER].png and write the written responses in answers.md.
1. Camera Output: How accurate are the position estimates over different surfaces?
2. IR Sensor Readings: How does it work with different materials? What are the min-
imum and maximum distances?

1.3.1.3. BrBreak the Abstreak the Abstraction Barriersaction Barriers
Bugs don’t respect abstraction barriers, and you shouldn’t either! The Law of Leaky
Abstractions applies here. As you decompose the problem, you might find that all the
code you wrote is correct, and the actual bug lies in some other module. In the course
of developing the drone, we had to fix bugs caused by insufficient swap space on the
Raspberry Pi, incorrect implementation of the MSP serial protocol used to talk to the
drone, and more. If decomposition tells you that all your parts are working, then con-
tinue working to isolate and find the problem in some other module, even if you didn’t
write it.
In embedded computing, often the LEDs give important information about the under-
lying components, as do audible beep codes. Note that the CleanFlight software and
the ESCs spin the motor at high frequencies in order to generate audible beeps. Write
the answers to the following questions in answers.md.
1. Find the LEDs on the Rasberry Pi. What does each LED mean? What do they
mean? What happens to the LEDs if the SD card is not plugged into the Pi?
2. Find the manual for the Skyline 32. What LEDs does it have? What do they mean?
What happens if the Skyline is not receiving power?
3. Find the manual for the ESCs. (We couldn’t find the 12A manual so use the one
for 30A.) What mechanisms do the ESCs have to indicate their status?
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1.4.1.4. Slow Things DownSlow Things Down
Things happen fast on a robot, often too fast to see. It helps to find ways to slow things
down. You can look at a recorded log of what happened and play it back slowly. Or you
can write software to carry out each step in isolation and slowly enough that you can
verify its correctness.
In order to fly, the drone must read sensor data and output motor commands at a very
high frame rate. However it is often hard to see what is happening since it is changing
so fast. For both of the following assignments, you should not need to write any ROS
code. In both cases we are looking for relatively short programs that talk to the respec-
tive hardware module.
1. Write a program to arm the drone, wait 10 seconds, and disarm the drone. Verify
your program runs. Look at h2rMultiWii_test.py for an example of how to talk di-
rectly to the controller without using ROS. The flight controller speaks Multiwii Serial
Protocol. Submit your answer as my_arm.py .
2. Write a program to read a single frame from the camera, save it to a file, and re-
turn, without using ROS. Verify your program runs, and include your picture in the
project write-up. Submit your answer as my_frame.py .

1.5.1.5. HandinHandin
Create your Github repo using this link.
Handin the following files:
• answers.md
• my_arm.py
• my_frame.py
• visualize_1.png
• visualize_2.png
• visualize_3.png
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NNetwetworkingorking

This unit asks you to think and learn about networking. Robots are computers that are
linked through networks. In robotics, accounting for networking allows both more ro-
bust and more efficient design.
This assignment describes how to use basic networking with a focus on concepts most
useful to robotics.
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UUNITNIT OO-1-1

AssignmentAssignment

1.1.1.1. BackBackgrground Informationound Information
When you enter a command in a shell, it executes a program. These programs read
from a stream, known as “standard input” and write to two output streams, “standard
output” and “standard error”. When you print in python, it writes its output to stan-
dard output. In another language, such as C, you use other functions, such as printf
to write to standard output.
In addition to writing to standard output, a program can read from standard input. The
program cat , short for concatentate, reads from standard input and writes the result
to standard output.

1.2.1.2. StandarStandard Output (10 points)d Output (10 points)
1. Write a python program that prints “Hello world” to standard output. Save the
program as hello1.py and submit it.
2. Write a python program that prints “Hello world” to standard output using
sys.stdout . Save the program as hello2.py and submit it.
3. Write a bash script that prints “Hello World” to standard output. Save the script as
hello.sh and submit it.

