
✎DuckieskDuckiesky Student Curriculumy Student Curriculum

Flight has fascinated humans for millenia.
The aim of this course is to empower people to build robots. Students will build, pro-
gram, and fly an autonomous drone. This book covers everything needed to program an
autonomous robot, including safety, networking, state estimation, controls, and high-
level planning. Although the book focuses on an autonomous drone, we will provide
a broad overview of modern robotics, including some topics relating to autonomous
ground vehicles and robotic arms.
We will use the Duckiedrone to introduce concepts related to safety, control, state es-
timation, networking and communications, and mapping. Each student will build and
program their own small quadcopter. After taking this course, students will be able to:
• Explain the space of designs for robotic communications, safety, state estimation,
and control.
• Apply that knowledge to construct programs for communications, safety, state esti-
mation, and control.
• Build, program, and operate an autonomous robot drone.

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/00-index.md

ContContentsents

SectionSection AA -- IntrIntroductionoduction ..44
◦ SubsectionSubsection A.1A.1 - Importance of RImportance of Roboticsobotics
◦ SubsectionSubsection A.2A.2 - IntIntereracting with our Curriculumacting with our Curriculum
◦ SubsectionSubsection A.3A.3 - DrDrone Operone Operationation

SectionSection BB -- ElectrElectronicsonics ..4343
◦ SubsectionSubsection BB.1.1 - CirCircuitrycuitry
◦ SubsectionSubsection BB.2.2 - SolderingSoldering

SectionSection CC -- Build: 1Build: 1..5353

SectionSection DD -- Computing and NComputing and Netwetworkingorking..5454
◦ SubsectionSubsection DD.1.1 - Using the PiUsing the Pi

SectionSection EE -- Sensors, ASensors, Actuatctuators, and Contrors, and Control: 1ol: 1..6262
◦ SubsectionSubsection E.1E.1 - OvOverviewerview

SectionSection FF -- Build: 2Build: 2 ..6666

SectionSection GG -- Sensors, ASensors, Actuatctuators, and Contrors, and Control: 2ol: 2..6767
◦ SubsectionSubsection GG.1.1 - SensingSensing
◦ SubsectionSubsection GG.2.2 - MiddlewMiddlewarare: Re: ROSOS

SectionSection HH -- Build: 3Build: 3 ..106106

SectionSection II -- Sensors, ASensors, Actuatctuators, and Contrors, and Control: 3ol: 3 ..107107
◦ SubsectionSubsection I.1I.1 - MotMotorsors
◦ SubsectionSubsection I.2I.2 - IMUIMU

2

SectionSection JJ -- Build: 4Build: 4 ..112112

SectionSection KK -- Closed Loop ContrClosed Loop Controlol..113113
◦ SubsectionSubsection K.1K.1 - PID ContrPID Controlleroller

SectionSection LL -- LocalizationLocalization ..128128
◦ SubsectionSubsection L.1L.1 - CamerCameraa

SectionSection MM -- MatMaterialserials ..133133
◦ UnitUnit M.0.3M.0.3 - GlossaryGlossary..134134

SectionSection NN -- BibliogrBibliographaphyy..138138

3

✎

SSEECCTIONTION AA

IntrIntroductionoduction

Welcome to the DuckieSky Course! This section contains all of the background infor-
mation needed to dive into autonomous flight. By the end, you will be equipped with
the knowledge to consider where autonomous drones fit within the history of robotics,
the ethics associated with such technologies, and the safety procedures required to use
such technologies. You will also be equipped with the tools to edit this documentation
should there be any confusions or mistakes in the text. We hope you enjoy the course,
and if there is anything that is unclear or could use more details, we encourage you to
leave a git “issue” to let us know (we’ll teach you how to do that in this section!) Enjoy!

4

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/00-overview.md

✎

SSUBSEUBSECCTIONTION A.1A.1

Importance of RImportance of Roboticsobotics

The lessons in this subsection introduce the course, provide a brief history of robotics,
as well as discuss the complex ethical issues that arise as new technologies enter our
societies. For example, should everyone be able to fly a drone with a camera wherever
they want to? Or, are there ethical issues with this such as privacy, safety, and security?

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/10-relevance/00-overview.md

✎

UUNITNIT A.1.1A.1.1

IntrIntro to to the Courseo the Course

Module Overview
Robot: a machine (especially one programmable by a computer) designed to execute
one or more tasks automatically and efficiently.
Quadcopter a more specific term used to refer to a drone that is flown with four motors.
WhWhy is it essential ty is it essential to learn about this? How do ro learn about this? How do robotics help our communities in soci-obotics help our communities in soci-
ety?ety?
When we think of a robot, what definition could we reference?
Robotics matter because they can take autonomous actions in the real physical world,
which can affect almost every aspect of human existence. It is an interdisciplinary re-
search area part of Engineering and Science. It involves the design, construction, oper-
ation, and use of robots. The end goal is to create intelligent machines that outperform
a human being’s ability in a specific task or replace said human in a task too complex
or far too dangerous. Making them near perfect multi use tools for industries and cor-
porations of any kind.
Today robots impact the defense industry, manufacturing, the service industry, and
more, with potential to positively transform work practices.
Useful RUseful Resouresources and Rces and Refereferencesences
1. Lexico.com Definition of Robot
2. Wikepidia What is a Robot
3. Wikepidia Info on Robotics
4. Sciencing.com Use of Robotics

6

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/10-relevance/10-relevance-society.md
https://www.lexico.com/en/definition/robot
https://en.wikipedia.org/wiki/Robot
https://en.wikipedia.org/wiki/Robotics
https://sciencing.com/robots-used-in-everyday-life-12084150.html

✎

UUNITNIT A.1.2A.1.2

DevDevelopment of Relopment of Roboticsobotics

HISHISTTORORYY
Evolution of Robotics Wired Episode 1
When we think of robots we tend to reference lots of pop culture films like; Star Wars
with the famous duo of R2-D2 and C3-PO, The Iron Giant, Transformers, or the in-
famous T-1000 Terminators. But where does the word for these mechanical creations
originate from?
Originally the word “robot” comes from the Czech language meaning slave. It was first
used in the Czech playwright R.U.R (Rossum’s Universal Robots) written by Karl Capek
in 1921. Soon after the word “robotics” originated in the short story “Runabout” writ-
ten by Russian-American author Isaac Asimov in 1942.
Robotic inventions have been around for a very long time. The concept of artificial in-
telligence manifested through mythology planted the seed for modern concepts of ro-
bots. For example, the giant Talos who served the gods of Greece was a bronze giant
created by Hephaestus (god of invention and smithing) as an autautonomousonomous defense unit
for the island of Crete. Another example are Golems part of Jewish folklore, which ac-
cording to its definition are animated anthropomorphic beings created entirely from
inanimate matter (circircuits or scrcuits or scrap metalap metal). Humanities ability to imagine artificial life
before the time of intelligent or self moving machines is remarkable.
Inventions are documented as far as 3,000 B.C. in Ancient Egypt, following Ancient
Greece, starting to take off in the 1700s, and began to be more prominent in the 19th
century. Greek engineers and mathematicians made first designs of autonomy when
inventing water clocks with self moving limbs and mechanical animals (The Pigeon)
propelled by steam. In both America and Europe the Industrial Revolution (1760s -
1840s) introduced complex mechanics and the implementation of electricity making
the powering of machines through compact motors possible. Although these inven-
tions set foundations for the mechanical aspects, it was not until the 20th century that
scientific efforts made great progress in Robotics leading up to the present day state of
the art 21st century machines.
The first digitally operdigitally operatateded and prprogrogrammableammable robots were created by an inventor from
Louisville, Kentucky named George C. Devol in 1954. Initially the programmable ma-
nipulator was patented under the name “Unimate” branded under “Universal Auto
Animation”, but was sold in the late 1960s to Joseph Engleberger after failing to be sold
to the industry by its original creator. Engleberger happened to be a businessman/en-
gineer and took the original design of the Unimate to redesign it into an industrial ro-
bot. Successfully marketing and mass producing the design gave Engleberger the title
of “F“Father of Rather of Robotics”obotics”, making way into the designs for modern assembly line models.
THE IMPTHE IMPAACCTT
Without a doubt the world we know today is reliant on much of the technology that was
just concepts and schematics decades ago. The first use of modern robots evolved to aid
humans in performing jobs too dirty or dangerous for workers that require higher levels

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/10-relevance/20-relevance-history.md
https://www.youtube.com/watch?v=nlrr5b1XWoY

✎

of prprecisionecision,effefficiencyiciency, and ststengthength. Commercial and Industrial robots are in use every-
where across the globe today. Manufacturing, assembly, and packaging are commonly
assigned to serial robots which are composed of a series of joints and linkages. Parallel
robots are another version of the serial model, with the difference being their smaller
workspace and its arms being closer together. These two look like ceiling mounted spi-
ders with super high speed loops in assembly lines for automotive components, com-
puters, medical devices, or house appliances.
Robotics in medicine are used to facilitate surgeries and minimize invasive approaches
when doing procedures on a patient. The most recent advances were showcased by the
“da Vinci Surgical System’‘. Being controlled by a surgeon from a console in the same
room as the patient, the mechanical arms on this machine are so precise it is able to
skin a grape without damaging the fruit. While there is lots of criticism on the use of
these robots, it sure is an advancement in the medical field worth taking notice of. An-
other example aiding doctors in hospitals is the “Xenex Zapping Robot’‘. Humans can
not always sterilize a room 100% of germs and bacteria, but this robot combats the issue
by pulsating full-spectrum UV rays that kill the harmful infectious microorganisms. A
world of innovative robots is on the horizon as robots are constantly becoming more
sophisticatsophisticateded and rresponsivesponsivee.
While the Xenex Zapping Robots design is comparable to a droid from the Star Wars
franchise, the following are orbiting and programmed outside of our atmosphere. In the
past animals would be sent to space for research, but as technology improved that has
now been delegated to robots. Records show that humans have physically only set foot
on the moon and all scientific data on Mars, Titan, Jupiter, and Venus has been collect-
ed by robots. The first robot ever sent to space was the Sputnik 1 sent by the USSR in
1957. Its launch sparked the ““space rspace raceace”” which brought to life better engineered space
robots like the; Mariners, Vikings, and the Voyagers to be launched on space missions
for close up photography for signs of life on these non terrestrial planets. The Vikings 1
and 2 arrived on Mars in 1976 disclosing both lander robots were powered by rradioiso-adioiso-
ttopic thermonuclear gopic thermonuclear genereneratatorsors that enabled the transmission of data back to Earth.
Close to present day achievements, SpaceX funded by Elon Musk launches version 2 of
“C.I.M.O.N.” (an artificial intelligent robot) to the International Space Station on De-
cember 5, 2019. It is equipped with cameras and voice commands that guide it, and it’s
even able to hold full conversations while relaying information to commanders on the
ground. The acronym of its design stands for CCrew IInteractive MMobile companiONON, and
is programmed for tasks equivalent to those of “Alexa” but for space.

1)1) What Does The FuturWhat Does The Future Hold Fe Hold For Ror Robotics?obotics?

With rise in computer industries, academia has advanced these inventions into the
realm of A.I. (Artificial Intelligence) technology and while growth of this craft is ex-
panding these robots have not made human workers absolete. But what does the future
in robotics hold for the world? In 2013 the first safety standards for collaborative robot-
ics was released, allowing for a broader use of robotics with regulations in other trades
than the existing industries using robotic technology. Updates such as the Kalman fil-
ter, which is commonly used for guidance, navigation, and control in the field of robot-
ics it applies motion planning and trajectory optimization. Putting that together with
companies like Boston Dynamics who are recognized for their series of highly mobile

8 DEVELOPMENT OF ROBOTICS

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/10-relevance/20-relevance-history.md

✎

robots and the the future of robotics seems to be getting closer and closer to what we
may see on a scifi film, hoping the robot uprising is not part of the algorithm.

2)2) VVocabularyocabulary

1. Autonomous: denoting or performed by a device capable of operating without di-
rect human control.
2. Programmable: able to be provided with coded instructions for the automatic per-
formance of a task.
3. Radioisotopic: an unstable form of a chemical element that releases radiation as it
breaks down and becomes more stable.
4. Thermonuclear: of, relating to, or employing transfomations in the nuclei of atoms
of low atomic weight that require a very high temperature for their inception.
5. Digitally operated: operated remotely through a digital switch or remote.
6. Algorithm: a process or set of rules to be followed in calculations or other problem-
solving operations, especially by a computer.
Useful RUseful Resouresources and Rces and Refereferencesences
Standford University History of Robotics
Standford University Ancient Lore of Robots
Wikepidia Definition of Golems
Thought Co. History of Robotics
Wikepidia History of Robotics
Acieta.com Industry Use
Future Market Magazine Transport Robots
Automation.com Future of Robot Industries
Bliley.com Space Robots
Washington Post Space X Robot Program

DEVELOPMENT OF ROBOTICS 9

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/10-relevance/20-relevance-history.md
https://cs.stanford.edu/people/eroberts/courses/soco/projects/1998-99/robotics/history.html
https://news.stanford.edu/2019/02/28/ancient-myths-reveal-early-fantasies-artificial-life/
https://en.wikipedia.org/wiki/Golem
https://www.thoughtco.com/timeline-of-robots-1992363
https://en.wikipedia.org/wiki/History_of_robots
https://www.acieta.com/automation-application/assembly-robotics/
https://future-markets-magazine.com/en/markets-technology-en/transport-robots/
https://www.automation.com/en-us/articles/2016-2/what-does-the-future-hold-for-robotics
https://blog.bliley.com/robots-used-in-space-exploration
https://www.washingtonpost.com/news/the-switch/wp/2018/06/29/spacex-is-flying-an-artificially-intelligent-robot-named-cimon-to-the-international-space-station/

✎

✎

UUNITNIT A.1.3A.1.3

IntrIntro to to Ethicso Ethics

1)1) What is Ethics?What is Ethics?

The term ethics comes from the word “ethos”, which is Greek for “way of living”.
When there is a difficult situation, there are multiple possible solutions. Ethics consists
of moral principles and values of a person or a group of people. It affects how we choose
to live our lives, what we think is wrong and right in morals and situations, and what
our responsibilities are.

Figure 3.1. Ethics (Image: scu.edu)

By considering ethics during decision making, we can make better decisions that would
benefit individuals and society as a whole.
Specifically for ethical issues that are related to AI, they can be split into different cate-
gories.
The Ethical Implications of What AI IsThe Ethical Implications of What AI Is
Bias and Fairness:
AI systems are being used more and more to simulate real life situations and tasks. In
doing so, AI may be capable of amplifying human biases.
This may be the cause of biased data. However, another large focus of bias may be from
the process of creating machine learning models. A single math equation is unable to
perfectly represent all the data, so a math equation that gets as close as possible is used.
In this process, the bits of data that originally had the largest representation would be
altered the least by the final math equation. But others would get ignored by the model,
which results in unfair representation (TowardsDataScience).

10

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/10-relevance/30-relevance-ethics.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/10-relevance/30-relevance-ethics.md

Figure 3.2. Optimal Line Vs Squiggly for Machine Learning Models (Image: pythonmachinelearn-
ing.pro)

Now what is “fairness”?

Figure 3.3. But what is right and wrong? (Image: Machine Learning, XKCD)

There is not a specific definition for the term “fairness”. It is a challenge that we are
always striving towards: trying to create an autonomous system that is fair. To create a
model that is fair, large understanding of many factors is required such as cultural, so-
cial, historical, political, legal, and ethical considerations. Many of these require trade-
offs to be made. Should every group of people be given the same amount of benefits or
should each group’s given benefit be proportional to their situations? For different situ-
ations, it is always a difficult question and many have debates about what exactly is fair
in a situation and who should be responsible for calling the final decision (Google).
Accountability and Remediability:

INTRO TO ETHICS 11

We know that there is always the chance that algorithms can create biased outcomes.
Therefore, systems must be held accountable when this does occur. This can be done
multiple ways, whether through getting humans to investigate the systems, assess im-
pacts on users, or established policies.
And what happens when there is damage due to these systems and their biased out-
comes? It would ideally be great if there are established policies or regulations that deal
with this, but as of now, there are none. Currently, efforts have been taken by journal-
ism and research teams to identify systems that are biased and push them to take action
to resolve them (TowardsDataScience).
Transparency, Interpretability, and Explainability:
Many ethical issues arise because of lack of transparency, interpretability, and explain-
ability.
Companies do not want to share their ideas, algorithms, and their models, which
makes them reliant on data that is close sourced. This is due to multiple reasons: elim-
inate competition with other companies in related industries, and reduce hacking or
malicious usage of their systems. However, this also prevents others from being able to
identify possible sources of bias or inaccuracy in their systems.
Also, machine learning algorithms and models often require very complex math and
multiple layers of it. This is because we want the math to be as close as possible to data
patterns that are seen. Because of how complex it is, it is difficult for others to under-
stand or explain on a detailed level how everything works (TowardsDataScience).
The ethical implications rThe ethical implications relatelated ted to what AI doeso what AI does
Safety:

12 INTRO TO ETHICS

Figure 3.4. Examples of harms of AI systems and algorithmic decision making (Image: Future of Privacy
Forum Report)

We want AI systems to be as safe as possible through decreasing the risk of bias, the
risk of bodily harm, or display any behavior that can harm others.
AI systems are responsible for replicating functions of decision making skills of human
minds. This involved having the ability to make decisions based on our ethics, inten-
tions, and logical consequences that change depending on the situation and scenario.
Human-AI interaction:

INTRO TO ETHICS 13

Figure 3.5. Automatic robots could be the future of nursing? (Image: ActiveAdvice)

While AI systems are made to replicate human minds or be able to do human tasks,
there are many things that differentiate these systems from humans. However, as AI
systems improve over time, these differences may become smaller and smaller, and can
cause harm or provide benefits to people who use them.
Cyber-security and Malicious Use:
AI is becoming better and better at detecting, preventing hacks, and is now being used
in many other systems as a cybersecurity measure. However it is still at a large risk of
being hacked by others or used by others for malicious intent. This is due to the nature
of AI, how it relies on input data and is constantly online for others to use 24/7, and
many other reasons. Input data can be altered, others can constantly hack and alter key
components of the algorithms through web packets or through the internet.
Privacy, Control, and Surveillance:

Figure 3.6. Technology can be a break down the walls of privacy (Image: Slane Cartoons Ltd)

AI systems can be quite easily converted for the purpose of surveillance. While it can be
used for public good, naturally we would like to know exactly where and when our data
will be used. But the catch here with AI systems is that others may be using our private
data without our permission. AI systems learn from data provided during training, and
they make predictions based on data input that they receive. The data may regard ex-
tremely sensitive or important data. There must be measures put in place so that the
data can be used safely and efficiently by the system, while preventing the visibility of
it from prying eyes.

14 INTRO TO ETHICS

✎2)2) CorrCorrectness and Uncertainty of Algectness and Uncertainty of Algorithmsorithms

By incorporating artificial intelligence (AI) into systems, they gain the potential to ac-
complish tasks that usually rely on the intelligence of humans. Systems can become
autonomous, and do not have to rely on human control and decisions. An example of
an autonomous system that is currently developing is autonomous cars.
AI systems utilize Deep Learning (DL) and Machine Learning (ML), which both rely on
data matching and analysis algorithms, allowing the systems to replicate intelligence of
human brains and enabling them to learn without human guidance.
There are benefits of using AI and autonomous systems and the use of algorithms in
decision making processes.
Decisions can be made with more clearer and transparent criteria and choices will be
less influenced by human emotions. The systems can learn from past actions and deci-
sions that have been chosen and can analyze the consequences that resulted. If a result
was non-favorable, then the system will remember and avoid picking the same choice
for a similar future situation.
There are also disadvantages to autonomous systems or relying on algorithms to make
decisions.
The algorithms may not represent all the factors that are related to a situation. There is
also always chances that unexpected consequences will happen. There is no guarantee
that a choice that had beneficial results in the past will still have the same result in the
current scenario.
Also, the way that AI systems learn and their actions may become more unpredictable
as they are given more complicated tasks that require more decision making skills
(Yampolskiy).
Example: HuskExample: Husky Vy Vs Ws Wolf In Imagolf In Image Identife Identificationication
University of Washington wanted to create an image classifier that can identify wolves
from huskies correctly. The AI systems were fed images to learn from. However, some
photos of huskies are incorrectly categorized by the system as wolves. It turns out that
the system was learning from the images that wolves are often found in images that
had snowy backgrounds. So the system turned out to be simplifying identifying if im-
ages had snow in the background (Medium).

INTRO TO ETHICS 15

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/10-relevance/30-relevance-ethics.md

Figure 3.7. Wolf vs husky algorithm detection experiment results (Image: Hacker Noon)

When there was a wolf in an image with no snow in the background, it would be cate-
gorized as a husky. If there was a husky with a snowy background, it would be catego-
rized as a wolf (Ribeiro et al.).

Figure 3.8. Input data of the wolf vs husky algorithm experiment (Image: Becoming Human: Artificial
Intelligence Magazine)

This inaccuracy of the system is because of a data set that was “unfair” or did not have
a sufficient variety of scenarios (Besse et al.).
Example: ArtifExample: Artificial Nicial Neureural Nal Netwetwork Algork Algorithm Forithm For Pneumonia Por Pneumonia Patient Riskatient Risk
University of Pittsburgh created a study in the 1990s to use a system to predict which
pneumonia patients were low risk and which were at high risk. The system initially
caused a large amount of concern to doctors because they found out that pneumonia
patients with asthma were classified as low risk by the system. A rule system was im-
plemented into the system to help solve this issue. After examining data closely, re-
searchers found that patients who had both pneumonia and asthma had a higher re-
covery rate. This is because when those patients were brought to the hospital, they were

16 INTRO TO ETHICS

always considered to be at high risk, and immediately received proper treatment. How-
ever, the autonomous system simply believed that the presence of asthma results in be-
ing low risk, which is incorrect (Medium).
Example: The Boeing 737 MAXExample: The Boeing 737 MAX
There have been a number of accidents with the Boeing 737 MAX aircraft, which has
resulted in the grounding of Boeing 737 MAX worldwide.
1. Lion Air Flight 610: domestic flight that took place on October 29, 2018. It crashed
into the Java Sea shortly after takeoff. Resulted in deaths of all 189 passengers and crew.
2. Ethiopian Airlines Flight 302: international flight that took place on March 10,
2019. It crashed shortly after takeoff, and resulted in deaths of all 157 people on the
flight.
There were several reasons that contributed to these fatal accidents:

Figure 3.9. MCAS flaws with the aircraft (Image: BBC)

INTRO TO ETHICS 17

✎

The Boeing 737 Max 8 is different from the earlier Boeing 737 series. To allow for
expanded seating capacity and better engines, Boeing 737 Max 8 had major design
changes. The engines were moved forward and were raised. However, this made it more
likely for the nose to pitch up while flying, so Maneuvering Characteristics Augmenta-
tion System or MCAS was developed to help correct the nose pitching problem by al-
tering the control surface at the tail. The algorithm automatically detects whenever the
nose pitches too high and corrects it (Seattle Times).
MCAS relies on only a single angle of attack sensor, instead of two. An angle of attack
sensor helps warn pilots of a possibility of them losing control of the plane due to lack
of lift (causing stall). Pilots are usually able to handle when the sensors are malfunc-
tioning, however MCAS makes it a much larger problem. In both of the fatal accidents,
MCAS was automatically switched on because of incorrect data from the single sensor
(The Washington Post).
Pilots can temporarily switch MCAS off, however the system will restart and continue
to work if the sensor continues to warn pilots of stalls. MCAS cannot ever been over-
ridden by the pilots. The pilots lost control of the plane during the Ethiopian Airlines
and Lion Air flights as the system was continuously fed inaccurate data from the sensor
indicating that there are stalls, and they were unable to pitch up when needed, causing
both flights to dive into the sea (The Verge).
Other flaws also contributed to the incident:
Insufficient testing:
Boeing and FAA agreed to not install safety features, which analysts say later that these
features could have saved both the planes from crashing (The Washington Post).
Accountability:
Boeing did not provide the risk assessment about the MCAS until very late, a couple of
months before the MAX was certified. FAA also based on findings by Boeing that were
inaccurate (The Washington Post).
Lack of notice to pilots:
During their findings, Boeing calculated that an MCAS failure was also impossible. If
it did happen, it is believed to be relatively low risk because according to the FAA, it is
assumed that pilots can respond to unexpected situations within three seconds (Seattle
Times).
Because of the low chances that were predicted, Boeing decided to not include the
MCAS in the pilot manuals (Seattle Times).

3)3) AlgAlgorithmic Biasorithmic Bias

✔ Exercise: Can try this game to learn more about bias in machine learning and algo-
rithms.
Algorithmic bias can result from multiple sources.
1. The algorithm may be programmed by someone who is biased thus inheriting their
biased views.
2. Since the systems often rely on pattern matching algorithms, an algorithm may act
in a biased way because data that comes from biased sources.

18 INTRO TO ETHICS

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/10-relevance/30-relevance-ethics.md
https://www.survivalofthebestfit.com/

3. The dataset given to the system to learn from could have biases that the developer is
unaware of. Regarding the point made before regarding algorithmic uncertainty, from
the data it receives, robots may unintentionally develop a biased and stereotypical way
of thinking while trying to establish which factors it should prioritise during decision
making.
4. Limitations of the mathematical model for machine learning of the data set.
5. Developers when testing their AI systems, do not test it with a large variety of data
or do not take into consideration certain scenarios (which may come from a lack of di-
versity in the workplace).
Example: Amazon: CongrExample: Amazon: Congress Matess Matched tched to Criminalso Criminals
Amazon created Rekognition, which is a facial recognition software. ACLU tested the
software by matching Congress members, and the result was shocking: 28 members
were matched with criminals. In addition, it was found that 40% of the inaccurate im-
age matches were of people of color (ACLU NorCal).
This is risky to be actually implemented for law enforcement purposes, as it can make
a police officer more biased before an initial encounter, or it can increase the chances
of a person being questioned or searched, or can increase bias towards people of color
(ACLU NorCal).

Figure 3.10. Congress Matched to Criminals Bias Rates (Image: American Civil Liberties Union)

Example: AExample: Aututonomous Sonomous Systystems’ Identifems’ Identification by Skin Tication by Skin Toneone
An autonomous soap dispenser by Technical Concepts was found to have trouble dis-
pensing people for darker skin color. This is because the dispenser relied on IR sensors,
which sense how much light is reflected back. Darker skin tones absorb more light than
people with lighter skin tones (Reporter). This resulted in the soap dispenser not being
able to work for people with darker skin. This design flaw was believed to be because
of a lack of diversity in the workplace at Technical Concepts, who did not think to test
their products on people with darker skin tones (Reporter).
According to a study done with autonomous systems by Georgia Institute of Technol-
ogy, AI systems were more consistently accurately identifying people with lighter skin
tones than darker. Their results show that detection of people with darker skins were
less accurate by 5%. This can result in racial bias by the algorithm, and in the case of au-

INTRO TO ETHICS 19

tonomous cars, people with darker skin would be more likely to be harmed or involved
in an accident than those with lighter skin.
Pulling an example from earlier: Rekognition also displays the lack of accuracy with
skin tone.

Figure 3.11. Rekognition's Accuracy Rates with Identification by Skin Tone (Image: Medium)

Example: MITExample: MIT’’s Mors Moral Machineal Machine
✔ Exercise: Try out some of the questions of the Moral Machine here website
In 2014, MIT created a series of questions and scenarios that involve autonomous cars
and artificial intelligence, which is known as the Moral Machine. The Moral Machine
asks people which choices autonomous cars should make when facing different varia-
tions of the trolley problem (Technology Review).

Figure 3.12. The Trolley Problem (Image: Medium)

The Moral Machine focuses on 9 different themes:
1. Humans or pets/animals?
2. Passengers or pedestrians?
3. More or fewer lives?
4. Women or men?
5. Young or old?
6. Healthy or those with health conditions?
7. People of those of higher or lower status?

20 INTRO TO ETHICS

https://ici.radio-canada.ca/info/2019/voitures-autonomes-dilemme-tramway/index-en.html

✎

8. Action or no action?
The results of the Moral Machine was closely related with culture and economics
(Technology Review).
✔ Exercise: Read article to learn more about the experiment and findings.

4)4) Security and SSecurity and Systystems Utilized in Society:ems Utilized in Society:

There are many systems in society that utilize autonomous systems that are important
to society. There has been ongoing debate whether these systems should be close or
open sourced.
Open source code means that the source code can be accessed by the public. Closed
source code means that the source code cannot be accessed by others, or it remains
classified, only seen by those who are authorized to. While closed source code may re-
sult in code being safer from prying eyes or hackers, it also prevents closer scrutiny for
potential biases or problems in the algorithm by the public.
Example: Use of Biometric Data in SocietyExample: Use of Biometric Data in Society
There are multiple forms of authentication and verification such as passwords, physical
hardware keys, email, and biometric data.
There are many systems that use biometric data such as FaceID, fingerprinting, track-
ing down suspects, gaining access to restriction buildings, and access to important ser-
vices.

Figure 3.13. Process of using fingerprint data in systems (Image: Identity One)

There are many advantages of biometric data in society.
Many of the other verification methods have significant flaws or inconveniences:
Passwords can be guessed by hashing or brute force methods, only often requiring com-
putation power. Passwords that are more complicated for computers to guess are often
character sequences that are extremely difficult to remember, making it very inconve-
nient to use. Passwords are also very easy to change, especially for hackers who’ve al-
ready got past authentication.
Emails are relatively easy to hack and make it simpler to hack other personal informa-
tion together, often done with the help of phishing emails that lead you to other mali-
cious sites in disguise to ask you to authenticate into other services that you use.
Physical hardware keys are inconvenient due to the requirement of carrying them
around and their ability to be easily lost or stolen.
Biometric data is relatively difficult to fake:
While biometric data is not completely fake proof, it does require effort such as taking
very close up videos, or specifically recreating features from photos. Both of these re-

INTRO TO ETHICS 21

https://www.technologyreview.com/2018/10/24/139313/a-global-ethics-study-aims-to-help-ai-solve-the-self-driving-trolley-problem/
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/10-relevance/30-relevance-ethics.md

quire extreme close contact with a specific person or extremely good equipment.
_Biometric data is unique and difficult to change: _
Biometric data relies on unique features that you (or very few people) have, such as fa-
cial features or your voice. This makes it unique and secure. It is also difficult to change
quickly by people with malicious intent, since biometric data may take some time to
collect, process, and compress for usage in systems. It also makes it more convenient
for users, since it does not require effort to memorize or carry around, your features are
always present with you.
There are disadvantages of using biometric data in society.
Biometric data is dangerous to have lying around:
It is not safe to have compressed or complete biometric data present stored in systems
or devices (for the verification process) where it could be vulnerable to cyberattacks.
When retrieved, it can be easily used elsewhere or used for identity fraud.
Biometric data reading systems are not yet perfect:
Like what many of us have experienced with our smartphones, biometric data reading
systems are not yet perfect. Usually it takes a couple of tries or different placements
or orientations of your features to get it to work. And when it does get into a situation
where you are unable to verify yourself, it is harder to get a more authentic verification
of yourself.
Biometric data can still be faked:
As mentioned before, biometric data is not fake proof. If people with malicious intent
do have extreme resources such as 3D printers or insanely good cameras, it is still possi-
ble to get a clear copy or reproduction of your features. There have been studies where
3D printed fingerprints are found able to bypass biometric authentication (Biometric
Update).
Example: AExample: Aututonomous Sonomous Systystems Used in Social Crems Used in Social Credit Sedit Systystem Devem Development in Chinaelopment in China

Figure 3.14. China's Social Credit System (Image: Visual Capitalist)

The Chinese government began experimenting with social credit scores in 2015, when
it allowed private companies to assign credit scores to people. One of the companies,
Sesame Credit, does this by analyzing many variables over five sets of data, most of
which is actually from Alibaba’s Alipay, which is used by over a billion people to make
purchases, and contains much information. Sesame Credit analyzes both financial and
social behaviors and assigns a score (Time). People who accomplish good deeds are

22 INTRO TO ETHICS

✎

awarded points and can receive rewards. Those who do bad deeds, such as smoking or
spending too much time on video games, are deducted points. Those with an extremely
low social credit score are placed on the “List of Untrustworthy Persons” and will be
prohibited from certain activities such as the ability to use public transportation or to
make large purchases.
This is being implemented with the help of AI and facial recognition.

Figure 3.15. Facial Recognition (Image: Biometric Update)

There have been many concerns with the use of China’s social credit system, fears
about leading to social inequality and alienation. There are also fears of preventing a
free market economy. While the benefits include trying to reduce the amount of crimes
or bad habits of people.
You can read more in this article
Example: CorrExample: Correctional Offender Managectional Offender Management Prement Profofiling for Altiling for Alternativernative Sanctionse Sanctions
(C(COMPOMPAS)AS)
COMPAS is a software that is used by US courts to assign scores to predict the risk of a
certain person committing another crime. It is an algorithm that utilizes an algorithm
that considers answers to a questionnaire (The Atlantic).
In 2016, ProPublica has analyzed COMPAS and has found that COMPAS displays bias
against African Americans.
You can read more about COMPAS here
Example: UnsecurExample: Unsecured/Exposed Red/Exposed Robots Robots Running on Running on ROS and IntOS and Internet:ernet:
A research team at Brown University discovered that they found almost 100 exposed
systems that ran on ROS. “Up to 19 were considered to be fully operational robots”.
They found that they could access the cameras of the robots, and be able to give them
commands for movement remotely (Brown University).
This shows how vulnerable systems can be when connected to the internet.

5)5) MilitarizationMilitarization

There has been consideration of using autonomous systems for militarization. This
could be for making military based decisions or using these systems to take action on
made military decisions.

INTRO TO ETHICS 23

https://time.com/collection/davos-2019/5502592/china-social-credit-score/
https://www.theatlantic.com/technology/archive/2018/01/equivant-compas-algorithm/550646/
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/10-relevance/30-relevance-ethics.md

✎

IntInternational Ternational Trraffaffic in Arms Ric in Arms Regulations (ITegulations (ITAR)AR)
International Traffic in Arms Regulations (ITAR) specifically covers:
1. Covers military items or defense articles
2. Regulates goods and technology designed to kill or defend against death in a mili-
tary setting
3. Includes space-related technology because of application to missile technology
4. Includes technical data related to defense articles and services
5. Involves strict regulatory licensing and does not address commercial or research
objectives
(Source: Digital Guardian)
Example: PrExample: Predatedator Dror Drones Used by the Unitones Used by the United Stated Stateses
There have been several predator drones that have been used by the United States Air
Force (USAF) and Central Intelligence Agency (CIA). Initially many are utilized for
primarily reconaissance and spying, but many have been later equipped to be able to
engage in warfare.
AAututonomous Wonomous Weapons Compareapons Compared ted to Chemical Wo Chemical Weaponseapons
“In 1996, it was mandated that all stockpiles of lethal chemical agents must be de-
stroyed. In 1997, the US ratified Chemical Weapons Convention Treaty and agreed to
destroy any remaining stockpiles of chemical warfare agents no later than April 29,
2012” (CDC).
There has been much debate if autonomous weapons should be treated like chemical
weapons? Should they also be prohibited from use and fully destroyed?

6)6) Medical, HealthcarMedical, Healthcare, and Care, and Caregivegiver Rer Robotsobots

Figure 3.16. Robotic Surgery (Image: AARP)

Autonomous systems and AI systems have been also considered in the healthcare in-
dustry.
This includes the use of robots to help with identification, medical diagnosis, treat-
ment, or surgery.
It also includes the use of robots to help keep elderly, disabled, young children, or pa-

24 INTRO TO ETHICS

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/10-relevance/30-relevance-ethics.md

✎

tients company and to supervise them.
While there are many benefits such as being able to take care and monitor health of
whoever they are responsible for and can provide them with company, there are several
ethical concerns:
Privacy/Security:
Robots that spend a lot of time monitoring their patients or people that they are respon-
sible for, may have the capability to be tapped into.
Especially in the medical field, these robots may contain snippets of important infor-
mation such as health records, or video feeds of their patients.
Trust between robots and humans, and their interactions:
Humans have emotions while robots do not. Humans may have the capability to trust
their robots too much, which can result in harm from the remote or manipulation of
humans.
Example: The EmergExample: The Emergency Exit Rency Exit Robot Studyobot Study, Georgia T, Georgia Tech Howech Howarardd
There was a study conducted by researchers at the Georgia Institute of Technology
highlighted the potential risks of putting too much trust into robots during emergency
situations.
They did an experiment that simulated an emergency situation. It was found that all
participants of the experiment decided to follow the robot during the emergency, even
if it led them through an noticeably incorrect path. Half of the participants have also
seen the robot fail at navigating earlier before the specific experiment (Robinette et al.).

7)7) AAvvailability/Aailability/Accessibility/Usesccessibility/Uses

The cost of autonomous systems may be high depending on the purpose of the robot.
The high prices of robots currently are barring many people from more complex robots.
Robots can be used to help guide people with accessibility issues.
Autonomous systems and advanced technology may also be used to help with emer-
gency aid purposes. Drones can be used to help with potentially locating lost items or
people, or helping transport emergency items quickly (water for forest fires ex.).
UN Guidelines for EmergUN Guidelines for Emergency Uses of Drency Uses of Dronesones
UAVs have potential in three areas: humanitarian, development, and peacekeeping op-
erations (UN).
In 2013, the UN has launched the first UAV mission to help protect civilians in the De-
mocratic Republic of Congo (UN News).
Read this article for more information: and article 2
Humanitarian DrHumanitarian Drone Guidelinesone Guidelines

INTRO TO ETHICS 25

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/10-relevance/30-relevance-ethics.md
https://news.un.org/en/story/2017/09/564452-feature-does-drone-technology-hold-promise-un
https://news.un.org/en/story/2013/12456942-un-launches-unmanned-surveillance-aircraft-better-protect-civilians-vast-dr

✎

Figure 3.17. Drones can help with humanitarian efforts such as putting out fires (Image: WeRobotics)

According to Relief Web, the most promising uses of drones regarding humanitarian
purposes include:
1. Mapping
2. Delivering lightweight essential items to remote or hard-to-access locations
3. Supporting damage assessments
4. Increasing situational awareness
5. Monitoring changes
Can read about more here

8)8) FuturFuture impact of AI on human jobs and re impact of AI on human jobs and responsibilitiesesponsibilities

With the development of AI, there has been a growing reliance on them as tools in our
daily lives.
Ethical implications related to what AI can impact:
Automation, Job Loss, Labor Trends:
With the automation of many jobs, people may lose those jobs to robots. This may be
because some tasks are able to be done more efficiently by robots. Because some jobs
are more adaptable to robots than others, this may produce labor trends. There will be
new jobs created that are more oriented towards maintaining robots or certain jobs will
die out.
Impact to Democracy and Civil Rights:
AI may have a strong impact on democracy and civil rights. AI may be able to auto-
matically detect certain messages or actions that are not permitted and can be used to
prevent them. There have been related concerns to that and the Chinese Social Credit
System, and fear that it may create a society focused around surveillance and conformi-
ty.
Human-Human or Human-Agent interaction:
As explored slightly in the medicine uses of robots, there will be much more interac-
tions between human and non humans/robots in the future, which is different from

26 INTRO TO ETHICS

https://reliefweb.int/sites/reliefweb.int/files/resources/Drones%20in%20Humanitarian%20Action.pdf
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/10-relevance/30-relevance-ethics.md

✎

interactions between humans only.

9)9) Useful RUseful Resouresources and Links if Intces and Links if Intererestesteded

1. Seattle Times Article for more information about the MCAS system for the Boeing
737 MAX:
2. Verge Article about other flaws involved in the Boeing incidents
3. Washington Post Article on the lack of notice to FAA about Boeing MCAS system
4. Paper on Predictive Inequity in Object Detection
5. Moral Machine Test
6. Paper on the Moral Machine Experiment
7. Interactive moral machine
8. Article analyzing results from different countries
9. Paper about Fairness involved in Algorithms that undergo ML
10. Article with more detail about Pneumonia and Asthma Risk System and Wolf Vs
Husky Identifier
11. Article about Rekognition and its failed Congress classifications

INTRO TO ETHICS 27

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/10-relevance/30-relevance-ethics.md
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.theverge.com/2019/5/2/18518176/boeing-737-max-crash-problems-human-error-mcas-faa
https://www.washingtonpost.com/local/trafficandcommuting/boeing-minimized-to-faa-the-importance-of-flight-control-system-implicated-in-737-max-crashes-new-report-says/2020/07/01/9900adda-bba4-11ea-8cf5-9c1b8d7f84c6_story.html
https://arxiv.org/pdf/1902.11097.pdf
https://www.moralmachine.net/
https://doi.org/10.1038/s41586-018-0637-6
https://ici.radio-canada.ca/info/2019/voitures-autonomes-dilemme-tramway/index-en.html
https://www.technologyreview.com/2018/10/24/139313/a-global-ethics-study-aims-to-help-ai-solve-the-self-driving-trolley-problem/
https://www.researchgate.net/publication/329277474_Can_Everyday_AI_be_Ethical_Machine_Learning_Algorithm_Fairness_english_version10.13140/RG.2.2.22973.31207
https://becominghuman.ai/its-magic-i-owe-you-no-explanation-explainableai-43e798273a08
https://www.aclunc.org/blog/amazon-s-face-recognition-falsely-matched-28-members-congress-mugshots

✎

SSUBSEUBSECCTIONTION A.2A.2

IntIntereracting with our Curriculumacting with our Curriculum

This module provides an overview of industry-standard programs like GitHub and
Markdown and ultimately will instill the skills for you to directly propose changes and
raise issues with the DuckieSky curriculum.

28

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/20-curriculum/00-overview.md

✎

✎

✎

UUNITNIT A.2.1A.2.1

Git and GithubGit and Github

1.1.1.1. CrCreating a GitHub Aeating a GitHub Accountccount
• Here are the instructions to create a GitHub Account:

◦ Go to GitHub’s Home Page
◦ Click Sign Up and complete the process for creating an account with your infor-
mation

◦ You should also verify your email address when an email from GitHub is sent
to you

1.2.1.2. Git and GitHub InformationGit and GitHub Information
• What are Git and Github?

◦ Git is a widely used version control system.
◦ Version control systems are software programs that allow programmers and
code-based project workers to manage the changes to their code-based projects
over time with new versions.

◦ GitHub is a Git repository hosting service, or an online datastructure that is a ba-
sis for storing and presenting these code projects.

◦ It’s kind of like Google Drive, but for software programmers!

NNotote:e: An open-sourced project is a project where the code used to make a particular
program or application is availible to everyone.

example Checkout these big name companies that have open-sourced GitHub
projects! You can actually look at the code that makes things run direct-
ly:

• Twitter
• Netflix
• Adobe

• What is the purpose of learning about GitHub?
◦ It is an industry standard for most code-based projects.
◦ This very textbook is hosted through GitHub!

◦ We have worked really hard to make this curriculum for you, but we know
there are bound to be mistakes or sections that can be improved. As a result, we
would like you to be able to edit and improve this textbook; the more helpful you
are in helping us improve this textbook, the better the course experience will be
for you and for students learning this curriculum in the future!

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/20-curriculum/10-curriculum-github.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/20-curriculum/10-curriculum-github.md
https://github.com/
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/20-curriculum/10-curriculum-github.md
https://github.com/twitter
https://github.com/Netflix
https://github.com/adobe

✎

◦ The next lesson, Markdown and Contributions, will cover the programming
language each individual page of the textbook is written in. You will learn today
about the overall structure of projects hosted through GitHub (like our textbook)
and how to propose changes to a GitHub repo.

1.3.1.3. Learning Git and GithubLearning Git and Github
• Here is a worksheet on GitHub defintions that you can use while going through the
tutorials to keep track of the terms or afterwards to assess the material that you have
learned!
• Learn the Basics of Git and GitHub here!

◦ First, follow this Introduction to GitHub Tutorial.
◦ Next, follow this Forking Tutorial.

◦ For this tutorial, you do not need to use GitHub Desktop or a text editor as of
now, but you will want to read the section so you know what clones and commits
are and how they are done!

◦ Last, follow this Issue Tutorial up until the “Notifications, @mentions, and Ref-
erences” section.

30 GIT AND GITHUB

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/20-curriculum/10-curriculum-github.md
https://drive.google.com/file/d/10cNHvO-TTIC7_tBin4QTZhMfuATdPnSV/view?usp=sharing
https://guides.github.com/activities/hello-world/
https://guides.github.com/activities/forking/
https://guides.github.com/features/issues/

✎

✎

✎

✎

UUNITNIT A.2.2A.2.2

MarkMarkdown and Contributionsdown and Contributions

2.1.2.1. Learning MarkLearning Markdowndown
• We’re going to be learning Markdown and Markduck today, and at the end of the
Unit, you are going to be able to directly submit some material to change our textbook!