1.3.1.3. StandarStandard Input (10 points)d Input (10 points)
1. Run cat with no arguments. Why does cat seem like it is hanging?
2. When you run cat , type a message into your terminal, and press Control-D . De-
scribe what cat does. Make sure to include which streams are being used, and for
what purpose.
3. Write a python program my_cat.py that reads a message from standard input and
prints to standard output, just as cat does. Submit this file.

1.4.1.4. Pipes (20 points)Pipes (20 points)
Pipes are used to redirect standard input, standard output, and standard error. First,
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> is used to redirect standard output to a file. For example, echo "Hello World" >
test.txt will write the string Hello World to test.txt .
1. Create files one.txt , two.txt and three.txt that contain the strings 1 , 2 , and
3 , respectively using echo and output redirect. Write the commands you used to cre-
ate these files in the corresponding section of networking.pdf .
2. By convention, almost all shell programs read input from standard input, and
write their output to standard output. Any error messages are printed to standard er-
ror. You can chain shell programs together by using | . For example, the program ls
writes the contents of a directory to standard output. The program sort reads from
standard input, sorts what it reads, and writes the sorted content to standard output.
So you can use ls | sort to print out a sorted directory list. Read the man page for
sort ( man sort ) to learn how to sort in reverse order. What is the bash script (using | )
that prints the contents of a directory in reverse alphabetical order? Write the script in
the corresponding section of networking.pdf .
3. Use cat , | and echo to print hello world. Do not write to any files and use both
commands one time. Write your answer in networking.pdf .
4. This is not the simplest way to print hello world. Can you suggest a simpler way?
(We asked you to do it the more complicated way to practice with pipes.) Write your
answer in networking.pdf .
5. Write a python script that reads from standard input, sorts lines in reverse alpha-
betical order, and prints the result. It should behave like sort -r . Submit your script
in a file called my_reverse_sort.py .

1.5.1.5. StandarStandard Errd Error (10 points)or (10 points)
In addition to standard input and standard output, there is a third stream, standard er-
ror. If there is an error in a chain of pipes, it will be printed to the terminal rather than
buried in the input to the next program.
1. Recall that ls -a | sort > sorted.txt puts all the names of files in a directory
sorted in alphabetical order into the file sorted.txt . If you modify the command to
be ls -a -hippo | sort > sorted.txt , what text is in sorted.txt , what is outputted
as standard error, and why?
2. Create a python script that, in addition printing sorted inputs to standard out,
prints status reports to standard error. Use it to sort ls -a instead of sort . Submit the
file containing the script as my_sort_status.py .
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1.6.1.6. NNetwetworking (20 points)orking (20 points)
The command nc is short for “netcat” and is similar to cat but works over network
connections. It reads from standard input and writes its contents not to standard out-
put, but to a specified server. Write your answers in the corresponding sections of net-
working.pdf.
1. Point nc to google.com as follows: nc www.google.com 80 When you first con-
nect, it will be silent. Then type any arbitrary text and press enter. What is the error
number?
2. Now type some valid http into nc: GET / HTTP/1.1 . What is the output?
3. Now use nc to make a server. In one window, type nc -l 12345 . This will cause
nc to listen on port 12345. In another terminal on the same machine, type nc local-
host 12345 . You can type a message in one window and it will appear in the other
window (and vice versa). This trick can be very useful to test basic internet connec-
tivity - if the client and server can send packets at all. No answer is required for this
question.
4. By convention, roscore listens on port 11311. Try using nc to connect to port
11311 on a machine where roscore is running, such as the Pi on your drone. What
protocol is roscore using to communicate?
5. Another useful tool is nmap , which scans through a range of ports (and optionally,
through a range of IP addresses) and reports information. Run nmap localhost on
your Pi. What ports are open? Look up each port and submit what it does.
6. Run nmap with and without the nc -l 1234 command running from above. What
is the difference? Why?
7. Run nmap with roscore . Does nmap report roscore ? Why or why not? Use man
nmap to find command line options for nmap that report the ROS port 11311.
8. Portscan google.com. List each open port and its purpose.

1.7.1.7. TTalking talking to Yo Your Rour Robot (10 points)obot (10 points)
So far, this assignment has required access to localhost , the local machine you are
connected to, and google.com .
Most commonly, the base station and robot are connected over TCP/IP to the same lo-
cal network. Then you can look up your machine’s IP address ( ifconfig in Unix; other
ways in other OSes), and your robot’s IP address, and connect them. How can you find
your robot’s IP address? Well it’s a chicken-and-egg problem. If you knew the IP ad-
dress, you can connect to the robot and run ifconfig and find the IP address, but you
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don’t know the IP address.
What to do? There are several solutions. Write the answers to the following questions
in networking.pdf.
1. Brainstorm how you can solve the chicken-and-egg program to connect to your
robot. List three different solutions.
2. How does the internet work? A computer typically uses the DHCP protocol to re-
quest an IP address from a server that manages the local network. At your house, it’s
likely to be your cable modem or home router. At Brown, CIS manages the routers that
keep the network up. Once you have an IP address, you are on the internet.
There are serious security concerns with giving direct access to the internet, without
filtering connections. People could serve SPAM, or they could get hacked by bad actors
who would use the connection to serve SPAM. It’s safer to not give people public IP
addresses and most organizations don’t. There aren’t a lot of them either - one of the
things you pay your home ISP for is a public IP address, and you usually only get one.
To try out DHCP, connect to Brown, Brown_Guest, and RLAB. Report back your IP ad-
dress each time using your operating system. Then connect again. Do you get the same
address or a different address? List the IP Addresses for each network, and whether or
not you get the same address when re-connecting to each network in networking.pdf.
1. How can we have more than one device connected to the Internet? The usual an-
swer is a protocol called Network Address Translation. This remaps the IP address
space so that you can have one public IP address that usually connects to a router.
Then the router has a public (WAN or wide-area-network) side with the public IP ad-
dress) and a private (LAN or local-area network) with multiple connections. The IP
addresses on the private side are not full-fledged IP addresses because they cannot act
as servers. You can’t listen on a port from the private side and connect to it from the
public internet. However you can do private-to-private connections, and many people
do, e.g., for games or robots!
You can also selectively open a connection to the public internet on many routers us-
ing port forwarding. This can be configured on the router; most routers offer a web-
based API to configure these kinds of remappings. You can say port 11311 on the pub-
lic side maps to a particular IP address and port on the private side, for example.
Under a typical NAT setting, the robot and the base station will typically both connect
to the router via DHCP to obtain an IP address. Their IP address will be in the
192.168.*.* range, or the 10.*.*.* range, both by convention used for private local net-
works. The router’s public IP address will be whatever it is, and both machines will
have internet access through NAT. However neither machine will be a server to the
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public internet. But that’s okay - they only need to be servers to each other. So they can
listen on ports and server request using their local (192.168 or 10.0.0.*) IP addresses.
Connect to the Brown_Guest, RLAB, and Brown networks. For each network, answer
the following questions in networking.pdf.
3.1. What IP address do you have on each network? 3.2. What is the router’s IP? 3.3.
What ports are open on the router? 3.4. Use nmap to identify the machines on each
network. How many are there?

1.8.1.8. Look Ma, NLook Ma, No Into Internet! (10 points)ernet! (10 points)
But what about if there is no public internet connection? What if you want to fly your
drone in the wilderness? Well, there does exist cellular modems and sattellite connec-
tions, but you can also tell your drone to act as a Wifi Hotspot. It can create a net-
work and run a DHCP server. You can configure this on your drone using the file
/etc/hostapd/hostapd.conf . Then you can connect your laptop’s base station using
the SSID and passphrase specified in that file, and connect to the drone.
Alternatively you can set up your laptop as the Wifi base station and configure the
drone to connect to its network. The details will vary depending on your laptop OS and
settings.
Your Pi is configured to be a Wireless AP Master by default. Connect to it with your
base station.
1. Which machine is acting as the DHCP server?
2. What is the Pi’s IP address? What is yours?
3. What is the ping time between you and the Pi when you are close to the Pi
4. How far away can you get from the Pi before it starts disconnecting?
5. What is the ping time when you are far away from the Pi?