◦ Follow this tutorial to learn the basics of Markdown
◦ Markdown is a text-to-HTML conversion tool for web writers.

2.2.2.2. Learning MarkLearning Markduckduck
• What is the difference between Markdown and Markduck?

◦ Markduck is a Markdown dialect that is very similar to Markdown in terms of
syntax. It is the language that the majority of the Duckiesky High School Textbook
(including this document) was written in. Markduck has many characteristics that
make it possible to create publication-worthy materials.

◦ Syntax is a set of rules and characters that define interactions for a program-
ming language. Individual syntaxes for programming languages can give various
characters and code completely different meanings.

◦ There are a couple key changes in the syntax between Markdown and Markduck,
but, as a whole, almost all of the features you just learned in the Markdown tutorial
remain the same!

◦ In Markduck, an unordered list is created by putting a dash (-) instead of (*).
◦ Sublists are created by using tabs instead of spaces in Markduck.
◦ In Markduck, headers are used to define pages and separate sections. For in-
stance, the “2.2 Learning Markduck” section title is created with a heading of lev-
el two (##) whereas the title of this page “Markdown and Contributions” was cre-
ated with a heading of level one (#).

◦ Read 1.5 Figures, 1.6 Subfigures, and 1.9 Comments.
◦ Quickly skim over the section on special characters to be aware of some of the
other features that Markduck supports which you can’t directly use in Markdown!

2.3.2.3. Editing the DuckieSkEditing the DuckieSky Ty Teextbookxtbook
Great! It’s now time to put your newly acquired Markduck skills and GitHub skills from
last lesson to use.
• You have the knowledge to propose changes to our curriculum!
✔ Exercise: Submit a pull request to change the next page Unit A.2.3 - Students: LeaUnit A.2.3 - Students: Leavvee
yyour mark herour mark here!e!; Click on the the pencil in the top right corner of the page to be
brought to our GitHub repo. View a video demo of an example pull request below.
Be creative but you should have in your edit:

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/20-curriculum/20-curriculum-editing.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/20-curriculum/20-curriculum-editing.md
https://www.markdowntutorial.com/
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/20-curriculum/20-curriculum-editing.md
https://docs.duckietown.org/DT19/duckumentation/out/markduck_basic.html
https://docs.duckietown.org/DT19/duckumentation/out/markduck_special_pars.html
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/20-curriculum/20-curriculum-editing.md

✎

1. Add a new section for yourself with a level two heading (##) or higher.
◦ Don’t use a level one heading (#) because that will create a new page!

2. Tell us why you are interested in this course!
3. Bold and/or italize words or phrases.
4. Use an ordered or unordered list.
5. Use a special tag to do something cool!
Once you submit a pull request, hopefully one of our team members will be able to ap-
prove it as quickly as possible!

1)1) Helpful MatHelpful Materials terials to Pro Propose Changopose Changeses

• Here is a video demoing an example edit to the student page. This walks you
through the process of submitting a pull request on our repo, which you can use to pro-
pose direct edits to any Markduck page in our textbook.

◦ As you learned in the last Unit, pull requests can be used to directly propose
changes to a repository. Use this to propose changes anywhere in our textbook that
you think you are able to improve (like a typo or a word/sentence/section). Don’t
worry too much about making an inaccurate change because a member of our team
will always look over it before it goes through; just try your best!

• Here is a video that demonstrates how to open and close a GitHub issue on our text-
book repository.

◦ You can use GitHub Issues to propose alterations that deal with the structure and
the hierarchical content of the textbook or to suggest changes that you are not in the
position to fix yourself.

Again, thank you for helping us and the DuckieSky community!

32 MARKDOWN AND CONTRIBUTIONS

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/20-curriculum/20-curriculum-editing.md
https://youtu.be/MplifsKP7j0
https://youtu.be/eVYg8khGkWI

✎

✎

✎

✎

UUNITNIT A.2.3A.2.3

Students: LeaStudents: Leavve ye your mark herour mark here!e!

Use yUse your newly acquirour newly acquired Marked Markduck skills and Duckietduck skills and Duckietown knowledgown knowledge te to submit a pullo submit a pull
rrequest tequest to edit this pago edit this page!e!
Be creative but you should have in your edit:
1. Add a new section for yourself with a level two heading (##) or higher.

◦ Don’t use a level one heading (#) because that will create a new page!
2. Tell us why you are interested in this course!
3. Bold and/or italize words or phrases.
4. Use an ordered or unordered list.
5. Use a special tag to do something cool!
Once you submit a pull request, hopefully one of our team members will be able to ap-
prove it as quickly as possible!

Check beforCheck before ye you continueou continue
Remember that you need to add an extra enter before any new items like section
headers, lists, or special tags for them to be recognized by Markduck!

MAKE CHANGES BELMAKE CHANGES BELOOW THIS POINTW THIS POINT

3.1.3.1. DevDev’’s Sections Section
I am interested in this course because:
• I lovlovee drones!

◦ Specifically, drones with 4 propellers.
a. More specifically, drones with cameras.

• I enjoy making drone curriculum
Warning: I do not particularly like troubleshooting issues with drones.

3.2.3.2. Mrs. JMrs. Jones Section v3ones Section v3

NNotote:e: I am interested in this course because:
• It is a fun wIt is a fun waay ty to to teach about reach about robotsobots

◦ SpecifSpecifically Drically Dronesones
◦ SSTUDENTS BUILD OTUDENTS BUILD OWN DRWN DRONEONE

3.3.3.3. GeorgGeorgee’’s Sections Section

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/20-curriculum/30-curriculum-student.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/20-curriculum/30-curriculum-student.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/20-curriculum/30-curriculum-student.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/20-curriculum/30-curriculum-student.md

✎

✎

✎

✎

✎

✎

✎

I am interested in this course because:
I want to learning about drones
1. I would like to underdtand the mechanics of building a drone.
2. More specifically assembling the parts.
[Robotic club] [Pre-engineering internship]

3.4.3.4. Lucas Furtado SectionLucas Furtado Section
• I am interested in this course because:
• I alwalwaaysys wanted to build a drone.

a. but specifically, drones with cameras.
b. Drones with 4 propellers

• I think this will help me with my building and EngEngeneringenering skills
• I want to learn how to program a drone but also what parts makes a drone ps: This
is my first time building a drone

3.5.3.5. LuisangLuisangel Morel Moralesales
I am intrI am intrestested in this course becasue it’ed in this course becasue it’s something new and intrs something new and intresting so I thought itesting so I thought it
wwould be fun and eould be fun and exxciting tciting to doo do..
1. I want to learn and understand about coding
2. I also want to know and understand the mechanics on buliding a drone
3. This will help me understand how to program a drone.

◦ This will also help me learn how to use basic skills on building and engenering.

3.6.3.6. Serigne sectionSerigne section
• I am interested in this course because: I wanna learn wanted to build a drone

3.7.3.7. NNahiomahiomyy’’s Sections Section
I am interested in this cources: because I want learn about rrobots and drobots and dronesones. See how
create a drones and the names of the pices.

3.8.3.8. HILSON’S RHILSON’S Reasoneason

1)1) The rThe reason I chose this class weason I chose this class was because I was because I wantanted ted to try something newo try something new..

3.9.3.9. IvIvaldinoaldino’’s sections section
I’m interested isthis book because some resons. First, I really like to use drone and I
love echnology. Second, I like to learn more about parts that make it fly. Also take some

34 STUDENTS: LEAVE YOUR MARK HERE!

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/20-curriculum/30-curriculum-student.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/20-curriculum/30-curriculum-student.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/20-curriculum/30-curriculum-student.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/20-curriculum/30-curriculum-student.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/20-curriculum/30-curriculum-student.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/20-curriculum/30-curriculum-student.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/20-curriculum/30-curriculum-student.md

✎

✎

✎

picture with the drone, and have fun.

3.10.3.10. SSylviaylvia’’s Sections Section
I am interested in this course because:
• I wanted to try something that was way out of my comfort zone

◦ Building a drone would be a good learning experience
• I want to know what goes into programming and coding a drone

◦ Including how long the process of building the drone takes
• I’ve always wanted to buy a drone, but being able to build one is much cooler

◦ Learning about all of the parts of a drone should also be a fun experience

3.11.3.11. RRebeccaebecca’’s Sections Section
Hi peopleHi people
I wanted to be in this class for multiple reasons:
1. I’ll learn the basic skills for building a drone
2. I’ll learn how to code and program a drone
3. And I could potentially use the knowledge I gain from this class and use it in the
outside world

3.12.3.12. ElijahElijah’’s Sections Section
I want to learn how to make things like drones and robots because they seam interest-
ing to me.

STUDENTS: LEAVE YOUR MARK HERE! 35

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/20-curriculum/30-curriculum-student.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/20-curriculum/30-curriculum-student.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/20-curriculum/30-curriculum-student.md

✎

SSUBSEUBSECCTIONTION A.3A.3

DrDrone Operone Operationation

This subsection covers the hardware and software that is used on the DuckieSky drone
to make autonomous flight possible. Last, but most importantly, the final lesson intro-
duces drone safety using a case study and referencing official FAA rules.

36

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/30-operation/00-overview.md

✎

✎

✎

✎

UUNITNIT A.3.1A.3.1

Sensors and ASensors and Actuatctuatorsors

Important Vocabulary:
Knowledge and activity graph

SensorsSensors - parts on a robot that allow it to sense, or estimate, its own conditions or
environment
AActuatctuatorsors - parts on a robot that use energy to interact with its environment
ContrControlleroller - connects the input from the sensors to create an output from the actua-
tors in order to accomplish a goal

Sensors in your drone::
1. InfrInfrarared Sensor (IR)ed Sensor (IR) - measures the distance to an object (or the ground) using in-
frared beams, then uses the cable to report it

Figure 1.1. IR + IR Sensor Cable

1. CamerCameraa - observes 2D images of the world to allow the drone to determine its planar
position and speed

Figure 1.2. Camera (Pi Cam) + Flexible Flat Cable (FFC)

1. Inertial MeasurInertial Measurement Unit (IMU)ement Unit (IMU) - sensor on your flight controller (FC) that allows
the drone to tell how it is accelerating and rotating in all 3 dimensions

Figure 1.3. Flight Controller (FC) with IMU

Actuators in your drone::
1. MotMotorsors - actuators that spin at a variable RPM (revolutions per minute) depending
on how much power it recieves (quantity = 4)

Figure 1.4. 2 CW and 2 CCW Motors

1. PrPropellersopellers - device with blades attached to motors to turn rotational motion into
thrust (quantity = 4)

Figure 1.5. 2 Clockwise and 2 Counterclockwise Blade Propellers (with Extras)

1. LEDLED - actuator that lights up that you will be using in some experiments

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/30-operation/10-operation-sensors.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/30-operation/10-operation-sensors.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/30-operation/10-operation-sensors.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/30-operation/10-operation-sensors.md

✎

Figure 1.6. 2 Clockwise and 2 Counterclockwise Blade Propellers (with Extras)

Controllers in your drone::
1. ElectrElectronic Speed Contronic Speed Controllers (ESCs)ollers (ESCs) - small computers that react extremely quickly
to accomplish to simply keep the motors spinning at a particular speed by sending it a
variable amount of power based on the input it recieves (quantity = 4)

Figure 1.7. 1 ESC for each Motor

1. Flight ContrFlight Controlleroller - computer that connects the IMU sensor to the ESCs and motors
to react quickly in order to fly the drone at a particular angle

Figure 1.8. Flight Controller

1. Raspberry PiRaspberry Pi - more powerful computer that accomplishes a complicated goal, such
as flying at a particular speed or to a particular position (it excecutes specific code
loaded via an SD card)

Figure 1.9. Raspberry Pi Model B

38 SENSORS AND ACTUATORS

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/30-operation/10-operation-sensors.md

✎

✎

✎

UUNITNIT A.3.2A.3.2

SafetySafety

1)1) Case Study: The Midair Collision in 2009Case Study: The Midair Collision in 2009

There was a collision between a private airplane and a sightseeing helicopter over Man-
hattan. The result was 9 deaths.
NTSB is the National Trasportation Safety Board. NTSB reports provide detailed ac-
counts of transportation accidents.
There were several causes that contributed to this according to the NTSB report:
1. The limitations of the see and avoid concept: 9 seconds before collision, the heli-
copter was not seen from the airplane. 5 seconds before collision, the helicopter was
still very far from view. 1 second before collision, the helicopter was too close to be able
to act sufficient. By the time the pilot of the airplane saw the helicopter, there was no
time/not sufficient enough time to avoid the helicopter.
2. Teterboro Airport local controller’s non pertinent telephone conversation (New
York Times). The controller was distracted as he was having a phone call. He did not
communicate with the pilot and was unable to warn the pilot of a potential crash.
3. Inadequate FAA procedures and regulations: There are inadequate FAA proceu-
ures for transfer of communications between ATC facilities along that area of where
the crash occured (New York Times). As well, the FAA regulations that not allow for
sufficient vertical separation between aircraft flying in the region (Prof Tellex slides).

2)2) FFAA rulesAA rules

The Federal Aviation Administration (FAA) is a US governmental boday that is respon-
sible for regulating aviation and unmanned aircraft. It regulates flights outdoors, air-
ports, air traffic management, certification of people and aircraft, and protection of US
assets. FAA rules do not apply to operations that take place indoors.
Students are considered to be recreational users.
Faculty and staff are considered to be non-recreational users.
Here are some of the important safety guidelines by the FAA:
1. Fly at or below 400 feet
2. Be aware of airspace requirements and restrictions
3. Stay away from surrounding obstacles
4. Keep your UAS within sight
5. Never fly near other aircraft, especially near airports
6. Never fly over groups of people
7. Never fly over stadiums or sports events
8. Never fly near emergency response efforts such as fires
9. Never fly under the influence of drugs or alcohol

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/30-operation/20-operation-safety.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/30-operation/20-operation-safety.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/30-operation/20-operation-safety.md
https://www.faa.gov/

✎

✎

✎

✎

3)3) WherWhere te to fly:o fly:

You may fly your drone indoors if you have enough space, as FAA rules do not apply to
operations that take place indoors.
Before flying outside, please check the FAA’s website for the Chart User’s Guide to
check which airspace you are located in.
You may also use the B4UFLY app, which is created by the FAA to help recreational
flyers to figure out where they can safely fly and/or any restrictions in a location.

4)4) PPossible Sourossible Sources for Dangces for Danger:er:

There are several possible sources of danger that can result from the drone:
1. applying force to your body
2. energy discharge from the body
3. parts or propellers dislodging from the drone
4. electric shorts and fires

5)5) Safe EnSafe Envirvironmentonment

The Bystander Effect:
The more people that are present, the less likely someone will help a victim during a
situation.
Be wary of this, make sure that if there is a dangerous situation, be cautious and aware,
and take action to help those who need it.
Make sure that you have a safe environment to fly indoors.
Make sure you have equipment:
1. Safety glasses
2. Gloves
3. Walls
4. Distance
5. Net (not required)

6)6) PrPree-flight Safety Checklist-flight Safety Checklist

Before you fly, you should make sure:
1. Do I have my safety goggles on?
2. Do I have a safe space to fly? Is there the possibility of the drone flying away or col-
lisions? Make sure the surface you are flying over is not reflective, and is not uniform
in details. Preferably a highly textured planar surface (ie: poster board with a bunch of
scribbles and shapes) If outdoors: make sure that you are flying in a safe space that ad-
heres to FAA rules, double check restriction and regulations of your space. Watch out
for trees, flying duckies, people, etc. If indoors: make sure that you have an adequate
clear area where you can fly a drone around and no obstacles that the drone/you will
crash into.
3. Make sure the propellers, motors, and flight controller are correctly placed and not

40 SAFETY

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/30-operation/20-operation-safety.md
https://www.faa.gov/air_traffic/flight_info/aeronav/digital_products/aero_guide/
https://www.faa.gov/uas/recreational_fliers/where_can_i_fly/b4ufly/
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/30-operation/20-operation-safety.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/30-operation/20-operation-safety.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/30-operation/20-operation-safety.md

✎

loose. With the battery disconnected: make sure that the numbers of the propellers and
the motors correspond. Also, the arrows on the propellers should be visible from the
top of the drone, and the arrows should be going in the same direction as the arrows
on the motors. The propellers should not be able to spin freely around the motor shaft.
Make sure the propellers are tightened down so that they cannot spin freely and there
is no gap between the propeller, the motor, and the motor nut. Make sure that the flight
controller is not loose to ensure that it won’t wiggle around or fall out of position dur-
ing flight.
4. Make sure there are no dangling wires or wires that are in the way of the propellers.
With the battery disconnected, spin the props with your finger and make sure there are
no wires in the way.
5. Make sure that the flight controller USB is connected to the Pi.
6. Inspect the battery for any problems. Check battery level when plugged in. Make
sure that the battery is not swelling, puffing, or smoking (when and when not plugged
in or charging). When the drone is connected, you can check the battery level on the
web interface. The battery level should generally be above 10V, if it is lower make sure
it is charged.
7. With drone connected, make sure that you are connected to the correct drone. You
can check this by running the blinkpowerled.sh script in pidrone_pkg
8. With drone connected, make sure there are no node errors. Go through each of the
screens using ` n, where n is a number 0-5, and make sure there are no errors printed
out. It is normal that there may be an error at the top of the screen that says something
about not connecting to ROS master, but that is OK because it takes a bit for ROS to
startup. Make sure there is other text underneath this error, and that text does not also
include an error message.
9. With drone connected, make sure that the IR sensor is working. While looking at
the web interface, move the drone up and down and make sure you see changes in the
IR graph on the web interface
10. With drone connected, check the kill switch and ensure that it works. Press the
space bar to arm the drone, and you will see the motors start turning. Press the space
bar again to kill/disarm the drone, and you will see the motors stop.

7)7) First Flight:First Flight:

The first time you fly the drone or start the drone, there may be some situations you
may experience/be aware of:
• Drone flips: incorrect propellor orientations
• Collisions: no side/back sensors
• Battery mishaps: replace batteries or charge them
• Excessive heat production of the drone: shorts in soldering
• IR Sensor not working: check soldering and voltages
• Motors not responding: check calibration and soldering, run calibration script in
terminal
• Haywire flight: check if flight controller is steady, make sure to run calibration

SAFETY 41

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/11-introduction/30-operation/20-operation-safety.md

script in terminal
Useful RUseful Resouresources and Rces and Refereferencesences
The OSHA Technical Manual on Industrial Robots and Robot System Safety

42 SAFETY

https://www.osha.gov/dts/osta/otm/otm_iv/otm_iv_4.html

✎

SSEECCTIONTION BB

ElectrElectronicsonics

This section introduces the concept of electrical circuits, how they are created, and
their basic characteristics including voltage, current, and resistance. This section also
contains tutorials on soldering, which is used to create circuit connections on the
drone. The knowledge and skills in this section will prepare you to start the drone
build!

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/12-electronics/00-overview.md

✎

SSUBSEUBSECCTIONTION BB.1.1

CirCircuitrycuitry

This subsection explains basic circuit elements, how to create a circuit, and fundamen-
tal circuit characteristics including voltage, current, and resistance. This subsection al-
so demonstrates how changing voltages and currents can create signals that carry in-
formation about a system.

44

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/12-electronics/10-circuitry/00-overview.md

✎

UUNITNIT BB.1.1.1.1

Simple CirSimple Circuitscuits

Links that covLinks that cover info taught in classer info taught in class
Energy Conversions Info
diagram of the circuit
Conductors vs. Insulators
Useful RUseful Resouresources and Rces and Refereferencesences
Comparing Electricity to Water
Ohm’s Law Diagram
Video on Electricity - scienceworld.ca/resource/static-electricity/
Glossary

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/12-electronics/10-circuitry/10-circuitry-simple.md
https://www.toppr.com/bytes/energy-conversion/
https://www.resistorguide.com/pictures/resistors-in-LED-circuits.png
https://www.youtube.com/watch?v=Y66PW1nIea0
https://www.windows2universe.org/physical_science/physics/electricity/circuit_analogy_water_pipes.html
https://www.dreamstime.com/ohms-law-vector-illustration-fun-physics-mathematical-equation-explanation-colorful-ohm-volt-men-rushing-ampere-image177188389
https://docs.google.com/document/d/1LJzESfH8VnLDAitNTwwa-iDZs-zY-KM2v1EuWFoLz6A/edit?usp=sharing

✎

UUNITNIT BB.1.2.1.2

VVoltagoltage, Curre, Current, Rent, Resistanceesistance

Links that covLinks that cover info taught in classer info taught in class
How voltage, resistance, and current relate mathmatically using Ohm’s law
How to measure voltage, resitance, and current with the multimeter
Difference between AC and DC
Possible Hw Sheet
Useful RUseful Resouresources and Rces and Refereferencesences
https://www.wikihow.com/Analyze-Resistive-Circuits-Using-Ohm%27s-Law
Glossary

46

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/12-electronics/10-circuitry/20-circuitry-voltage.md
https://spl-binal.blogspot.com/2017/09/ohms-law.html#.XvqBNihKhhE
https://www.youtube.com/watch?v=sKuPd3XYwuA
https://learn.sparkfun.com/tutorials/alternating-current-ac-vs-direct-current-dc/all#:~:text=In%20direct%20current%20(DC)%2C,because%20the%20current%20changes%20direction.
https://docs.google.com/document/d/18a2UVzlNQGC5mvZ_JpYRoVtIp8XaYsbznB4QR38_TL4/edit?usp=sharing
https://www.wikihow.com/Analyze-Resistive-Circuits-Using-Ohm%27s-Law
https://docs.google.com/document/d/1LJzESfH8VnLDAitNTwwa-iDZs-zY-KM2v1EuWFoLz6A/edit?usp=sharing

✎

UUNITNIT BB.1.3.1.3

Signals and ConnectionsSignals and Connections

Analog signalsAnalog signals
Information can be transmitted through electricity:
• Encoding in voltage (Seen in an IR sensor)
• Encoding in frequency (Used for WiFi)
• Noise, which can come from various sources, can distort or block the information
transmittion done by the former
Digital signalsDigital signals
Our number system uses base-10 (10 symbols) to represent numbers, but there are
many other ways to convey information!
There’s no reason we have to use 10 symbols, you can get away with just 2 – binary!
(or other numbers, eight: octal, sixteen: hexadecimal) Here’s an ascii table that shows
binary and decimal. ascii table
Your teacher may assign you to construct a flippydo - a useful paper device that can
help you translate our decimal system into binary! flippydo instructions video explaina-
tion
Useful Resources
Analog vs Signals Video
Fun Binary Game!
Glossary

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/12-electronics/10-circuitry/30-circuitry-signals.md
https://www.rapidtables.com/code/text/ascii-table.html
https://docs.google.com/document/d/1QnD9khmPUz1az3ZLc5L8vavR6lU0uScspotRhORnHxE/edit
https://www.youtube.com/watch?v=wDWj1a4BZjQ
https://www.youtube.com/watch?v=wDWj1a4BZjQ
https://www.youtube.com/watch?v=hdtc9_cdfTY
/tmp/mcdp_tmp_dir-root/prince_rendery9b1dcfo/%5Bhttps:/games.penjee.com/binary-bonanza/%5D(https:/games.penjee.com/binary-bonanza/)
https://docs.google.com/document/d/1LJzESfH8VnLDAitNTwwa-iDZs-zY-KM2v1EuWFoLz6A/edit?usp=sharing

✎

SSUBSEUBSECCTIONTION BB.2.2

SolderingSoldering

The lessons in this subsection introduce soldering to create circuit connections, demon-
strate the types of soldering techniques used to build the drone, and offer soldering ex-
ercises to hone your skills before starting on your drone.