1.9.1.9. EnEnvirvironment Vonment Variables (30 points)ariables (30 points)
GNU/Linux uses environment variables to store configuration information about a va-
riety of things. You can use env to view the environment variables in your shell on the
Rasberry Pi. In bash (and most shells), environment variables are local to your bash
session, so they are often set in configuration files that are run every time your shell
starts, such as .bashrc .
1. Log into your Rasperry Pi. Use X=3 to set the value of an environment variable
named X to the value 3 . Use echo $X` to display the variable. Note that you
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must prepend `$ to the variable name when reading it, but not when setting it.
2. Log into your drone again in a separate SSH session. Use echo $X to see the value
of the environment variable X . What happens? Does this work? Why or why not?
3. Use env to see all the environment variables set in your shell. Pick one. Research
the one that you picked. Describe 1) What program sets the environment variable and
2) What the variable controls. For example, the EDITOR environment variable is set in
the .bashrc file when you log in.
4. Start screen in one of your SSH sessions. Our setup.sh script sets the ROS_MAS-
TER_URI and ROS_HOSTNAME or ROS_IP environment variables in your session.
In a second SSH session in which you have not run screen (so just after you log in), as-
sess the value of the environment variables. Are they set to the correct values? What is
setting ROS_MASTER_URI? What is setting ROS_IP or ROS_HOSTNAME? How did
you figure this out? (You might find the grep command useful. Use man grep to find
out how to use it.)

1.10.1.10. HandinHandin
When you are done, use this link to create your Networking Github Repo. Commit
and push the relevant files (networking.pdf, and any scripts you wrote throughout the
assignment) to this Github Repo before the deadline.
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Flight DynamicsFlight Dynamics

Now that you’ve created a UKF to estimate your robot’s state, you can control its state
using controller based on control theory. There are many types of controllers that vary
in levels of detail and precision. A very simple controller is the PID controller, which
you will implement in the next project. Many other control algorithms exist and can
be applied to your drone using the data you have already collected. In this sub-section,
you will read about a few of the other control options, and then you will going to fly
an remote control (RC) drone in simulation. Flying in simulation is quite realistic, and
it will give you a good feel for how difficult it is to control the drone by hand. This ac-
tivity will give you a greater understanding off how much the control algorithm does
to keep the drone flying steady.
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UUNITNIT PP-1-1

AssignmentAssignment

In this assignment, you’ll briefly research control algorithms that are used on quadro-
tors, and then you will fly an airplane and a quadrotor in simulation to get a feel for
what these control algorithms are doing.

1.1.1.1. ContrControl Algol Algorithmsorithms
For the first part of this assigment, read up to 3.2 of this article, and then pick two
other control algorithms to compare and contrast with a PID controller (what we use
on our drones). Identify the major advantages and disadvantages of each algorithm.
Do not worry about understanding all of the math derived in the article; we have asked
you to read it once to be exposed to it, but such a model it is not required for the PID
controller. If one wished to implement a more advanced algorithm, then a model such
as the one described in the article would need to be created.

1.2.1.2. Fly with RFly with RC!C!
In this part, you will fly an airplane and a quadcopter in simulation using an RC con-
troller. Doing so will give you an intuitive sense for roll, pitch, and yaw, as well as how
they affect the dynamics of aerial vehicles.
You will be using the RealFlight 7.5 simulator along with the associated RC controller,
which are the same controls used to fly a real physical aircraft over RC.
Go to the 8th Floor SciLi RealFlight workstation and fly using the RC controller and
the flight simulator! The workstation is located at the monitor next to the Baxter. We
only have one workstation for the class, so you can reserve a time here to use it.
The simulator is installed on the computer at the workstation. If it is not open already,
open the RealFlight7.5 Launcher (on the Desktop) and click Run RealFlight.
The controls you will be using are:
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Figure 1.1. RC Controls

Create a file called answers.md in your RC Flying Github repo (see section 1.7 Handin
for the link to generate your repo). Write all answers to the following questions in this
file.