48

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/12-electronics/20-soldering/00-overview.md

✎

UUNITNIT BB.2.1.2.1

IntrIntro to to Solderingo Soldering

To put the drone together, wires have to be connected to each other, to sensors, and
other electrical components. To do this, connections are formed by heating and cooling
the mallieable metal known as solder. The soldering iron is the tool to heat the solder.
Remeber, solder can get very hot and fling out. It is necessary to have eye protection, as
well as to not breathe in soldering fumes. To make the soldering of two wires together
easier, use helping hands or long-nose pliers. Tinning is what you do before you solder,
which is coating a metal with solder to help it join and flow electricity better to another
wire. Here’s a video that shows how to properly tin a wire.
VVocabulary:ocabulary:

☀ Soldering is when two metals (solder and metal) are melted together. You use
solder (show solder), to join wires.

☀ Tinning is what you do before you solder, which is coating a metal with solder
to help it join and flow electricity better to another wire.

Important Safety Tips:Important Safety Tips:
• The soldering iron is hot, only apply to needed components
• Solder can fling out and is necessary to have eye protection
• Do not breathe in soldering fumes
• The metals that the solder is next to is also hot, so use helping hands or long-nose
pliers
HerHeree’’s a sts a step by step by step on how tep on how to tin a wiro tin a wire:e:
1. Twist the loose wire ends into a tight twist.
2. Hold the wire stably in place with helping hands or a plier.
3. Apply a solder dot onto the iron (to increase heat transfer from the iron to the wire).
4. Apply the iron onto the wire about to be tinned. Wait a few seconds for the wire to
heat up.
5. Apply the solder onto the wire NOT THE IRON , and let the solder melt and flow
into and on the wire.
6. Wipe away any excess solder with the iron being careful to not fling it too aggres-
sively so to avoid burning someone/something.
7. Remove the iron and clean it.
8. Let the wire cool.

NNotote:e: A pre tinned wire is a wire tinned at the factory. It looks shiny on the tip and
the end cannot be frayed. For this courses’ purposes, you should cut the pre-tinned
end, and strip the wire casing, and continue self-tinning as seen above.

Useful RUseful Resouresources and Rces and Refereferencesences

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/12-electronics/20-soldering/10-soldering-introduction.md
https://www.youtube.com/watch?v=pRPF4wpXX9Q

1. Detailed instructions of each component and tinning
2. Soldering Tutorial for Beginners in 5 easy steps
3. How to Tin a Wire
4. Glossary

50 INTRO TO SOLDERING

https://docs.duckietown.org/daffy/opmanual_sky/out/build_phase0.html
https://www.youtube.com/watch?v=Qps9woUGkvI
https://www.youtube.com/watch?v=pRPF4wpXX9Q
https://docs.google.com/document/d/1LJzESfH8VnLDAitNTwwa-iDZs-zY-KM2v1EuWFoLz6A/edit?usp=sharing

✎

UUNITNIT BB.2.2.2.2

Building SkillBuilding Skill

To solder with flux, simply follow the steps of soldering from the previous lesson, ex-
cept before tinning the wire, stick the soldering iron into the flux and apply it on the
wires. This will make the solder flow easier, but is not always necessary. Here’s a help-
ful video that demonstrates this.
Through-hole soldering is another form a soldering used on the Pi on the drone. This
is simply when a wire is stuck through a previously made hole on a PCB. To complete
through hole soldering, tin the wire, stick it through the pre-made hole, and solder the
tip of the wire to the metal surrounding the hole. This video is a great demonsration on
this technique.
Glossary

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/12-electronics/20-soldering/20-soldering-skill.md
https://www.youtube.com/watch?v=3Z8CzB4BYJA
https://www.youtube.com/watch?v=vAx89WhpZ3k
https://docs.google.com/document/d/1LJzESfH8VnLDAitNTwwa-iDZs-zY-KM2v1EuWFoLz6A/edit?usp=sharing

✎

UUNITNIT BB.2.3.2.3

TTrroubleshootingoubleshooting

Cold Joint Troubleshooting - watch from 0:00 to 2:00
Using A Multimeter
Glossary

52

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/12-electronics/20-soldering/30-soldering-troubleshooting.md
https://www.youtube.com/watch?v=VLubdi6aC3g
https://www.youtube.com/watch?v=TdUK6RPdIrA
https://docs.google.com/document/d/1LJzESfH8VnLDAitNTwwa-iDZs-zY-KM2v1EuWFoLz6A/edit?usp=sharing

✎

SSEECCTIONTION CC

Build: 1Build: 1

In this first part of the build, you will create a circuit to provide power to the Raspberry
Pi from the battery. You will make the circuit connections using the soldering skills that
you’ve gained from the Soldering subsection. By the end of this build part, you will be
able to power up your Pi and connect to it on your base station!
Build Part 1 Instructions can be found in the Operations Manual

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/13-build1/00-overview.md
https://docs.duckietown.org/daffy/opmanual_sky/out/build_part1_overview.html

✎

SSEECCTIONTION DD

Computing and NComputing and Netwetworkingorking

After Build Part 1, you should be able to power up your Raspberry Pi and connect to it.
This section will introduce you to two of the most important concepts of computing in
robotics: networking and bash. Networking allows your computer to talk to the drone,
and bash allows you to navigate through files and run programs on the Raspberry Pi
using just commands that you type!

54

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/14-computing/00-overview.md

✎

SSUBSEUBSECCTIONTION DD.1.1

Using the PiUsing the Pi

This subsection includes an overview of Networking, SSH, and Bash. After completing
this subsection, you will be able to connect to the Pis, navigate in Bash, and blink its
LED using a command line interface.

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/14-computing/10-pi/00-overview.md

✎

✎

✎

✎

UUNITNIT DD.1.1.1.1

NNetwetworkingorking

1.1.1.1. 7 La7 Layyers of Abstrers of Abstractionaction
• If not for networking, we would not be able to connect to and run our drones, so it’s
important for us to learn the concepts of Networking!

◦ Learn about the 7 layers of abstraction at our edX lesson.
◦ What is outlined here is the basis of what is used for our computers, mobile
devices, and even with our drones.

1.2.1.2. BasestationsBasestations
• What is a basestation?

◦ For our purposes, a basestation is a laptop or desktop (ie. not a tablet) with the
ability to connect to WiFi over a network and that has the ability to run/read python.

• How can we control our basestations?
◦ A shell is a programming language that takes input and gives the input to the
computer and operating system to analyze and perform the task that the input asks
for.
◦ A terminal is a program that allows the user to interact with the shell.

◦ We will learn more about the terminal in the next lesson on Bash, which is the
programming language that many terminals run in.

◦ SSH (Secure Shell) is a method that allows a user to remotely log in from one
computer/device to another. We utilized SSH to connect to our Pi in the past before
we implemented the really handy text editor!

◦ If you would like, you could attempt to follow our old build instructions to con-
nect to the drone over SSH, but this may be a very self guided process (additional-
ly it may not be compatible over Chromebook).

1.3.1.3. NNetwetworking with our Drorking with our Droneone
• Connect to the Pi following the Build Part 1 Checkpoint Instructions from the Oper-
ations Manual

◦ The text editor on this screen is Visual Studio Code (VSCode). This is a source ed-
itor that allows you to edit various files (like text and Markdown files). Use the editor
to open and look at the files in the directory.
◦ On the bottom of the screen is a terminal that runs in Bash. We will be learning
about and directly utilizing this terminal in the next Unit.

◦ If you can’t find the terminal, follow the first 10 seconds of this video to open
the terminal.

56

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/14-computing/10-pi/10-pi-networking.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/14-computing/10-pi/10-pi-networking.md
https://edge.edx.org/courses/course-v1:BrownX+CS195R+2018_T1/courseware/0e3596880ec446d8ab63df427e02e9c4/56017f6d3048461b90466ad229ac8df6/?activate_block_id=block-v1%3ABrownX%2BCS195R%2B2018_T1%2Btype%40sequential%2Bblock%4056017f6d3048461b90466ad229ac8df6
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/14-computing/10-pi/10-pi-networking.md
https://docs.duckietown.org/DT19/opmanual_sky/out/build_phase5.html
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/14-computing/10-pi/10-pi-networking.md
https://docs.duckietown.org/daffy/opmanual_sky/opmanual_sky/out/build_part1_checkpoint.html
https://drive.google.com/file/d/1HvtKNhsjG_dQt2edeJ40WdhmyO649ZOd/view?usp=sharing

✎

✎

✎

UUNITNIT DD.1.2.1.2

BashBash

2.1.2.1. What is BashWhat is Bash
• Connect to the Pi following the Build Part 1 Checkpoint Instructions from the Oper-
ations Manual.
• We will be learning about Bash commands and the terminal, as mentioned in the
Networking Unit. It is important to learn how to utilize a terminal as it is the introduc-
tion to the inner processes of the operating system, and it will allow us to directly make
changes to our drone!

◦ We will be using Bash in the next Unit on Blinking an LED to directly see a
change on our drone.

• Bash is the language that many shells are written in. Actually, our Pi’s shell runs
with Bash!
• Now, click on the terminal in the web editor for the Pi and prepare to input text.

◦ Follow the first 10 seconds of this video if a terminal is not already open.

2.2.2.2. Learning BashLearning Bash
✔ Exercise: Students should do the following steps with Bash commands to test out
their knowledge of the terminal. They can do this through the online web editor when
connected to the Pi:
• One of the features that a terminal can do is navigate and view the file system of a
computer. For instance, folders you would typically find on your home Computer like
“Desktop” and “Downloads” are directories. We are just now being introduced to this
terminal, so we want to see the directories and files that are in the current location of
the file system.

◦ To do this, we can input (or enter) the Bash command “ls”“ls” that prints the files
and directories in the terminal. Click on the terminal, type “ls”, and hit enter.

◦ The terminal will output (or print) all of the files and directories in the current
location of the terminal. Remember, we are on the Pi’s terminal so all of these files
and directories are on your Pi.

• Folders can be within folders, so directories can be within directories! Your terminal
is probably in a directory right now; we want to know where we are in our file system,
so lets print the current directory name.

◦ The “pw“pwd”d” command prints the current directory: enter “pwd” into the terminal.
• Now, we know what directory we are in! Let’s say we need to create a directory with
a text file in it. There is a convention in Computer Science to print/use “Hello World”
when being introduced to a Computer Science principle/language. So, let’s name the
directory “Hello” and the text file “World”. The end goal of this mini-exercise is to print
out the text file, which will contain the contents “Hello World”.

◦ The “mk“mkdirdir”” command allows you to make directories: enter “mkdir Hello”.

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/14-computing/10-pi/20-pi-bash.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/14-computing/10-pi/20-pi-bash.md
https://docs.duckietown.org/daffy/opmanual_sky/opmanual_sky/out/build_part1_checkpoint.html
https://drive.google.com/file/d/1HvtKNhsjG_dQt2edeJ40WdhmyO649ZOd/view?usp=sharing
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/14-computing/10-pi/20-pi-bash.md

• Check that the directory has been created by listing the current files/directories
◦ Enter “ls” and there should be a new name that represents our directory in the
list.

• We now want to enter into the “Hello” directory to make the “World” file.
◦ The ““cd”cd” command allows us to traverse directories: enter “cd Hello”.
◦ Enter “pwd” to see that we are in the new directory.
◦ Enter “ls” to see the contents of the directory (which should be nothing because
we just created it).

• We can create a text file called “World.txt” within the “Hello” directory at this point.
◦ One of the functions of the Bash command “t“touchouch”” is to create files: enter “touch
World.txt”
◦ Enter “ls” to confirm that the “World.txt” file was created.
◦ The ““cat”cat” command prints text files into the terminal output: enter “cat
World.txt”. There should be no output because we created an empty text file.

• We need to consider how we can input the contents “Hello World” into the World.txt
file. To do this normally, we would just open World.txt in a text editor, type in “Hello
World”, and save the file, but let’s say we only have access to this terminal and we don’t
want to open any external applications.

◦ The ““echoecho”” command will echo any input back to the output of the terminal: en-
ter “echo I Love Drones!” just to check. You should get an output of “I Love Drones!”.
◦ A carat (”>””>”) with a file name following it added to any Bash command will take
the terminal output of that command and put it into the file.
◦ We can use the carat to take the output of the echo command and place it in the
World.txt file: enter “echo Hello World > World.txt”.

◦ A cool feature of the carat is that it automatically creates a text file for you if
one does not exist. In fact, we didn’t even have to use the “touch” command to
create the World.txt file before the above “echo” command!

• Print the contents of the “World.txt” file.
◦ Enter “cat World.txt”.
◦ Congratulations! You have completed this conventional introductory “Hello
World” step!

• Before continuing, use the VSCode navigator on the left side of the text editor to nav-
igate to the Hello directory and open the World.txt file for viewing purposes (if it’s not
showing up, you might have to hit the “Refresh Explorer” option).

◦ We could have used this to input the text into the World.txt file, but you may not
always have this handy web editor when dealing with a terminal.

• Delete the “World.txt” file.
◦ The “rm“rm”” command deletes files: enter “rm World.txt”.

• Leave the “Hello” directory.
◦ Using “..” as the argument for the “cd” command will allow you to leave a direc-
tory, enter “cd ..”.

58 BASH

✎

✎

◦ Enter “pwd” to confirm that you have left the directory.
• Delete the now empty “Hello” directory.

◦ The “rmdir“rmdir”” command will allow you to remove an empty directory: enter “rmdir
Hello”.
◦ Check that the “Hello” directory has been deleted and is not on the list of files/
directories by entering “ls”.

• Once you are ready to move on from this exercise, you might not want to have all of
the terminal output above lingering around. The ““clearclear”” command removes all previ-
ous output: enter “clear”. You can use this at any point to remove previous input/output
from the terminal.

2.3.2.3. Exploring the Pi’Exploring the Pi’s Dirs Directectories and Filesories and Files
✔ Exercise: Students should explore the files and directories of their drone’s Pi using
the following commands: “ls”, “cd”, “pwd”, and “cat”. When finished, navigate back to
the starting directory.

Warning: Don’t delete or change any of the files or directories on the Pi already!

comment
You can use the up and down arrow keys on the keyboard in the terminal to see
previously entered commands. You can use this if you want to reenter a command
or reuse parts of a command.

2.4.2.4. Using BashUsing Bash
✔ Exercise: Create a folder that is called “Actuators”, create three text files (name them
“1.txt”, “2.txt”, and “3.txt”), and insert the name of a different Actuator on our drone in
each of the three files.

Check beforCheck before ye you continueou continue
Make sure to delete the “Actuators” directory.

• This time, try to delete the directory without deleting the contents of the
directory first.

◦ You should get the following error: “rmdir: Actuators/: Directory not
empty”.
◦ Instead, use the command “rm -r Actuators”.

◦ The “-r” is telling the rm command to delete recursively, which
means it will delete all of the files and directories within before delet-
ing the Actuators directory. This is outside the scope of this class, but if
you are interested, you can read more about recursive functions here.

• Once you are finished, the ““eexit”xit” command will stop the terminal: enter “exit”.

BASH 59

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/14-computing/10-pi/20-pi-bash.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/14-computing/10-pi/20-pi-bash.md
https://www.computerhope.com/jargon/r/recursive.htm

✎

✎

✎

UUNITNIT DD.1.3.1.3

Blinking an LEDBlinking an LED

3.1.3.1. StStep 1: Blinking the LED in the REPLep 1: Blinking the LED in the REPL
There are two types of signals that an LED can provide: HighHigh and LowLow signals. To turn
on the LED, we need to provide HighHigh signal on the pin we choose, while to turn off the
LED we will give a LowLow signal.
After we power up the Pi, navigate to the code editor, and open up the terminal, we can
type in this line and press EntEnterer:

gpio -g mode 6 out

In this line, the -g option is the option to define the GPIO BCMGPIO BCM pin as explained earlier.
We can use this page to figure out the numbering. In this case, our LED is connected
to Pin 6Pin 6 on the Pi, so we designate the corresponding GPIO6GPIO6 to run the OutputOutput mode,
which means that it can provide HighHigh or lowlow signal.
Next, we write the signal on GPIO6 to be High by running this command:

gpio -g write 6 1

At this point, you should see the LED turned on. Similarly, the following command will
turn it off by writing the Low signal:

gpio -g write 6 0

Lastly, we can use the gpio blink command to blink the LED:

gpio -g blink 6

In the above command, we command pin 6 for a blink, turn on 1 second, turn off 1 sec-
ond, and so on. Press CCTRL+CTRL+C to stop the command.

3.2.3.2. StStep 2: Blinking the LED using a bash scriptep 2: Blinking the LED using a bash script
An alternative way to blink the LED is to use the gpio commands in bash. Before using
them, we need to know the path to the gpio command by using the whichwhich command in
the terminal:

which gpio

You should get an output of /usr/bin/gpio/usr/bin/gpio path.

60

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/14-computing/10-pi/30-pi-led.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/14-computing/10-pi/30-pi-led.md
http://192.168.41.1:8081/
https://pi4j.com/1.2/pins/model-b-rev2.html
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/14-computing/10-pi/30-pi-led.md

✎

Now we are ready to make the bash script. The first step is to create a file such as
blink.shblink.sh with the ttouchouch command.

touch blink.sh

Then, navigate to the blink.sh file through the navigator on the left side of the screen
editor, open it, and fill in the following script:

while :
do

/usr/bin/gpio -g toggle 6
sleep 1

done

Before we proceed, let’s take a closer look to the lines we just wrote. The first line while?while?
created an infinite loop that runs the following two lines over and over again. The ttog-og-
glegle option is an option to write the opposite condition: if the pin is Low, it will be writ-
ten High, and vice versa. The sleep 1sleep 1 means to delay the program for 1 second before it
continues.

➡ Can you think of a way to change the frequency of blinking by modifying
one number in the above script?

After writing our script, we can press CCTRL+XTRL+X followed by confirmation by pressing
the YY button to save it. After that, make the script executable (to give us the permission
to run it with the +x+x option) with the chmodchmod (change mod) command.

chmod +x blink.sh

At last, we can run the program with the bash command:h

bash blink.sh

or

./blink.sh

The LED should blink. Don’t forget to stop it using Ctrl+CCtrl+C.

3.3.3.3. AAdditional Rdditional Refereferenceence
GPIO commands
Blinking the LED tutorial

BLINKING AN LED 61

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/14-computing/10-pi/30-pi-led.md
http://wiringpi.com/the-gpio-utility/
https://www.teknotut.com/en/first-raspberry-pi-project-blink-led/

✎

SSEECCTIONTION EE

Sensors, ASensors, Actuatctuators, and Contrors, and Control: 1ol: 1

Sensors, Actuators, and Control: 1 focuses on an introduction to how sensors take in
information and translate it to data that a robot can use to perceive the world around it.

62

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/15-sac1/00-overview.md

✎

SSUBSEUBSECCTIONTION E.1E.1

OvOverviewerview

This subsection discusses the basic use of sensors, and how sensors are interpreted by
computers.

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/15-sac1/10-basics/00-overview.md

✎

UUNITNIT E.1.1E.1.1

IntrIntro to to Sensorso Sensors

Explain the defExplain the definition of rinition of roll, pitoll, pitch, and ych, and yaaww..

Figure 1.1. Roll, Pitch, and Yaw Diagram

Certain sensors on the drone measure Pitch, Roll, and Yaw. The IMU measures roll and
pitch; The camera measures yaw.
Now, let’s define some terms from the picture above.
Pitch- The rotation of the flying body around a side-to-side axis. It can be thought of as
an “up and down” motion.
Roll- The motion of the flying body rocking back and forth. It can be thought of as the
wings of a plane “tilting up or down”.
Yaw- The rotation of the flying body along a vertical axis. It can be thought of “twisting
left and right”.
Reference
AnswAnswers for Class Discussion Questionsers for Class Discussion Questions
Question 1:

Answer Analog-to-Digital Converter (ADC)!

Here (Material 3.15) is what it looks like.

Knowledge and activity graph

Voltage or Current is produced by the sensors -> amplification (convert to voltage if
necessary) -> ADC

Figure 1.2. Analog and Digital Signal Diagram

Question 2:

64

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/15-sac1/10-basics/10-basics-sensors.md
https://calaero.edu/aircraft-axes-pitch-yaw-roll/
https://docs.duckietown.org/daffy/opmanual_sky/out/build_materials_included.html

Answer Interpolation (estimate the data points in between known data) and ex-
trapolation (using the current trend to predict the future data)

Figure 1.3. Interpolation and Exterpolation Graph

Question 3:

Answer - Filtering Frequencies: cut the frequency measurements that are unrea-
sonably high or low, Combining data from multiple sensors, Cleverly decide which
data are trustworthy

INTRO TO SENSORS 65

✎

SSEECCTIONTION FF

Build: 2Build: 2

In this part of the build, you will be adding your first sensor to the drone – the infrared
(IR) sensor. The IR sensor is used to measure distance, and it is used on the drone to
measure how high it is flying. By the end of this build part, you will be able to see the
output of the infrared sensor in a web browser using the drone’s web interface!
Build Part 2 Instructions can be found in the Operations Manual

66

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/16-build2/00-overview.md
https://docs.duckietown.org/daffy/opmanual_sky/out/build_part2_overview.html

✎

SSEECCTIONTION GG

Sensors, ASensors, Actuatctuators, and Contrors, and Control: 2ol: 2

This section demonstrates how to use the infrared sensor that you attached to your
drone in Build Part 2. The first subsection demonstrates how to convert the output of
the infrared sensor into a measurement of distance. The second subsection introduces
the Robot Operating System, or ROS, which will allow the drone to share the distance
measurement from the infrared sensor with other programs running on the Pi that
make the drone fly.

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/00-overview.md

✎

SSUBSEUBSECCTIONTION GG.1.1

SensingSensing

Your drone needs to know how high it is above the ground if it wants to fly at a constant
height. This subsection will get you a giant step closer to making this possible. The
lessons in this subsection will walk through the processes of:
1. understanding the output of the infrared sensor
2. converting the output into a useful unit, such as meters which are used to measure
distance
3. writing a Python program to read the sensor using the Raspberry Pi
By the end of this subsection, you will be able to measure distances with your IR sensor!

68

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/00-overview.md

✎

✎

✎

✎

✎

UUNITNIT GG.1.1.1.1

CalibrCalibrationation

1.1.1.1. BackBackgrgroundound
In the Build Part 2 Checkpoint, you read the output of your IR sensor using two meth-
ods. First, you used the multimeter to read the voltage of the IR sensor signal wire.
Then, you started up the drone software and observed the IR sensor readings on the
height chart. In this lesson, you will implement the steps needed to transform the volt-
age output in Volts to a distance in meters.

1.2.1.2. How the IR sensor wHow the IR sensor worksorks
If you take a close look at the IR sensor, you might think that it looks as if it has two
eyes. One of these “eyes” is used to emit light, and the the other is used to detect light.
In slightly more detail, the IR sensor works by emitting a beam of infrared light out of
an infrared LED on one side of the IR sensor, and then measuring reflection using a
special sensor on the other side. The sensor that measures the reflected light is called a
Position Sensing Device (PSD), and it outputs a voltage that depends on where the light
is hitting the sensor. If you would like a more detailed explanation, read the “How does
an IR sensor work?” section of this article.
Although we know that the PSD outputs a voltage related to the position of the reflect-
ed light, we do not know what the relationship is. There are three ways that we can
determine the relationship. The first is looking at the sensor datasheet. The second is
by experimentation, and the third is by geometrical derivation.

1.3.1.3. DatasheetDatasheet
A datasheet is a document that is created by the designer of some piece of technology
that includes all of the information about the device. The information will vary depend-
ing on the device, but generally it will include the correct operating conditions, the lim-
its of the device, and graphs of the devices performance.

1)1) RRead thread throughough

Here is the datasheet for your Sharp IR sensor. Give it a brief read to become acquainted
with the document, it is OK not to understand everything; some of the information is
application dependent.
1. The first includes descriptions of the device, features, an some example applica-
tions.
2. The second page includes technical drawings with dimensions so that we can de-
sign our robot to accomodate the sensor.
3. The third page has information on the electrical characteristics of the sensor such
as the sensor output on different surfaces.
4. The fourth page shows the timing diagram (very low-level circuit design informa-

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/10-sensing-calibration.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/10-sensing-calibration.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/10-sensing-calibration.md
https://www.makerguides.com/sharp-gp2y0a21yk0f-ir-distance-sensor-arduino-tutorial/
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/10-sensing-calibration.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/10-sensing-calibration.md
https://www.parallax.com/sites/default/files/downloads/28995-Sharp-GP2Y0A21YK0F-IR-Datasheet.pdf

✎

✎

✎

tion) that shows how fast new sensor measurements are available.
5. The fifth page shows the relationship between the output voltage and the distance
to an object. This is just what we were trying to find!

2)2) Looking at the grLooking at the graphsaphs

Take a look at the graphs in Fig. 2. In the next section, you will be creating these graph
for yourself!
TTop grop graphaph The top graph shows the voltage output of the sensor at different distances.
If you are given a distance, you can tell what the voltage output will be by looking at
the y value of the graph. For example, if the sensor is at 60 cm, the voltage would be
about 0.5 V. However, we want to know the distance given the voltage. If we were given
a voltage, such as 1.0 V, there are two possible distance values on the graph: approxi-
mately 1 cm and 27 cm. If you look back at the first page of the datasheet, it says that
the range of the sensor is between 10-80 cm. This means that we cannot trust the val-
ues of the sensor if it is less than 10cm away from an object. If we ignore the part of the
graph before 10cm, then we know that if we are given 1.0 V from the IR sensor, then
the distance must be 27cm.
BotBotttom grom graphaph The bottom graph show the voltage output of the sensor versus the in-
verse of the distance.
Q:Q: Why did they make a graph of inverse distance?
Hint: Look at the shape of the graph
Answer: The reason this graph uses the inverse distance is because it linearizes the
graph. In the top graph, we see that the voltage is inversely related to the distance. By
graphing the voltage against the inverse distance, we can make the graph look like a
line. The advantage of linearizing is so that we can approximate any value using the
equation of a line: . The following section includes more information on
linearizing and inverse relationships.

1.4.1.4. Experimental derivExperimental derivationation
The easiest way to derive the relationship between the IR sensor voltage and distance
is to experiment. For this experiment, we are going to move the IR sensor to a known
distance from an object, and then we are going to record the voltage output. We will
repeat these steps several times between 1cm and 100 cm. Then we will plot the data to
visualize the relationship between the two quantities. We’ve created a spreadsheet for
you to enter your data. Open this spreadsheet and click: File > make a copy.

1)1) Collect DataCollect Data

Gather your drone build and and a meter stick. Hold the meter stick up, or lean it
against a wall. Face the sensor at 0.01m (1 cm) above the ground and use the multime-
ter to measure the voltage, as was done in Build Part 2 Checkpoint. Record the voltage
in the spreadsheet column titled “Voltage (V)”. Repeat this step for each distance mea-
surement.

NNotote:e: For the distances less than 10cm, you will need to use the 20V setting on the

70 CALIBRATION

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/10-sensing-calibration.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/10-sensing-calibration.md
https://docs.google.com/spreadsheets/d/1MMzOZZ6ctoP5_CLTsk6j9O3X2ERI_F9tisQYeAsObgk/edit?usp=sharing
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/10-sensing-calibration.md

✎

✎

✎

✎

multimeter when measuring. For greater distances, you can use the 2V setting.

2)2) Analyze the DataAnalyze the Data

Figure 1 is a scatter plot that compares the voltage output from the sensor to the dis-
tance from the ground. Take a look at one of the data points on the plot. Notice that the
x value is the distances that you measured at, and the y value is the voltage output that
you recorded. We can use this plot to get the distance from the voltage. However, what
happens if we are given a voltage that is not one of our data points? For example, we
know the voltages at 40cm and 50cm, but what if the drone is at 45cm?

3)3) IntInterpolaterpolatee

Although we do not know what the voltage will be in-between our data points, we
can approximate it using nearby data points. For our approximation, we can perform
a linear interpolation between data points. Linear interpolation sounds fancy, but all it
means is to play connect-the-dots with our graph; that is, we draw a straight line be-
tween each point. Figure 2 shows what the graph looks like with linear interpolation.
Notice that between each point is a straight line (if the line was curved, it would not be
linearlinear interpolation).
Now that we know what the data is in-between points, let’s try working with it again!

4)4) Understand the dataUnderstand the data

Now that we have interpolated between points, we can use this graph to find the dis-
tance given any voltage. Let’s try it.
1. Hold your sensor above the ground at any distance between 10 and 80cm. Write
down the distance somewhere.
2. Read the voltage using the multimeter
3. Look at the graph and find this voltage on the y-axis
4. Follow the graph straight down to the x-axis to find the distance that corresponds
to this voltage
5. Check: was the distance that you got from the graph close to what you wrote down?
This is how the IR sensor can measure distances! But there is a bit of a problem.
Q:Q: What happens if try to follow the same steps when the IR sensor is only 5 cm above
the ground?
AnswAnswer:er: There are two possible distances for this voltage value! If we were only given
the voltage value and asked to find the distance, we wouldn’t know which one to
choose!

5)5) Set limitsSet limits

There is an easy solution to the problem we’ve just discovered. Let’s cut out any part of
the graph that has two distance values for one voltage value. It looks like if we remove
all of the data before 10 cm (value may vary depending on your data), we can eliminate
our problem. This is what was recommended earlier in the sensor datasheet.
Q:Q: Do you see the disadvantage to ignoring the data below 10cm?

CALIBRATION 71

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/10-sensing-calibration.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/10-sensing-calibration.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/10-sensing-calibration.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/10-sensing-calibration.md

✎

Answer: We cannot trust any of the sensor measurements that are less than 10cm. This
is unfortunate, but since the drone will always be flying above this height, this will only
be a problem during the takeoff. (The solution is to take off a little fast so that we are
not flying below 10cm for long.)
The new graph of our data is shown in Figure 3. Notice that if you were to draw a hor-
izontal line across the graph, it will never cross the voltage graph twice unlike before.
This is called the “horizontal line test” and it means that all of the y-values have only
one x-value. In other words, we never have the issue of choosing between two distance
values. We also know that we can’t trust our measurements until the sensor is at least
10cm off of the ground.

6)6) Linearize the grLinearize the graphaph

With our latest graph (Figure 3), we can be given a voltage and then we can find the
distance. However, it is clear that our linear interpolation is a very rough approxima-
tion of the graph. In reality, there are no straight lines between data points, the graph
is curved, and if we take more data points, then we will be able to see this better. The
more data points that we have, the less we have to approximate between two values.
But adding more and more data points is tedious, and we don’t know how many we
need to add to make the drone fly well. It would be nice if there were a better way…
And there is! The solution is to linearize the graph. Linearizing the graph means ma-
nipulating the data so that follows a line. A linear graph is easy to work with because it
can be easily approximated using the equation for a line:

where is the slope (rise over run) and is the intercept (where the graph crosses the
y axis). In our case, we want:

In the equation above, is a function of distance:

These formulas are equivalent:

Because of the shape of our data in the Figs.1 and 2, we can assume that the distance is
inversely related to the voltage. Mathematically, an inverse relationship is defined as:

or

Where the symbol means “proportional to”, and is some constant.
The graph of an inverse relationship looks like:

72 CALIBRATION

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/10-sensing-calibration.md

✎

✎

Figure 1.1. Inverse Relationship

Now that we have assumed the relationship is inverse, and have verified it by com-
paring the shapes of our graph and the graph of an inverse relationship, we can lin-
earize the graph. To linearize the graph, instead of comparing voltage to distance, we
can compare voltage to the inverse of the distance, or . The new graph that we
get is shown in Figure 4 on the spreadsheet. Notice that our data points look like a line!
We can define as:

7)7) Best fBest fit lineit line

Now that the data looks like linear, we can draw a best-fit line that is a linear approxi-
mation of the data. Figure 5 shows the best fit line drawn, and the legend has the equa-
tion for the line. We can find the values for m and b from the equation of the best fit
line shown in Figure 5.
The one catch is that right now the line shown is

We need to rearrange the equation to solve for distance:

Now we can find any distance given the voltage!
TTry it outry it out Hold your drone at a certain height between 10-80cm, read the voltage, plug
it into the formula above, and see if the value you get is the correct height.
If you would like another example of linearizing graphs, watch this video tutorial

1.5.1.5. Geometrical derivGeometrical derivationation
It is possible to geometrically derive the relationship between the IR sensor output volt-
age and the distance to an object. Using the diagram from this article, the geometry of
the sensor looks like this image:

CALIBRATION 73

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/10-sensing-calibration.md
https://www.youtube.com/watch?v=LqKmjMRtxkA
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/10-sensing-calibration.md
https://www.makerguides.com/sharp-gp2y0a21yk0f-ir-distance-sensor-arduino-tutorial/

Figure 1.2. IR sensor geometry

There are a few measurements in this diagram that do not change for different distance
readings. The fixed objects are the LED, the lenses, and the PSD. We can use this infor-
mation to overlay triangles on top of this image for each of the measurements to sim-
plify the geometry.
The two quantities we want to relate are the distance to the object (point A or B in the
image), and the position on the PSD.
Let’s create a triangle that relates the distance to an object to the position of the reflect-
ed beam. The height will be determined by the distance to an object, and the base is
determined by the position of the reflected beam.

Figure 1.3. Relate Object Distance to Beam Reflection

This triangle is a right triangle , meaning that it contains one right angle (a 90 degree
angle). The right angle is indicated by the box in the lower left corner. Generally, right
triangles are easier to work with because one of the angles is always constrained to 90
degrees.
Let’s take a look at another right triangle drawn for the object that is further away.

74 CALIBRATION

Figure 1.4. Triangle relation for further object

Q:Q: Can you identify how the height and base changes as the object is further away?
Answer: The further away the object is, the greater the height, and the closer the reflect-
ed beam is to the left. Equivalently, as the height of the triangle increases, the length of
the base decreases.
Recall that our goal is to measure the height of the triangle. We have found that there
is some sort of relation between height and base; however we have no method of mea-
suring either. What we are able to measure is the position of the reflected beam on the
PSD. We also know that the distance from the PSD to the Lens in front of it is always the
same. Let’s draw another triangle that has a height determined by the the distance to
the lens (a quantity that we can measure), and a base determined by the position of the
reflected beam on the PSD (another quantity that we can measure). Let’s take a look at
this new triangle in addtion to the first one that we drew:

Figure 1.5. Relate Distance to Lens to Beam Reflection

This diagram has labels at each vertex. Segment p_1 to p_2 is the distance to the object.
Segment p_2 to p_4 is the distance to the reflected beam from the LED. Segment p_3
to p_4 is the distance to the reflected beam from the PSD. Segment p_3 to p_5 is the
distance to the lens.
Let’s remove the diagram to make the geometry easier to see:

CALIBRATION 75

Figure 1.6. Relate Distance to Lens to Beam Reflection

In the above image, we’ve removed the diagram, as well as labeled the sides of the tri-
angles:
• A (p_1 to p_2): distance to object (height of bigger triangle)
• B (p_2 to p_4): distance to reflected beam from the LED (base of bigger triangle)
• C (p_3 to p_5): distance to lens above the PSD (height of smaller triangle)
• D (p_3 to p_4): distance to reflected beam from the PSD (base of smaller triangle)
There is a special characteristic about the two triangles in the above image: they are
similar. Similar triangles have a unique property that will help us determine the rela-
tionship between the position of the reflected beam on the PSD and the distance to the
object. The property is that the ratio between corresponding sides of similar triangles
are the same. This property tells us that

Now that we have one equation for our one unknown value, we can find A! Let’s review
what we know:
• C: fixed distance to lens
• D: Value that is given to us by the PSD
• B: fixed distance from p_2 to p_3 plus the value of D
Let’s rearrange the similar triangle formula to find our unknown value:

From this equation, we see that length of side D is inversely proportional to the length
of side A. This means that the voltage reading from the PSD will be inversely related
to the distance to the object. Let’s take a look at the two example objects and see if this
makes sense:

76 CALIBRATION

Figure 1.7. Inverse Relation

Let’s say that at first our sensor was looking at “B” point in this diagram. Then, let’s say
that the object moved further away and is now at “A” point. We can see that the change
in height, shown by , of the big triangle is positive (the length increased) and rela-
tively large; meanwhile, the change in length of the base, shown by , is negative (the
length decreased) and relatively small. What we’ve observed is that as the distance to
an object increases by a lot, the distance from the PSD to the reflected beam decreases
a little bit.
Based on our findings, an inverse relationship makes sense. As the object distance in-
creases by a large amount, the reflected beam distance decreases by a small amount.
Now that we have proved geometrically, and verified analytically, that the distance to
an object is inversely related to the PSD measurement, we are only a few steps away
from converting the output of the IR sensor to a distance measurement in meters. Fol-
low the experimental calibration steps to find the proportionality constant, , of the in-
verse relationship.
PrProof of similarityoof of similarity
We can prove that the two triangles are similar by proving that two angles are congru-
ent. We know that the bottom left angles of each triangle are congruent because they
are both right angles. This was easy because we drew the triangles this way. We also
know that the bottom right angles of both triangles are the same because we drew the
smaller triangle inside of the bigger one and both triangles share this angle. Since two
corresponding angles are the same, so are the third angles. Therefore, these triangles
are similar.

CALIBRATION 77

✎

✎

✎

✎

✎

UUNITNIT GG.1.2.1.2

RReading Sensorseading Sensors

2.1.2.1. BackBackgrgroundound
The introduction to Sensors lesson explained the importance of sensors to robots, and
the specific sensors used on the drone. The sensor calibration lesson demonstrated how
to convert the sensor output into a useful measurement with units. Specifically, the
voltage output of the IR sensor was calibrated to obtain distance measurements in me-
ters. This calibration is important because it will allow the drone to know how high
above the ground it is, which allows the user to control how high they want the drone
to fly. The next step is to create a way for the drone to read these calibrated measure-
ments so that it can use them while flying. This lesson contains the background knowl-
edge for making a sensor and computer “talk” to each other, as well as instructions to
write a python script that allows the Pi to read values from the ADC, and convert into
calibrated distance measurements.

1)1) Analog tAnalog to digital cono digital convversionersion

As you’ve learned, sensors can produce either digital or analog outputs. If the sensor
produces an analog output, like the IR sensor, then it is easy for a human to read the
sensor value using a multimeter; however, it is not possible for most computers, like the
Pi, to read the output since they can only read digital signals. Recall that this problem
was solved by introducing the analog-to-digital converter, or ADC. The new problem
that arises is how to read the sensor using the Pi.

2)2) Communication prCommunication prototocolsocols

In order for two digital devices to communicate, the device that is sending the infor-
mation and the device that is receiving the information must speak the same language.
For the IR sensor, the device that is sending the information is the ADC, and the de-
vice that is receiving the information is the Pi. In this case, the information is the digi-
tized IR sensor measurement. In the world of digital devices, the “languages” are called
communication prcommunication prototocolsocols. The communication protocol used by the ADC and the Pi is
called I2C (pronounced “I squared C” or “I two C”). I2C is a serialserial communinication
protocol, which means that information is sent sequentially. For example, if the ADC
wanted to send the binary value 1011 , it would need to first send 1 , then 1 , 0 , and
finally 1 . There is lots to learn about different communication protocols, their use cas-
es, and how they are implemented. While it can be easy to get lost in the details, it is
important to keep the goal in mind: to create a way for digital devices to communicate.

3)3) SoftwSoftwarare libre librariesaries

Fortunately for programmers, the nitty-gritty of communication protocols are handled
for us by software libraries that contain classesclasses and methodsmethods that allow other program-
mers to talk to the devices. The library that will be used for the ADC is called the creat-
ed by Adafruit to make it easy for programmers to use their device. Here is the github

78

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md
https://github.com/adafruit/Adafruit_Python_ADS1x1

✎

✎

✎

✎

✎

✎

✎

repository for this library for reference, but all you need to know is that this is what
makes it easy to use the ADC.

2.2.2.2. AActivity 1: Rctivity 1: Reading ADC veading ADC valuesalues
Let’s begin writing a Python program to read values from the ADC. We will walk
through the code line-by-line, and you can either type the code, or copy and paste it.

1)1) PPowower up yer up your Piour Pi

Plug in the battery, connect to your drone’s wifi, and to browse to its code editor:
192.168.42.1:8081.

2)2) CrCreateate a new dire a new directectoryory

Create a new folder for your code in the ~/ws/src/pidrone_pkg directory and name it
student

3)3) CrCreateate a new fe a new fileile

Create a new file in the ~/ws/src/pidrone_pkg/student directory and name it ir.py

4)4) Import the librImport the libraryary

Import the Adafruit_ADS1x15 library using the Python import syntax. When you im-
port a library, you have access to all of the functions, classes, and methods that are in-
cluded.

import the library
import Adafruit_ADS1x15

5)5) CrCreateate an ADS1115 instancee an ADS1115 instance

The Adafruit_ADS1x15 library contains a class for the ADS1115 device, which is the
ADC on your drone. You will create an instance of this class using a special method
called the constructconstructoror. Notice that for the ADS1115 class, the constructor takes in no
arguments.

import the library
import Adafruit_ADS1x15

create an instance of the ADS1115 class
adc = Adafruit_ADS1x15.ADS1115()

6)6) RRead the ADC vead the ADC valuealue

Once you’ve created an instance of a class (also called an objectobject), you can use the meth-
ods that are defined within that class. The method that is used to read a single value
from the ADC is called read_adc , and it takes in two arguments: the ADC gain and
channel number.

READING SENSORS 79

https://github.com/adafruit/Adafruit_Python_ADS1x1
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md
http://192.168.41.1:8081/
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md

GainGain: If an analog signal is small, then you may want to amplify it, or multiply it by
a larger number, in order to make it easier to read. The number that you multiply the
signal by is called the gain. According to the ADC datasheet on Page 13, Table 3, the
gain that should be used between -4.096 and +4.096 Volts is 1. Recall that the IR sensor
measures between about 0 and 3 V.
Channel NumberChannel Number: The ADC has four input channels labeled “A0” to “A3”. If you recall
from Build Part 2, the yellow IR sensor wire was soldered into “A0”. Therefore, the
channel number you will use is 0.
Let’s create global vglobal variablesariables for the gain and channel number at the top of our script so
that we can use these variables everytime we want to read the ADC. Global variables
are values that can be referenced by name anywhere in a script. Typically, global vari-
ables are written in all capital letters.

import the library
import Adafruit_ADS1x15

create an instance of the ADS1115 class
adc = Adafruit_ADS1x15.ADS1115()

global variables
GAIN = 1
CHANNEL = 0

Now that we’ve stored the method arguments, let’s read from the ADC!

import the library
import Adafruit_ADS1x15

create an instance of the ADS1115 class
adc = Adafruit_ADS1x15.ADS1115()

global variables
GAIN = 1
CHANNEL = 0

read the adc value
adc.read_adc(CHANNEL, GAIN)

It doesn’t do us much good just to read the value, let’s store the value and print it so we
can see what it is:

80 READING SENSORS

https://cdn-shop.adafruit.com/datasheets/ads1115.pdf

✎

✎

✎

import the library
import Adafruit_ADS1x15

create an instance of the ADS1115 class
adc = Adafruit_ADS1x15.ADS1115()

global variables
GAIN = 1
CHANNEL = 0

read and store the adc value
value = adc.read_adc(CHANNEL, GAIN)

print the adc value
print(value)

7)7) RRun the Python Scriptun the Python Script

Now that we’ve written the script to read from the ADC, let’s test it out!
1. Copy and paste the final code into your ir.py file.
2. Open a new terminal: Menu (top left) > Terminal > New Terminal
3. In the terminal, navigate to the student directory: cd ~/ws/src/pidrone_pkg/stu-
dent

4. Run the script: python ir.py
If all went well, a number should print out in the terminal. Congrats on reading the
ADC!
If you get an error, try copying and pasting the code again.
To run the script again, simply press the up arrow on your keyboard and press enter.
Try running the script while holding the drones at different heights.
Q:Q: Are there any similarities between this value and the value that you read with the
multimeter?
AnswAnswer:er: You’ll find out in activity 3!