1.3.1.3. AirplaneAirplane
Flying an RC airplane is nice because it gives an intuitive sense for the controls and
roll, pitch, and yaw since the airplane’s body is asymmetric. Choose one of the planes
and fly in the sim using the controls to get a feel for the system.
1. Can you hover in one place with the airplane? Why or why not?

1.4.1.4. QuadcoptQuadcopter X (classic) in Aer X (classic) in Acrcro Modeo Mode
Go to the airport “Joe’s Garage HD” in the “Sierra Nevada” section. From the bar at
the top choose Aircraft then Select Aircraft and choose the Quadcopter X (Classic). On
the controller, flip switch number 7 (they’re labeled) to the BB position. In this mode,
the aircraft has a gyroscope to hold its angle, but it does not have an accelerometer for
automatic leveling. You will be controlling the throttle and the angular velocities di-
rectly.
1. Use the throttle to take off. Describe in words what this does to each of the four
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motors. What effect does this action have on the drone?
2. Now take off. Fly around a bit and try to land back on the target. Try to do a loop-
de-loop. Don’t worry if you crash a lot; that’s part of the point of a simulator; you can
take off again just by hitting the red “reset” button. Report on your experience. Is this
easy or hard? Why?

1.5.1.5. QuadcoptQuadcopter X in Stabilized Modeer X in Stabilized Mode
Now select Quadcopter X from the Aircraft menu. Flip switch number 8 to position
BB. In this mode the aircraft uses its accelerometer for automatic leveling, just like our
Skyline. In fact, you can plug an RC antennae into the skyline and control it with an
RC controller in just this way.
1. Fly around in a circle and land back on the target. Is this easier or harder than the
previous mode? Why?
2. Why might this mode require an accelerometer, if the previous mode only re-
quired a gyro?

1.6.1.6. QuadcoptQuadcopter X in Per X in Posos-Hold Mode-Hold Mode
Flip switch 8 to position AA to enable pos-hold. Fly around to get a sense of the aircraft
dynamics. Try flying in a direction quickly and then stopping; observe the differing be-
havior between modes AA and BB on switch 8.
1. Fly around in a circle and land back on the target. Is this easier or harder than the
previous mode? Why?
2. Try to fly in a loop-de-loop. Can you do it? Why or why not?
3. If you were to write a controller algorithm that passed commands to a quadcopter
in stabilized mode (BB) to make it behave like a quadcopter in pos-hold mode (AA), what
information would you need? What sensors could you use to obtain that information?

1.7.1.7. QuadcoptQuadcopter Ter Trials Challengrials Challengee
To get familiar with flying, first just practice getting the quad to hover using only throt-
tle (up/down on the left stick). Now experiment with roll and pitch (up/down left/
right on the right stick). Finally, try using yaw (left/right on the left stick). Note that
the roll and pitch commands are relative to the orientation of the drone. If you crash
and need to reset the simulator, press the spacebar, or you can push the reset button
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on the controller.
1. Go to Challenges and try out the quadcopter trials. This challenge uses a similar
auto leveling quadcopter. How far can you get? Stefanie got stuck at Level 4.

1.8.1.8. HaHavve fun!e fun!
Feel free to play with the simulator as long as you like and try out some of the other
aircraft.
1. Write a brief report about what you tried, and let us know the coolest activity or
feature that you found.

1.9.1.9. HandinHandin
Use this link to create your RC Flying Github Repo. After finishing the assignment,
commit and push answers.md to this repo before the deadline.
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