2.3.2.3. AActivity 2: Crctivity 2: Creating a Loopeating a Loop
It’s not very fun or useful to have to re-run the ir.py script everytime you want to take
a measurement. Since our goal is for the drone to know how high it is flying, we don’t
want to have to run the script each time the height of the drone changes (which is quite
often!). Fortunately, there is a programming tool called a while loopwhile loop, which lets us re-
run certain lines of code while some condition holds true. Let’s add a while loop to our
script so that it keeps printing out the ADC output until we tell it to stop.

1)1) AAdd the while loopdd the while loop

The simplest condition for a while loop is the boolean, True. If we use True as the con-
dition for the while loop, the loop will never stop, and the script will continuously read

READING SENSORS 81

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md

✎

✎

and print the ADC output.

import the library
import Adafruit_ADS1x15

create an instance of the ADS1115 class
adc = Adafruit_ADS1x15.ADS1115()

global variables
GAIN = 1
CHANNEL = 0

loop to continuously read and print the ADC output
while True:

read and store the adc value
value = adc.read_adc(CHANNEL, GAIN)

print the adc value
print(value)

Notice that the reading and printing lines are indented. Anything that is indented after
the while loop is repeated.

2)2) RRun the Scriptun the Script

Follow the same steps as before to run the script now that we’ve updated it. When you
want to stop the script, you will need to press the control (ctrl) key, and while holding
this key down, press c on your keyboard.

3)3) Slow down!Slow down!

As you’ll see the values are printing out really fast! The while loop is running as fast
as the Pi can go; unfortunately, allowing this to happen uses up the Pi’s computing re-
sources, and slows down the other processes on the Pi. How about we wait 1 second
between measurements to slow down the loop; this will also make it easier for us to
read the values being printed.
In order to wait 1 second in between readings, we must import the time library. Let’s
import this at the top of our file, next to the other import statement. Then, we can use
a function in the time module to make the loop wait for one second. This function is
called sleep , and it takes in one input, which is how many seconds you want the loop
to sleep for. We’ll use one second.

82 READING SENSORS

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md

✎

✎

✎

✎

import the time library
import time

import the library
import Adafruit_ADS1x15

create an instance of the ADS1115 class
adc = Adafruit_ADS1x15.ADS1115()

global variables
GAIN = 1
CHANNEL = 0

loop to continuously read and print the ADC output
while True:

read and store the adc value
value = adc.read_adc(CHANNEL, GAIN)

print the adc value
print(value)

time.sleep(1)

4)4) RRun the Scriptun the Script

Copy the changes to your ir.py script, and run it on your drone.

2.4.2.4. AActivity 3: Nctivity 3: Naavigvigating a Python Librating a Python Libraryary
In the previous activity, you used the Adafruit_Python_ADS1x1 library to read values
from the ADC. The instructions walked you through writing the code line by line. To
promote self-efficacy, we will take a moment to explain how we figured out how to use
this library, and how, in general, you can figure out how to use any library that you
want. For example, if you later want to add a different range sensor to your drone in-
stead of the IR sensor, you will need to find a library for the sensor and figure out how
to use it.

1)1) SearSearch for ych for your harour hardwdwarare devicee device

The simplest way to find a library for your device is often to read the documentation
on the website you bought it from. For the ADC, this was originally purchased from
Adafruit, and their webpage include instructions on how to read the sensor, and what
library to use.

2)2) Look for eLook for examplesxamples

Once you’ve found a library, the next step is to look through the documentation to see
if the people who wrote the library also included instructions for how to use it. These
instructions are often written in a file names README . If there are no instructions, the

READING SENSORS 83

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md
https://www.adafruit.com/product/1085
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md

✎

✎

✎

next option is to look for examples, or the worst case scenario: read through all the code
to figure out how it works.
A lot of learning to code involves looking at previous examples and then implementing
them for yourself. Most libraries include example scripts that demonstrate the basic
functionality of the library. Typically, these example scripts provide enough informa-
tion to use the library and adapt it to your own needs.
For the ADC, there is no valuable README with instructions, but there are examples.
If you click on this link, it will bring you to the github respository for the library. If you
click on the examples folder, and then on the simplest.py file, you will see a script
that demonstrates how to read each channel of the ADC, and then wait for 0.5 seconds
before repeating this loop. Looks pretty similar to the script you just wrote, huh?

2.5.2.5. AActivity 4: Function Compositionctivity 4: Function Composition
Now that we can continuously read the ADC output, we’re one step closer to providing
useful height measurements for the drone. Remember, our goal is to give the drone in-
formation about how high it is above the ground. In the previous lesson, you calibrated
the output of the IR sensor to obtain a distance (in meters) from the IR sensor voltage.
In this lesson, you wrote a script to read the output of the ADC. The problem that re-
mains is how we can use your previous calibration to convert the ADC output into a
height reading. The solution to this problem requires knowledge of the relationship be-
tween the ADC output and the IR sensor output, as well as a handy tool called functionfunction
compositioncomposition.

1)1) RRelationship of ADC output telationship of ADC output to IR sensor Outputo IR sensor Output

Based on how an ADC works, we know that the ADC output is dirdirectly rectly relatelateded to the
IR sensor output. A direct relationship means that as one value increases, so does the
other. Recall that as the IR sensor moved from 10cm to 50cm from an object, the volt-
age decreased. Similarly, if you observe the ADC output as the IR sensor is moved from
10cm to 50cm, the value decreases. The ADC value does not have a specific unit; based
on how the ADC works, the output is typically referred to as “raw ADC counts”. Let’s
represent the relationship mathematically using the symbols for the ADC output,
for the constant, and for the IR sensor output:

If we want to show that the voltage is a function of the raw ADC counts, we can write
the equation as follows:

We can rearrange the equation to solve for :

2)2) Find the ConstantFind the Constant

Use your multimeter and your ir.py script to get the value for v(a) and a. Plug these

84 READING SENSORS

https://github.com/adafruit/Adafruit_Python_ADS1x15
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md

✎

✎

✎

values into the above equation to find the value for . To do this, position the IR sen-
sor between 10-80 cm from an object, then run your ir.py script. Without moving the
IR sensor, read the voltage. Divide voltage by the value printed in the ir.py script, and
you’ve got !

3)3) Function CompositionFunction Composition

Your calibration from the previous lesson was a function of the voltage. If we can find
a conversion from raw ADC counts to Volts, then we can use our our same calibration
function from before!
Let’s write down all of the formulas that we know:
First, your calibration from Volts to distance:

Second, your conversion from raw ADC counts to Volts:

Since the Pi is able to read the raw ADC counts, but our calibration is a function of
Volts, we need to combine the above formulas to create a calibration function from raw
ADC counts to distance. Fortunately, we can composecompose the functions to find:

By substituting the formula for , we are able to create a calibration function from
raw ADC counts to distance!

4)4) Dimensional AnalysisDimensional Analysis

The function compositions states that the distance is a function of voltage, which is a
function of raw ADC counts. Let’s plug in the units to our function and use dimension-
al analysis to verify that the final unit is meters:

After canceling the units on the top and bottom, we get meters! At this point, we have
all that we need to get a distance measurement on the Pi.

2.6.2.6. AActivity 5: Calibrctivity 5: Calibration in Codeation in Code
In activity 4, we found that we can convert the raw ADC counts to distance using the
function:

READING SENSORS 85

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md

✎

✎

Let’s add this function to our ir.py script to do the conversion.

1)1) DefDefine the functionine the function

To define a function in Python, you simply use the keyword, def, followed by the func-
tion name and parentheses that contain the function arguments. Here is the general
syntax for defining a function:

def my_function(arg1, arg2, ..., argN):
do something here
do something else here
return someValue

Now, define the calibration function at the bottom of your ir.py script and call it
get_distance . It will take in one argument, raw_ADC_counts , and it will return the cal-
ibrated measurement

import the time library
import time

import the library
import Adafruit_ADS1x15

create an instance of the ADS1115 class
adc = Adafruit_ADS1x15.ADS1115()

global variables
GAIN = 1
CHANNEL = 0

define the calibration function
def get_distance(raw_ADC_counts):

d = m * 1.0/(c * raw_ADC_counts) + b
return d

loop to continuously read and print the ADC output
while True:

read and store the adc value
value = adc.read_adc(CHANNEL, GAIN)

print the adc value
print(value)

time.sleep(1)

2)2) Fill in ConstantsFill in Constants

86 READING SENSORS

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md

✎

Unfortunately, this function will throw an error at this point, because neither , , or
are defined. Define these values before computing by filling in the constants that you
found from Activity 4 () and the previous lesson (and). If you did not do activity
4, you can use 0.00012438 for . The variables , , and are called local variables be-
cause they are only defined within the get_distance function.

import the time library
import time

import the library
import Adafruit_ADS1x15

create an instance of the ADS1115 class
adc = Adafruit_ADS1x15.ADS1115()

global variables
GAIN = 1
CHANNEL = 0

define the calibration function
def get_distance(raw_ADC_counts):

m = 0 # use your own value for m
b = 0 # use your own value for b
c = 0 # use your own value for c
d = m * 1/(c * raw_ADC_counts) + b
return d

loop to continuously read and print the ADC output
while True:

read and store the adc value
value = adc.read_adc(CHANNEL, GAIN)

print the adc value
print(value)

time.sleep(1)

3)3) Call the FunctionCall the Function

Great job creating the function, now it’s time to use it! Call the function in your while
loop and print out the raw ADC value, as well as the calibrated measurement.

READING SENSORS 87

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md

✎

import the time library
import time

import the library
import Adafruit_ADS1x15

create an instance of the ADS1115 class
adc = Adafruit_ADS1x15.ADS1115()

global variables
GAIN = 1
CHANNEL = 0

define the calibration function
def get_distance(raw_ADC_counts):

m = 0 # use your own value for m
b = 0 # use your own value for b
c = 0 # use your own value for c
d = m * 1.0/(c * raw_ADC_counts) + b
return d

loop to continuously read and print the ADC output
while True:

read and store the adc value
value = adc.read_adc(CHANNEL, GAIN)

call the calibration function
distance = get_distance(value)

print the calibrated value
print(distance)

time.sleep(1)

4)4) RRun the scriptun the script

Copy the new code to your ir.py script, and run it as you did before. Use a meter stick
to check if the height measurements are accurate.
Congrats on getting calibrated measurements on your drone!

88 READING SENSORS

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/10-sensing/20-sensing-reading.md

✎

SSUBSEUBSECCTIONTION GG.2.2

MiddlewMiddlewarare: Re: ROSOS

This subsection introduces ROS as a tool for sharing information that is collected in one
program with other programs that need the same information. For example, the Python
program that you wrote in the previous lesson allows you to get distance measurements
from the IR sensor. It would be useful if this information could be shared with other
programs such as the controller, which tells the motors how fast to spin based on how
high you want the drone to fly. Later sections will discuss the use of sensor informa-
tion; this subsection describes how to share that info.

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/00-overview.md

✎

✎

✎

✎

UUNITNIT GG.2.1.2.1

IntrIntro to to Ro ROSOS

1.1.1.1. MotivMotivationation
When writing software for a robot, it is easier to break down the software into smaller,
more manageable chunks than to write one big program that does everything. While
we could have a really long Python program that interfaced with each sensor, used the
sensor data to estimate the state of the drone such as it’s height an how fast it’s mov-
ing, and then use this information to change the speeds of the motors, this has several
disadvantages. First, if there is a bug in the code (a mistake in the software), it would
be very hard to find in a large file where all of the code is together. Second, if someone
wanted to improve just one part of the code, such as a better estimate of the IR sen-
sor, they would need to read through a bunch of code that isn’t relevant to make their
change; additionally, it would be hard to undo those changes if they didn’t work well.
Instead, software engineers prefer to write modular code, where each program only
performs one small job that contributes to a larger job. For example, one program can
handle talking to the IR sensor, another program can interface with the camera, anoth-
er can combine the data, and another can use the combined data to control the motors.
Using this software design, it is easy to design and test smaller pieces of code before
they go into the bigger picture. If the IR program isn’t working right, it won’t stop the
camera from working, and it will be easy to find the problem.
When we break down the software into smaller programs, we then face the problem of
making the programs talk to each other. The data collected in one program might be
needed by another program. Let’s consider an example of this situation on the drone.

1)1) ExampleExample

In the last lesson, you wrote a Python program that could read the ADC, and convert
the value to a distance measurement. These steps were essential to obtain the height
of the drone in meters. The problem we face now is sharing that value with other pro-
grams running on the drone. When the drone is flying, we want the controller to know
how high the drone is, so that it can speed up or slow down the motors accordingly. We
will go into details on controllers in a later section. For now, we will set up a simpler
problem to solve that will demonstrate the process of using a sensor to control an actu-
ator.
Goal:Goal: The goal is to adjust the brightness of the LED on your drone based on the dis-
tance measured by the IR sensor. If the distance is small, the LED should be bright. As
the distance measurement increases, the LED should dim. This will simulate speeding
up and slowing down the motors based on how high the drone is. The information in
this lesson will provide the background needed to accomplish this goal in the following
two lessons.

1.2.1.2. SoftwSoftwarare Are Architchitecturecture on the DuckieDre on the DuckieDroneone

90

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/10-ros-intro.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/10-ros-intro.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/10-ros-intro.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/10-ros-intro.md

✎

✎

✎

✎

✎

✎

Take a look at this diagram that illustrates the software that runs on the drone. Refer
back to this diagram as you read through the following points.

1)1) HarHardwdwararee

Each rectangle with sharp corners in the diagram represents a piece of physical hard-
ware. The IR sensor and the camera are two sensors on the drone.

2)2) SoftwSoftwararee

Each rectangle with rounded corners represents an individual Python program. Notice
that there are specific programs that read the data from each sensor. Inside of that pro-
gram, the data is read, converted into a useful measurement, and then shared with oth-
er programs. If student A’s IR sensor code worked better than student B’s, then student
A could share just their IR code with student B, and student B would be able to use just
this code with the rest of the code being their own. This is one advantage of modular
software design: small parts of code can be interchanged easily.

3)3) MiddlewMiddlewararee

In order to share data between programs, such as the IR sensor reading, we use mid-
dleware. Middleware runs “between” the hardware and software on the drone. In the
diagram, the middleware is represented by the arrows that connect the software.
RROSOS
The middleware used on the drone is called the Robot Operating System, or ROS (pro-
nounced like “moss” but with an “r”). This is industry standard software and is used in
many profession robotics companies. You can watch a few cool examples of robots that
use ROS here.
RROS on the drOS on the droneone
For the purposes of the drone, ROS is a communication tool that allows one Python
program to talk to another. For example, ROS will allow the ir.py program to share
the distance measurement from the IR sensor with another program that can adjust
how fast the motors are spinning to hold the drone at a specific height.

1.3.1.3. RROS jargOS jargonon
The communication system in ROS comes with its own vocabulary. The following
terms are essential for understanding ROS.

1)1) NNodeode

A ROS node is simply a program that contains publishers or subscribers. On the drone,
a node is just one of the Python programs that is used to make the drone fly.
For more info: ROS wiki link

2)2) PublishersPublishers

A publisher is a ROS entity that sends messages to a topic. In python, a publisher is just
an object with a “publish()” method that sends the message.

INTRO TO ROS 91

https://docs.duckietown.org/daffy/opmanual_sky/out/software_architecture_intro.html
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/10-ros-intro.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/10-ros-intro.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/10-ros-intro.md
https://www.youtube.com/watch?v=Z70_3wMFO24
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/10-ros-intro.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/10-ros-intro.md
http://wiki.ros.org/Nodes
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/10-ros-intro.md

✎

✎

For more info: ROS wiki link

3)3) MessagMessageses

A message is a structured format for data. Messages standardize how the publisher is
supposed to format the data, so that the receiver knows how to read it. For example,
there is a Boolean message type where the data can only be True or False . There is al-
so a String message type, where the data can be any text such as this is my message! .
We can also make custom message types that combine two or more existing message
types. For example, we could create a message type that contains two Booleans and one
String.

bool
bool
string

We would want to label the Booleans and the String so that the sender and receiver
would know which data was which. If the first Boolean determined whether I wanted
ice cream, and the second Boolean determined whether I wanted to pay for it, I would
not want those mixed up! Here is what a custom message type could look like:

bool do_i_want_icecream
bool do_i_want_to_pay_for_it
string flavor

The first column shows the type of the data, also known as the ffieldtypeieldtype. The second
column shows the label for the data, also known as the ffieldnameieldname. Together, the field-
type and fieldname make one ffieldield in a ROS message.
The way that we would use this message in Python is to create a blank message, and
then to edit the fields. For example:

my_icecream_order = OrderMessage() # create a blank message

OrderMessage.do_i_want_icecream = True
OrderMessage.do_i_want_to_pay_for_it = False
OrderMessage.flavor = "Strawberry"

Now I can publish my_icecream_order and my ice cream robot will go and buy me
strawberry ice cream!
For more info: ROS wiki link

4)4) TTopicopic

A ROS topic is a named bus that messages get published to and subscribed to. In
Python, a ROS topic is just a String that identifies where a publisher should send mes-
sages, and where a subscriber should look to receive those messages. Only one message
type can be sent along a topic, and this is set when the topic is created by a publisher.

92 INTRO TO ROS

http://wiki.ros.org/rospy/Overview/Publishers%20and%20Subscribers
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/10-ros-intro.md
http://wiki.ros.org/msg
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/10-ros-intro.md

✎

✎

✎

✎

✎

✎

For example, we might want to create a topic called order that has the message type
OrderMessage . We can create a publisher that publishes our ice cream orders to the
order topic.
For more info: ROS wiki link

5)5) SubscriberSubscriber

A ROS subscriber “subscribes” to a topic and listens for messages. When the subscriber
is created, it is told what topic to listen to. As soon as a subscriber receives a message, it
passes along the message to a callbackcallback function.
For more info: ROS wiki link

6)6) CallbackCallback

A callback is a function that takes as input a ROS message, and then performs some
action based on that message. In some cases, the action might just be storing the mes-
sage data. In other cases, the action might involve the physical world. In the ice cream
example, the callback function would hopefully make our ice cream robot go and buy
us ice cream. In the case of the drone, the flight controller node is subscribed to roll,
pitch, yaw, and throttle commands on the /pidrone/fly_commands topic. When new
commands are published to this topic, the callback in the flight controller subscriber
sends these commands to change the speeds of the drone motors.

7)7) MastMasterer

In order for ROS nodes to communicate with messages over topics, each node must reg-
ister with the ROS Master. The ROS master facilitates communication between nodes
by keeping track of all of the nodes, topics, publishers, and subscribers. This informa-
tion is used to help nodes find each other so that they can communicate.
For more info: ROS wiki link

8)8) SummarySummary

ROS allows a node to publish a message to a topic and then another node can subscribe
to the topic to receive messages. Once a message is received, the subscriber passes the
message to a callback function that does something with the data. This communication
is facilitated by a ROS Master, which allows nodes to find each other to communicate.

1.4.1.4. RROS commandsOS commands
There are a number of useful ROS commands that you can use in the terminal.
For details on all of the ROS commands: ROS wiki

1)1) rroscdoscd

roscd is the ROS version of cd ; it lets you navigate directly to ROS packages. For ex-
ample, if you are in the home directory on the drone, instead of typing: cd ~/ws/src/
pidrone_pkg , you can just type roscd pidrone_pkg .

INTRO TO ROS 93

http://wiki.ros.org/Topics
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/10-ros-intro.md
http://wiki.ros.org/rospy/Overview/Publishers%20and%20Subscribers
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/10-ros-intro.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/10-ros-intro.md
http://wiki.ros.org/Master
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/10-ros-intro.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/10-ros-intro.md
http://wiki.ros.org/ROS/CommandLineTools
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/10-ros-intro.md

✎

✎

✎

✎

✎

✎

2)2) rroscoroscoree

roscore is the command used to start a ROS master. No arguments are needed to run
this command

3)3) rrostostopic listopic list

rostopic list will list all of the ROS topics that are currently being published and
subscribed to

4)4) rrostostopic infoopic info

rostopic info (topic_name) will list the publishers, subscribers, and message type of
whatever topic you replace (topic_name) with

5)5) rrosbagosbag

rosbag allows you to record all of the messages sent to topics. you can specify just one
topic to record using rosbag record (topic_name) , or you can record all of the topics
using rosbag record -a . Recording data is useful for testing and debugging. You can
also use rosbag play (file.bag) to play back the recorded data.
For more info: ROS wiki

1.5.1.5. EnEnvirvironment Vonment Variablesariables
Environment variables modify key attributes of a program. For our applications in ROS,
the most important environment variable is ROS_MASTER_URI . To check the value of this
environment variable, type echo $ROS_MASTER_URI` and press enter in the ter-
minal, and the value will be printed out. the `$ symbol is used to signal
environment variables. To change an environment variable, you can either type ex-
port (VARIABLE)=(value) with the correct variable and values into the terminal. These
changes will only be temporary and you’ll need to export the values every time. Alter-
natively, you can create a shell script to export the values for you, as we have done in
the pidrone_pkg. Take a look at the setup_for_managed_mode.sh and setup_for_mas-
ter_mode.sh scripts.

1)1) RROS MASOS MASTER URITER URI

The ROS_MASTER_URI environment variable sets the IP address and port of the ROS
master. All of the ROS nodes will look to this address to register themselves. If there are
two computers both connected on the same internet network and both running ROS,
one computer can start up a ROS Master using roscore , and the other computer can
set it’s ROS_MASTER_URI to be the same as the first computer’s. Then, the ROS nodes on
the two separate computers can talk to each other! This is a very useful feature because
it allows the computation load to be distributed across devices. For example, some of
the programs that are run on the drone can instead be run offboard on another com-
puter running ROS. This is necessary for some of the features on the drone. However,
nearly all of the DuckieDrone’s programs can be run onboard.

94 INTRO TO ROS

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/10-ros-intro.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/10-ros-intro.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/10-ros-intro.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/10-ros-intro.md
http://wiki.ros.org/rosbag/Commandline
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/10-ros-intro.md
https://github.com/h2r/pidrone_pkg
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/10-ros-intro.md

✎1.6.1.6. Catkin wCatkin workspaceorkspace
There is one more essential ROS element that is worth mentioning if you are interested
in creating your own workspace. In programming, a workspace is used to keep track of
all of the programming files, dependencies, and executable code. For ROS, the work-
space setup is called catkin. The main thing to note is that ROS packages (a set of
programs that run together), go in the src directory. This is why the path to the
pidrone_pkg is ~/ws/src/pidrone_pkg . For instructions on creating your own work-
space, refer to the ROS wiki.

INTRO TO ROS 95

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/10-ros-intro.md
http://wiki.ros.org/catkin/Tutorials/create_a_workspace

✎

✎

✎

✎

UUNITNIT GG.2.2.2.2

CrCreating a Reating a ROS PublisherOS Publisher

2.1.2.1. Flashback tFlashback to the sensor ro the sensor reading codeeading code

import the time library
import time

import the library
import Adafruit_ADS1x15

create an instance of the ADS1115 class
adc = Adafruit_ADS1x15.ADS1115()

global variables
GAIN = 1
CHANNEL = 0

define the calibration function
def get_distance(raw_ADC_counts):

m = 0 # use your own value for m
b = 0 # use your own value for b
c = 0 # use your own value for c
d = m * 1.0/(c * raw_ADC_counts) + b
return d

loop to continuously read and print the ADC output
while True:

read and store the adc value
value = adc.read_adc(CHANNEL, GAIN)

call the calibration function
distance = get_distance(value)

print the calibrated value
print(distance)

time.sleep(1)

2.2.2.2. CrCreating a Reating a ROS publisherOS publisher
We are going to build upon the above code to write a ROS publisher that receives the
distance from sensor and publishes it.

1)1) Import the RImport the ROS python librOS python library and the needed messagary and the needed message types.e types.

We are going to use the ROS python library to write the publisher, and, as introduced

96

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/20-ros-publisher.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/20-ros-publisher.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/20-ros-publisher.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/20-ros-publisher.md

✎

in the lesson, the floating point message type as well.

☀ Add the line import rospy to the top of the program.

☀ Add the line from std_msgs.msg import Float32 to the top of the program.

import the time library
import time

import the library
import Adafruit_ADS1x15

import the ROS python library
import rospy

import the Float32 message type
from std_msgs.msg import Float32

create an instance of the ADS1115 class
adc = Adafruit_ADS1x15.ADS1115()

global variables
GAIN = 1
CHANNEL = 0

define the calibration function
def get_distance(raw_ADC_counts):

m = 0
c = 0
b = 0
d = m * 1.0/(c * raw_ADC_counts) + b
return d

loop to continuously read and print the ADC output
while True:

read and store the adc value
value = adc.read_adc(CHANNEL, GAIN)

call the calibration function
distance = get_distance(value)

print the calibrated value
print(distance)

time.sleep(1)

2)2) CrCreateate a publishere a publisher

We follow the syntax to create a ROS publisher.

CREATING A ROS PUBLISHER 97

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/20-ros-publisher.md

☀ Type distance_publisher = rospy.Publisher('distance', Float32,
queue_size=1) right before the global variables at the top. The first argument is
the topic name, the second is the message type, the third serves to limit the num-
ber of queued messages in case the subscriber is not receiving fast enough. For the
purpose of this assignment, we can just set it to 1.

import the time library
import time

import the library
import Adafruit_ADS1x15

import the ROS python library
import rospy

import the Float32 message type
from std_msgs.msg import Float32

create an instance of the ADS1115 class
adc = Adafruit_ADS1x15.ADS1115()

The ROS publisher that publishes the distance
distance_publisher = rospy.Publisher('distance', Float32, queue_size=1)

global variables
GAIN = 1
CHANNEL = 0

define the calibration function
def get_distance(raw_ADC_counts):

m = 0
c = 0
b = 0
d = m * 1.0/(c * raw_ADC_counts) + b
return d

loop to continuously read and print the ADC output
while True:

read and store the adc value
value = adc.read_adc(CHANNEL, GAIN)

call the calibration function
distance = get_distance(value)

print the calibrated value
print(distance)

time.sleep(1)

98 CREATING A ROS PUBLISHER

✎3)3) CrCreateate an infre an infrarared sensor nodeed sensor node

It is important to tell rospy the name of your ROS node, otherwise it would not be able
to communicate with the ROS Master.

☀ Type rospy.init_node('infrared_node') in the next line.

CREATING A ROS PUBLISHER 99

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/20-ros-publisher.md

✎

import the time library
import time

import the library
import Adafruit_ADS1x15

import the ROS python library
import rospy

import the Float32 message type
from std_msgs.msg import Float32

create an instance of the ADS1115 class
adc = Adafruit_ADS1x15.ADS1115()

The ROS publisher that publishes the distance
distance_publisher = rospy.Publisher('distance', Float32, queue_size=1)

Initiate the IR sensor node
rospy.init_node('infrared_node')

global variables
GAIN = 1
CHANNEL = 0

define the calibration function
def get_distance(raw_ADC_counts):

m = 0
c = 0
b = 0
d = m * 1.0/(c * raw_ADC_counts) + b
return d

loop to continuously read and print the ADC output
while True:

read and store the adc value
value = adc.read_adc(CHANNEL, GAIN)

call the calibration function
distance = get_distance(value)

print the calibrated value
print(distance)

time.sleep(1)

4)4) Publish the messagPublish the message in the pre in the previously creviously createated while looped while loop

☀ Type distance_publisher.publish(Float32(distance)) right after the line

100 CREATING A ROS PUBLISHER

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/20-ros-publisher.md

print(distance) in the while loop.

import the time library
import time

import the library
import Adafruit_ADS1x15

import the ROS python library
import rospy

import the Float32 message type
from std_msgs.msg import Float32

create an instance of the ADS1115 class
adc = Adafruit_ADS1x15.ADS1115()

The ROS publisher that publishes the distance
distance_publisher = rospy.Publisher('distance', Float32, queue_size=1)

Initiate the IR sensor node
rospy.init_node('infrared_node')

global variables
GAIN = 1
CHANNEL = 0

define the calibration function
def get_distance(raw_ADC_counts):

m = 0
c = 0
b = 0
d = m * 1.0/(c * raw_ADC_counts) + b
return d

loop to continuously read and print the ADC output
while True:

read and store the adc value
value = adc.read_adc(CHANNEL, GAIN)

call the calibration function
distance = get_distance(value)

print the calibrated value
print(distance)

publish the calibrated value
distance_publisher.publish(Float32(distance))

time.sleep(1)

CREATING A ROS PUBLISHER 101

✎

5)5) ChangChange the structure the structure of the while loop te of the while loop to a Ro a ROS mannerOS manner. (This st. (This step is just a changep is just a changee
of syntax)of syntax)

☀ Change the top of the loop from while True: to while not rospy.is_shut-
down():

☀ Change the bottom of the loop from time.sleep(1) to rospy.sleep(1) .

102 CREATING A ROS PUBLISHER

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/20-ros-publisher.md

import the time library
import time

import the library
import Adafruit_ADS1x15

import the ROS python library
import rospy

import the Float32 message type
from std_msgs.msg import Float32

create an instance of the ADS1115 class
adc = Adafruit_ADS1x15.ADS1115()

The ROS publisher that publishes the distance
distance_publisher = rospy.Publisher('distance', Float32, queue_size=1)

Initiate the IR sensor node
rospy.init_node('infrared_node')

global variables
GAIN = 1
CHANNEL = 0

define the calibration function
def get_distance(raw_ADC_counts):

m = 0
c = 0
b = 0
d = m * 1.0/(c * raw_ADC_counts) + b
return d

loop to continuously read and print the ADC output
while not rospy.is_shutdown():

read and store the adc value
value = adc.read_adc(CHANNEL, GAIN)

call the calibration function
distance = get_distance(value)

print the calibrated value
print(distance)

publish the calibrated value
distance_publisher.publish(Float32(distance))

rospy.sleep(1)

CREATING A ROS PUBLISHER 103

✎

✎

✎

✎

✎

✎

✎

✎

UUNITNIT GG.2.3.2.3

SubscriberSubscriber, PWM and Open Loop, PWM and Open Loop

In this section we will introduce you to the concepts of PWM, Pulse Width Modulation,
building an open loop controller, and writing a ROS subscriber. We will use these tech-
niques to control the brightness of your LED based on the ROS Distance Publisher you
just wrote.

3.1.3.1. PWMPWM
We begin with a discussion of Pulse Width Modulation. PWM, is the technique used to
control the brightness of an LED, the speed of your drones DC motors, or any type of
control where you need to produce an analog type output with digital means. The Rasp-
berry pi GPIO output pins produce a square wave output, the pins gives us either 3.3V
(when turned HIGH) or 0V (when turned LOW). If we wanted to dim an LED with an
analog output we could just send half as much voltage, but this option does not exist
with the digital outputs on the Rasberry Pi GPIO. Instead what we must do is turn the
signal on and off very quickly. If adjust the speed at which the ON and OFF signals are
sent then the brightness of the led will be changed. It would be prudent to discuss the
terms associated with PWM.

1)1) TTON (On Time): Is the time the signal is high.ON (On Time): Is the time the signal is high.

2)2) TTOFF (Off Time): Is the time the signal is lowOFF (Off Time): Is the time the signal is low..

3)3) PPeriod: Is the sum teriod: Is the sum total of on time and off time.otal of on time and off time.

4)4) Duty CyDuty Cycle: It is the percle: It is the percentagcentage of time when the signal we of time when the signal was high in the time of theas high in the time of the
period.period.

5)5) FFrrequency: Is the number of cyequency: Is the number of cycles per second (measurcles per second (measured in Hz)ed in Hz)

Let’s consider running the LED at a 50% duty cycle at 1Hz. The LED would stay on for
half a second and would be off for half a second. This would appear as a blink to the
human eye. But if we increase this frequency to 100Hz (100 cycles per second) at a 50%
duty cycle, the blinking becomes imperceptible to the human eye. Instead the LED ap-
pears to be glowing at half brightness.

3.2.3.2. Open Loop ContrOpen Loop Controllersollers
An Open-loop control system, also called a non-feedback system, is a continuous con-
trol system in which the output has no influence of the input signal. Put into other
words, in an open-loop control system the output is not measured and is not provided
as “feedback” for the input. Instead an open loop system uses a single input command
or set point.

104

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/30-ros-subscriber.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/30-ros-subscriber.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/30-ros-subscriber.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/30-ros-subscriber.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/30-ros-subscriber.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/30-ros-subscriber.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/30-ros-subscriber.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/30-ros-subscriber.md

✎

A disadvantage of this is the open-loop system has no knowledge of the output condi-
tion thus it can’t correct any errors if the preset value drifts, even if this results in large
deviations from the preset value. Because of this lack of measurement of output anoth-
er disadvantage of open-loop systems is that they are poorly equipped to handle distur-
bances or changes in external conditions that may affect the output.
Another type of controller is the closed loop controller which we will discuss in the PID
control lesson.
A good example of an open-loop system is a timed clothes dryer. The timed clothes dry-
er will continue to apply heat to wet clothing for the duration of its input even if those
clothes are already dry.
In this lesson we will create an open loop controller based on the distance topic you
wrote in the previous lesson to control the brightness of your LED.

3.3.3.3. WWriting a Rriting a ROS Subscriber:OS Subscriber:

SUBSCRIBER, PWM AND OPEN LOOP 105

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/17-sac2/20-ros/30-ros-subscriber.md

✎

SSEECCTIONTION HH

Build: 3Build: 3

In this phase of the build, you’ll be adding the essential elements of every drone– the
motors, ESCs, and the flight controller. By the end of this build part, you will have a
configured flight controller, and will spin the motors (without the props on).
Build Part 3 Instructions can be found in the Operations Manual

106

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/18-build3/00-overview.md
https://docs.duckietown.org/daffy/opmanual_sky/out/build_part3_overview.html

✎

SSEECCTIONTION II

Sensors, ASensors, Actuatctuators, and Contrors, and Control: 3ol: 3

This section describes how the actuators on your robot (the motors) work, as well as
the sensor that appears on all drones, and many other robots: the inertial measurement
unit, or IMU.

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/19-sac3/00-overview.md

✎

SSUBSEUBSECCTIONTION I.1I.1

MotMotorsors

This subsection covers the functionality of brushless motors, and describes how they
can be controlled to make your drone fly.

108

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/19-sac3/10-motors/00-overview.md

✎

UUNITNIT I.1.1I.1.1

IntrIntro to to the Moto the Motorsors

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/19-sac3/10-motors/10-motors-intro.md

✎

SSUBSEUBSECCTIONTION I.2I.2

IMUIMU

This subsection explains the two sensors that make up the IMU, as well as how these
sensors are used to estimate the roll, pitch, and yaw of the drone.

110

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/19-sac3/20-imu/00-overview.md

✎

✎

UUNITNIT I.2.1I.2.1

IntrIntro to to the IMUo the IMU

1.1.1.1. ApplicationsApplications
IMUs have many applications. Even cars use IMUs to measure the acceleration to de-
termine when it is time to deploy the airbags. Some computer hard drives use IMUs to
detect if the hard drive is falling, and turn off to protect the data before the crash oc-
curs. The IMU that is used on your drone originated in a gaming console used to detect
hand motions– can you guess which one? The answer is the Nintendo Wii remote, and
the IMU is the sensor that allows you to swing a tennis racket, or get a strike in virtual
bowling.

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/19-sac3/20-imu/21-imu-intro.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/19-sac3/20-imu/21-imu-intro.md
https://www.sparkfun.com/pages/accel_gyro_guide
https://www.sparkfun.com/pages/accel_gyro_guide

✎

SSEECCTIONTION JJ

Build: 4Build: 4

In this section of the build, you will attach the camera, and finalize the drone assembly.
By the end of this build part, you will be ready to fly!
Build Part 4 Instructions can be found in the Operations Manual

112

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/20-build4/00-overview.md
https://docs.duckietown.org/daffy/opmanual_sky/out/build_part4_overview.html

✎

SSEECCTIONTION KK

Closed Loop ContrClosed Loop Controlol

This section introduces feedback control systems, and describes the most commonly
used feedback controller: the proportional integral derivative, or PID, controller. Al-
though the mathematics behind this controller involve calculus, the high level under-
standing of the controller is actually quite intuitive. By the end of this section, you will
program your own PID controller!

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/00-overview.md

✎

SSUBSEUBSECCTIONTION K.1K.1

PID ContrPID Controlleroller

Module Overview:
A PID (proportional, integral, derivative) controller is a control algorithm extensively
used in industrial control systems to generate a control signal based on error. The error
is calculated by the difference between a desired setpoint value, and a measured process
variable. The goal of the controller is to minimize this error by applying a correction to
the system through adjustment of a control variable.

114

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/10-pid/00-overview.md

✎

✎

✎

✎

✎

UUNITNIT K.1.1K.1.1

IntrIntro to to PIDo PID

1)1) Open VOpen Vs Closed Loop Ss Closed Loop Systystemsems

☀ Open loop system, also known as a non-feedback system, is a continuous sys-
tem where output does not affect the control action of the input (Electronics Tuto-
rials). Ex: Toaster

☀ A closed loop system, also known as a feedback system, is a system where the
control action is based on the output (Electronics Tutorials). Ex: Body thermoreg-
ulation

2)2) PID TPID Termserms

PrProcess Vocess Variableariable, represented by : The parameter of the system that is being moni-
tored and controlled.
SetpointSetpoint, represented by : The desired value of the process variable.
ContrControl Vol Variableariable, represented by : The output of the controller that serves as input
to the system in order to minimize error between the setpoint and the process variable.
StSteadyeady-Stat-State Ve Value:alue: The final value of the process variable as time goes to infinity.
StSteadyeady-Stat-State Erre Error:or: The difference between the setpoint and the steady-state value.
Rise Time:Rise Time: The time required for the process variable to rise from 10% to 90% of the
steady-state value.
SetSettling Time:tling Time: The time required for the process variable to settle within a certain per-
centage of the steady-state value.
OvOvershoot:ershoot: The amount the process variable exceeds the setpoint, and it is expressed as
a percentage.

3)3) Example rExample relating telating to biological systo biological system:em:

These terms are applicable to a biological system that we rely in. Thermoregulation re-
lies on a negative feedback system.
The prThe process vocess variable:ariable: your body temperature.
Setpoint:Setpoint: Regular body temperature is 98.6 degrees F (or 37 degrees C).
ContrControl Vol Variable:ariable:
If you are cold, and you have a lower body temperature than usual, your body will gen-
erate more heat to restore back to regular body temperature.
If you are warm, and you have a higher body temperature than usual, your body will
reduce heat in your body to restore back to regular body temperature.

4)4) The GenerThe General Algal Algorithmorithm

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/10-pid/10-pid-intro.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/10-pid/10-pid-intro.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/10-pid/10-pid-intro.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/10-pid/10-pid-intro.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/10-pid/10-pid-intro.md

The error of the system , is calculated as the difference between setpoint and proces
variable.

The controller aims to minimize the rise time and settling time of the system, while
eliminating steady-state error and maximizing stability (no unbounded oscillations in
the process variable). It does so by changing the control variable based on the three
control terms.

116 INTRO TO PID

✎

✎

UUNITNIT K.1.2K.1.2

The ThrThe Three PID Tee PID Termserms

Here is a helpful intro video explaining PID controllers

1)1) The ThrThe Three PID Tee PID Term Deferm Definitionsinitions

The PrThe Proportional Toportional Termerm
The proportional term produces an output that is proportional to the calculated error:

During programming, you would represent this as:

The magnitude of the proportional response is dependent upon which is the pro-
portional gain constant. A higher proportional gain constant indicates a greater change
in the controller’s output in response to the system’s error.
The propellers will spin faster the farther away the drone is.
The DerivThe Derivativative Te Termerm
The derivative term is determined by the rate of change of the system’s error over time
multiplied by the derivative gain constant .
In terms of calculus, it would be represented like this:

In terms of programming and without the use of calculus, it can be represented by:

The derivative term will do something like: propellors will spin slower the faster the
drone is moving. Or a similar example is when drag is pulling harder, the faster the
drone is moving.
The IntThe Integregral Tal Termerm
The integral term accounts for the accumulated error of the system over time. The out-
put produced is comprised of the sum of the instantaneous error over time (or simply
the instant rate of change in the error) multiplied by the integral gain constant .
In terms of calculus, the equation would look like this:

With no calculus, the equation would look like this:

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/10-pid/20-pid-terms.md
https://www.youtube.com/watch?v=wkfEZmsQqiA
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/10-pid/20-pid-terms.md

✎

✎

✎

The integral term will do something like: propellors will spin faster the longer the
drone is away from the desired set point.

2)2) The OvThe Overerall Contrall Control Functionol Function

The overal control function consists as the sum of proportional, integral, and derivative
terms.

The figure below summarizes the inclusion of a PID controller within a basic control
loop.

Figure 2.1. PID Controller Block Diagram

3)3) TTuning:uning:

Tuning a PID controller is done by setting the conotrl parameters to values
that fit to be able to get an ideal control response. The three control terms may be corre-
lated and so changing one parameter may impact the influence of another. The general
effects of each term are therefore useful as reference, but the actual effects will vary de-
pending on the specific control system.

4)4) Altitude PID in SimulationAltitude PID in Simulation

In this part of the project, you will be implementing a PID controller for a simulated
drone that can only move in one dimension, the vertical dimension. You can control
the speed the motors spin on the drone, which sets the thrust being generated by the
propellers. In this system, the process variable is the drone’s altitude, the setpoint is the
desired altitude, and the error is the distance in meters between the setpoint and the
drone’s altitude. The output of the control function is a PWM (pulse-width modulation)
value between 1100 and 1900, which is sent to the flight controller to set the drone’s
throttle.
To run the simulation, you need to use the vnc server. You can find the installation link
here.
Run sudo vncserver .
With bash, navigate to the file named drone_simulator, which is located within the
scripts folder of pidrone_pkg-master folder.
You should implement the discretized version of the PID control function in stu-
dent_pid_class.py:

118 THE THREE PID TERMS

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/10-pid/20-pid-terms.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/10-pid/20-pid-terms.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/10-pid/20-pid-terms.md
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://docs.duckietown.org/daffy/opmanual_sky/out/build_materials_excluded.html

Notice that there is an extra offset term added to the control function. This is the base
PWM value/throttle command before the three control terms are applied to correct the
error in the system.
To tune your PID, set the parameters () in z_pid.yaml.
To test your PID, run python sim.py on your base station or a department computer
but not on your drone, since it requires a graphical user interface to visualize the out-
put. The PID class in student_pid_class.py will automatically be used to control the
simulated drone. The up and down arrow keys will change the setpoint, and r resets the
simulation.
You will need numpy, matplotlib, and yaml to run the simulation. To install these de-
pendencies, run pip install numpy matplotlib pyyaml .
Effects ofEffects of :
Increasing will proportionally increase the control output. This causes the system
to react more quickly (thereby decreasing the rise time and the settling time by a small
amount). Even so, setting the proportional gain too high could cause massive over-
shoot, which in turn could destabilize the system. Increasing also has the effect
of decreasing the steady-state error. However, as the value of the process variable ap-
proaches the setpoint and the error decreases, the proportional term will also decrease.
As a result, with a P-controller (a controller with only the proportional term), the
process variable will asymptotically approach the setpoint, but will never quite reach it.
Thus, a P-controller cannot be used to completely eliminate steady-state error.
Effects ofEffects of :
The integral term takes into account past error, as well as the duration of the error. If
error persists for a long time, the integral term will continue to accumulate and will
eventually drive the error down. This has the effect of reducing and eliminating steady-
state error. However, the build-up of error can cause the value of the process variable to
overshoot, which can increase the settling time of the system, though it decreases the
rise time.
Effects ofEffects of :
By calculating the instantaneous rate of change of the system’s error and using this
slope for linear extrapolation, the derivative term anticipates future error. While the
proportional and integral terms both act to move the process variable to the setpoint,
the derivative term seeks to dampen their efforts and decrease the amount the system
overshoots in response to a large change in error (which would greatly affect the mag-
nitude of the proportional and integral contributions to the overall control output). If
set at an appropriate level, the derivative term reduces oscillations, which decreases the
settling time and improves the stability of the system. The derivative term has negligi-
ble effects on steady-state error and only decreases the rise time by a minor amount.

Figure 2.2. General Effects of Control Terms

THE THREE PID TERMS 119

✎

✎

✎

UUNITNIT K.1.3K.1.3

Implementation of PIDImplementation of PID

1)1) Altitude PID in SimulationAltitude PID in Simulation

In this part of the project, you will be implementing a PID controller for a simulated
drone that can only move in one dimension, the vertical dimension. You can control
the speed the motors spin on the drone, which sets the thrust being generated by the
propellers. In this system, the process variable is the drone’s altitude, the setpoint is the
desired altitude, and the error is the distance in meters between the setpoint and the
drone’s altitude. The output of the control function is a PWM (pulse-width modulation)
value between 1100 and 1900, which is sent to the flight controller to set the drone’s
throttle.
To run the simulation, you need to use the vnc server. You can find the installation link
here.
Run sudo vncserver .
With bash, navigate to the file named drone_simulator, which is located within the
scripts folder of pidrone_pkg-master folder.
You should implement the discretized version of the PID control function in stu-
dent_pid_class.py:

Notice that there is an extra offset term added to the control function. This is the base
PWM value/throttle command before the three control terms are applied to correct the
error in the system.
To tune your PID, set the parameters () in z_pid.yaml.
To test your PID, run python sim.py on your base station or a department computer
but not on your drone, since it requires a graphical user interface to visualize the out-
put. The PID class in student_pid_class.py will automatically be used to control the
simulated drone. The up and down arrow keys will change the setpoint, and r resets the
simulation.
You will need numpy, matplotlib, and yaml to run the simulation. To install these de-
pendencies, run pip install numpy matplotlib pyyaml .

3.1.3.1. PrProblem 1: Implement an Idealized PIDoblem 1: Implement an Idealized PID

120

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/10-pid/30-pid-implementation.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/10-pid/30-pid-implementation.md
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://docs.duckietown.org/daffy/opmanual_sky/out/build_materials_excluded.html
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/10-pid/30-pid-implementation.md

✎

✎

ExExerercisescises
1. Implement the step method to return the constant . At what value of does the
drone takeoff? What could happen if were set too high on a real drone? Set to 1300
for the remainder of the questions.
2. Implement the P term. What happens when the absolute value of is very large?
What happens when its absolute value is very small? Can you tune the P term to stop
oscillations? Why or why not?
3. Implement the D term. Set to zero. What happens when is 50? 500? 5000?
4. Now tune and so that the drone comes to a steady hover. Describe the trade-
off as you change the ratio of to . Can the drone stabilize at its target (zero steady-
state error)? Why or why not?
5. Implement the I term and observe the difference between PD and PID control.
What role does the I term play in this system? What happens when and are set
to zero?
6. Implement the reset method and test its behavior. If implemented incorrectly, what
problems can you anticipate reset causing?
7. Finally, tune the constants in your PID controller to the best of your abilities. When
the setpoint is moving, the drone should chase the setpoint very closely. When the set-
point is still, the drone should converge exactly at the setpoint and not oscillate. Report
your tuning values.

3.2.3.2. PrProblem 2: Toblem 2: Tuning a PID with Latuning a PID with Latencyency
Now, we introduce latency! Run the simulation as python sim.py -l 6 to introduce
24 milliseconds of latency (six steps of latency running at 25 hz).
ExExerercisescises
1. Tune the constants in your PID controller to the best of your abilities. The drone
should chase the setpoint very closely, but will converge more slowly when the setpoint
is still. Report your tuning values.
2. Compare your tuning values to the values you obtained in problem 1.
3. Explain the effect of latency on each control term.

3.3.3.3. PrProblem 3: Toblem 3: Tuning a PID with Latuning a PID with Latencyency, N, Noise, and Droise, and Dragag
In the most realistic mode, you will tune a controller with latency, noise, and a drag co-
efficient. You can do this with the command line arguments python sim.py -l 3 -n
0.5 -d 0.02 to be most realistic to real-world flight.
ExExerercisescises
1. Tune with these arguments to be as good as possible. Report your tuning values.
2. Compare your tuning values to the values from problems 1 and 2.
Run python sim.py -h to see the other simulator parameters. We encourage you to
experiment with those and observe their effects on your controller.

IMPLEMENTATION OF PID 121

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/10-pid/30-pid-implementation.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/10-pid/30-pid-implementation.md

✎

✎

✎

✎

1)1) TTuning 1D Contruning 1D Controls: Pols: Part 1: Planar Tart 1: Planar Tuninguning

In this portion of the project, you will be tuning the low rate integral terms of the PID
controllers that we’ve provided.

3.4.3.4. TTrimming yrimming your Drour Droneone
Due to differences in the weight distribution and other factors that cause asymmetries,
the drone will tend to initially drift in a particular direction. In order to tune your alti-
tude PID, the planar motion of the drone needs to be controlled. This is important so
that the drone does not fly uncontrollably across the room while you’re trying to tune
its altitude controller. To control the drone’s planar motion while you’re tuning the al-
titude, we’ve created and tuned PIDs to do this for you, but you will need to tune the
initial low-rate integral terms to account for the uneven weight distribution specific to
your drone. You will first use the provided altitude PID to tune the planar controllers,
and then you will tune your altitude PID with the tuned planar controllers.
Write brief answers to all exercises in answers_pid.md.

3.5.3.5. PrProblem 1: Understanding the Controblem 1: Understanding the Controlleroller
Our controller is a dual I-term (integral term) PID controller. The high-rate I-term
changes quickly, allowing fast response to changes. The low-rate I-term changes slowly,
allowing the drone to adjust to systemic sources of error. The provided PID gains have
been pretuned to this drone hardware, and should not need significant modification for
your specific drone. But, the initial low I-terms do need to be adjusted based on the sta-
tic error of your specific drone.
ExExerercisescises
1. Name a source of static error that the low-rate I term can correct for.
2. Name two sources of dynamic error that the high-rate I term can correct for.

3.6.3.6. PrProblem 2: Toblem 2: Tune the Thrune the Throtottletle
The first step in the tuning process is finding an initial throttle value that allows your
drone to have a smooth and controlled takeoff. To do this, you’ll be adjusting the value
of throttle_low.init_i in pid_class.py. This is the initial value of the low-rate (slow
changing) integral term for the throttle, which controls altitude. The default value is
100. you will tune this value by having the drone take off, observing its behavior, and
modifying the value accordingly. Each time you wish to change the value, you will need
to restart pid_controller.py to use the new value.
SetupSetup
1. Prepare your drone to fly over a highly textured planar surface1.
2. Navigate to `4 of the screen.
3. Quit the program by pressing ctrl-c.
ExExerercisescises
1. In this screen (`4), use a text editor (such as vim or nano) to modify throt-
tle_low.init_i in pid_class.py to test out different values for throttle_low.init_i .

122 IMPLEMENTATION OF PID

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/10-pid/30-pid-implementation.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/10-pid/30-pid-implementation.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/10-pid/30-pid-implementation.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/10-pid/30-pid-implementation.md

✎

Be cautious when modifying this value because the drone could take off abruptly with
a value that is too high. The specific throttle_low.init_i value is drone specific, but
typical values range between 50 and 150. Try both of these values and two more values
between then. In one sentence, describe the drone’s behavior as a result of changing the
value up and down.
2. Now find the value for which your drone is able to have a smooth and controlled
takeoff. The goal is to reduce the overshoot and undershoot for the drone to takeoff and
fly stable at 0.3m. Try changing this value in increments of 10 and then 5 until you find
a value that allows the drone to take off at a reasonable rate. Record this value in your
answers.

3.7.3.7. PrProblem 3: Set the Toblem 3: Set the Trimrim
Next you will set the trim on roll and pitch. You will do this by tuning the low I-terms to
adjust for the static errors that exist on your drone. The default value is 0, and positive
values will move the drone to the right or forward, and negative to the left or backward,
depending on the axis you’re modifying. Note that you may need to repeat this process
periodically, for example after a crash or the like. When performing this process, each
time make sure that you:
• Place the battery in the same place each time as much as possible so the weight is
distributed the same.
• Plug the flight controller while the struts are fully engaged and the drone is level, so
the gyros are well calibrated.
• Always place the drone so that the camera is closer to you and the skyline is farther
away.
SetupSetup
Modify pid_controller.py to print out the low rate integral terms of the PIDs by finding
the block of code shown below and uncommenting the following print statements

print 'roll_low.init_i', pid_controller.pid.roll_low.init_i
print 'pitch_low.init_i', pid_controller.pid.pitch_low.init_i

You will also need to set the verbose variable in this file to zero so that these print
statements will not be overridden by the other print statements: verbose = 0
While flying, the low-rate I-terms will change to account for the static flight error,
and when you disarm the drone, the initial low-rate I terms will be set to these
changed values, thus allowing the low-rate I terms to start at this corrected value.
Eventually, these values will converge, and your drone will no longer drift. Once con-
verged, you will save the values by modifying the variables self.roll_low.init_i and
self.pitch_low.init_i in pid_class.py to the corresponding value printed in `4 of
the screen after disarming. This will store the initial low-rate I-terms between flights.
ExExerercisescises
1. Perform one flight. After the drone takes off, do not give it movement commands
but allow it to drift.
2. Disarm the drone before it flies too far in any direction.

IMPLEMENTATION OF PID 123

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/10-pid/30-pid-implementation.md

✎

✎

3. Write down the low-I values printed in `4 of the screen.
4. Pick up and move the drone by hand back to the center of the flying area.
5. Repeat steps 1-4 until the values that are printed out after disarming have converged
(roughly when the change in magnitude is less than 1).
6. Once these values have converged, record these values in your answers.
FFootnotootnoteses
11A flat posterboard scribbled or written on with marker will work.

1)1) TTuning 1D Contruning 1D Controls: Pols: Part 2: Altitude Tart 2: Altitude Tuninguning

In this part, you will be transferring the altitude PID you created in part 1 onto your
drone. You will then tune the PID gains on your drone as you did in the simulator.

3.8.3.8. PrProblem 1: Flying with Yoblem 1: Flying with Your Altitude PID!our Altitude PID!
Now that the planar PIDs are tuned, and you have found a value for throt-
tle_low.init_i that allows the drone to take off at a reasonable rate, you will be using
your altitude PID to control the height of the drone. To tune your altitude PID, you will
first use the Ziegler-Nichols tuning method to generate an initial set of tuning parame-
ters. You will then fine tune these parameters similar to how you tuned the drone in
simulation.
To use your PID, you’ll be running student_pid_controller.py instead of pid_con-
troller.py. This will allow your PID to run alongside our planar PIDs, and on top of our
throttle low-rate I-term which you found previously. Your PID will be responsible for
keeping the drone flying steady vertically.
SetupSetup
Change directories to ~/ws/src . Run git clone https://github.com/h2r/project-
pid-yourGithubName.git . In your repo, change “pidrone_project3_pid” to “project-
pid-yourGithubName” in package.xml and “project(pidrone_project3_pid)” to “pro-
ject(project-pid-yourGithubName)” in CMakeLists.txt. Also remove the msg folder, and
comment out “add_message_files” in CMakeLists.txt. Then change directories back to
~/ws/ and run catkin_make --pkg project-pid-yourGitHubName .
OR
Use the scp command to transfer student_pid_class.py, student_pid_controller.py,
and z_pid.yaml from the repo on your base station to the scripts folder of your drone
(~/ws/src/pidrone_pkg/scripts/). In the instructions below, instead of using rosrun ,
you may use python to execute your scripts.
Change directories into ~/ws/src/pidrone_pkg and modify pi.screenrc to start up with
your altitude pid by changing python pid_controller.py\n to rosrun project-pid-
yourGitHubName student_pid_controller.py\n . Prepare your drone to fly and then
navigate to `4 of the screen. Press ctrl-c to quit student_pid_controller.
In this screen (`4), modify ~/ws/src/project-pid-yourGitHubName/z_pid.yaml by set-
ting to 1250 and the rest of the gain constants to 0. Now run rosrun project-pid-
yourGitHubName student_pid_controller.py to fly with your altitude PID.
ExExerercisescises

124 IMPLEMENTATION OF PID

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/10-pid/30-pid-implementation.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/10-pid/30-pid-implementation.md

✎

✎

Fly your drone and observe its flight. Tune by slowly increasing its value between
flights until you can see the drone moving up and down with uniform oscillations.
Each time you will need to quit the controller, edit ~/ws/src/project-pid-your-
GitHubName/z_pid.yaml , and then run rosrun project-pid-yourGitHubName stu-
dent_pid_controller.py again to use the new PID gains.
1. Record your final value that causes uniform oscillations as , the ultimate
gain.
2. Fly your drone and pause the altitude graph on the web interface when you see two
peaks. Find the time difference between these two peaks and record this value as ,
the ultimate period.
3. Use your and values to compute , , and . Refer to the equations in
the Ziegler-Nichols section in the introduction to this project. Record these values and
change z_pid.yaml accordingly.
4. Fly your drone with the set of tuning values generated by the Ziegler-Nichols
method. Note that the Ziegler-Nichols method should enable safe flight, but will prob-
ably not control your drone’s altitude very well! Empirically tune the gain constants in
z_pid.yaml on your drone as you did in the simulator portion of this project. 2 Record
your final tuning values.
Take a video of your drone flying first using our altitude pid by running pid_con-
troller.py in `4, then take a video of your tuned pid by running student_pid_con-
troller.py in `4. See if you can get yours to track the altitude setpoint better than ours!
The drone should get to the setpoint quickly and stay there without bouncing up and
down.
FFootnotootnoteses
22 Use the graph on the web interface to observe the drone’s behavior as it oscillates
around the 0.3m setpoint the drone’s ability to hover at the setpoint. When observing
the drone itself, try to get eye-level with the drone to just focus on the the altitude and
ignore the planar motion; it is easier to focus on one axis at a time when tuning the
PIDs. The planar axes can be re-tuned after you tune your altitude pid if need be.

1)1) TTuning 1D Contruning 1D Controls: Pols: Part 3: Part 3: Position Controsition Controlol

Thus far, the planar PIDs have been used to control the velocity of the drone; now, you
will use cascaded PIDs to control the position of the drone. The cascaded PIDs are set
up so that the position controller forms the outer loop which uses the position error to
provide setpoint velocities for the inner loop velocity controller.

2)2) How tHow to Engo Engagage Pe Position Controsition Controlol

Engaging position control involves two steps. First you have to tell the drone to “re-
member” a frame. You can do this using the r key. This will save the frame which the
drone will attempt to fly directly above. Next you have to engage position control. You
can engage this mode with the p key, and disengage with v for velocity control. So the
procedure is to first save a frame (target location for position hold) using r and then
shortly after (before drifting too much) type p.
NNotote:e: Position hold works best over a textured surface with lots of visual contrast. Even

IMPLEMENTATION OF PID 125

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/10-pid/30-pid-implementation.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/10-pid/30-pid-implementation.md

✎

✎

✎

when doing position hold, always be ready to kill in case of a mishap. Especially be
careful when looking at other windows.

3)3) PPosition Controsition Control Demool Demo

This video demonstrates the drone doing a zero velocity hover and drifting in the scene.
Then we turn on position hold (you can tell when it is engaged when the drone’s throt-
tle drops) and it holds its position for several minutes.
Then we turn off the position hold so you can see it drift again, and then turn it on
again at the end and land. You can tell when it is turned on because we move the drone
back to the center of the flight area before each hold.

3.9.3.9. PrProblem 1: Flying with Voblem 1: Flying with Velocity Contrelocity Controlol
First, you are going to experiment with flying your drone in velocity control and con-
trolling its motion with the keyboard keys. Based on observations and knowledge of the
controllers, you will then explain the inner workings of the velocity PIDs in your own
words.
SetupSetup
Prepare your drone to fly over a highly textured planar surface. Make sure there is space
for the drone to fly around.
ExExerercisecise
Fly your drone in velocity control (the default control) and make sure there is room to
fly to the right. Press and hold ‘L’ and observe the drone’s motion, and release ‘L’ to stop
the drone from moving.
1. Explain what the following key terms are in this controller, and how they change to
cause the drone to move when you press ‘L’ and stop when you release: setpoint, error,
control variable, process variable, proportional term, integral term, derivative term. We
are looking only for a higher level description to demonstrate understanding of the PID
controllers.
2. Try flying in velocity mode over a blank white poster board. Be careful! What do
you notice about the drone’s behavior, and what do you suspect causes this?

3.10.3.10. PrProblem 2: Flying with Poblem 2: Flying with Position Controsition Controlol
Now you are going to fly your drone in position control and experiment with control-
ling its motion with the keyboard keys. Based on observations and knowledge of the
controllers, you will then explain the inner workings of the position PIDs in your own
words.
SetupSetup
Prepare your drone to fly over a highly textured planar surface. Make sure there is space
for the drone to fly around.
ExExerercisescises
1. Engage position hold using the procedure described above. Observe the drone’s be-
havior. How is it different from just velocity control?
2. How long are you able to hold position? Ideally you should be able to do this in one

126 IMPLEMENTATION OF PID

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/10-pid/30-pid-implementation.md
https://www.youtube.com/embed/WTohnsKs7dU
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/10-pid/30-pid-implementation.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/21-loop/10-pid/30-pid-implementation.md

spot for an entire battery. If not, try re-tuning your I-term preloads above. If you’re fly-
ing on the power supply instead of a battery, the drone should stay in place indefinitely,
but you can stop it after 5 minutes.
3. While flying in position control, make sure there is room for the drone to fly to the
right and then take note of the desired position in `4 of the screen. Now press the ‘L’
key in the user interface and note the new desired x-position of the drone; it should be
0.1m to the right of the drone’s last position. Explain what the following key terms are
in the outer loop position controller, and how they change to cause the drone to move
and stop 0.1m to the right after you press ‘L’ in position control: setpoint, error, con-
trol variable, process variable, proportional term, integral term, derivative term. We are
looking only for a higher level description to demonstrate understanding of cascaded
PID controllers.
4. Try flying in position control over a uniform surface such as the floor in 121, or un-
patterned carpet. Echo the state of the drone by typing rostopic echo /pidrone/state
into an empty window in the screen. Note the position data, and explain your observa-
tions of how well the drone is able to estimate its position. How long is it able to hold
position? Does the drone move correctly when you use the arrow keys?
Take a one minute video of your drone flying in velocity control, and then engage posi-
tion control.

IMPLEMENTATION OF PID 127

✎

SSEECCTIONTION LL

LocalizationLocalization

This section introduces robot localization: the process of determining where a robot is
in a pre-defined map. The content and instructions in this section will teach you how
to create a map for your drone to fly over, and how to command your drone to fly to
specific positions in your map. For the drone, a “map” is simply a photograph of the
surface that your drone flies over.

128

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/22-localization/00-overview.md

✎

SSUBSEUBSECCTIONTION L.1L.1

CamerCameraa

This subsection describes how the downward-facing camera on your drone is used to
localize above a map. By storing a picture of the flying surface on the drone and run-
ning the localization program, your drone will be able to determine its x and y coordi-
nates within the map.

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/22-localization/10-camera/00-overview.md

✎

✎

UUNITNIT L.1.1L.1.1

Comparing ImagComparing Imageses

Image that you’re starting to assemble a jigsaw puzzle. You take out the first piece and
then you look at the picture on the box to guess where that piece belongs. If the puzzle
piece has many differnet colors or distinct lines, then it is easier to find where it be-
longs in the whole picture. however, if the puzzle piece is a solid color, say a blue part of
the sky, it is very difficult to narrow down exactly where the piece belongs. As you find
more pieces that fit with your first piece, it becomes easier to determine where those
pieces belong in the picture.
This is how localization on the drone works. The drone has a picture of the entire sur-
face that it will fly over stored on it; this is called the map. Compare the map to the
complete picture on the puzzle box. As the drone is flying, the camera is only able to
see part of the map. The drone tries to find where this picture belongs in the map, just
like finding where the puzzle piece goes. Once the drone knows approximately where
the picture belongs, it can guess how far to the right, and how far up it is flying from
the bottom left of the map. And viola, the drone has a position estimate!
Of course, there is a lot math and code behind the picture matching process of the
drone; however, the higher level understanding is just as described.

1)1) Compiling Map ImagCompiling Map Image Fe For Dror Drone Useone Use

Fotor Image Compiler
1. Using the link above head to the Fotor image collage tab.
2. Choose Photo stitching to begin.
3. Set the spacing to 0 and check off the transparent borders box.
4. Lastly on the right hand side of the page click on the import button to upload the
images of your map. (Make sure to have all pictures taken from the same distance to
have the most accurate stitching).

130

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/22-localization/10-camera/10-camera-images.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/22-localization/10-camera/10-camera-images.md
https://www.fotor.com/creat/collage

✎

✎

✎

✎

✎

✎

UUNITNIT L.1.2L.1.2

DrDrone Localizationone Localization

The Drone flys over a known environment. To localize, state estimation is required on
a system that changes over time.(The drone changes the view when flying over time.)
Guassian
Particle Filter
localization

2.1.2.1. MontMonte Carlo Localizatione Carlo Localization
Monte Carlo Localization is localizing using particle filters.
Monte carlo Localization has 3 phases
prediction phase
Update phase
resamplying

2.2.2.2. PrPrediction Phaseediction Phase
During the Predicition phase the drone doesn’t know where it is in the map and can
equally be anywhere in the map.

2.3.2.3. UpdatUpdate Phasee Phase
During the Update phase the drone updates the particles to be aware of the where on
the map it is at.

2.4.2.4. RReSamplying PhaseeSamplying Phase
DUring the Resamplying Phase the weighted particles with higher numbers are recy-
cled while deleting the lower weighted particles.

2.5.2.5. PParticle FIltarticle FIltersers
Particle filters represents a Probability Distrubution Function. A Probability distrubu-
tion function grabs the probability of a given event.With 50 features, the PDF will give
a weighted probability of those 50 features.Given the random features on the camera,
the Filter can give the probability of the location by weighting out each particle feature
it has. The more weight the particle has the more likely that particle has to do with the
location of the drone then a particle with a lower weight.The higher weight gets recyled
in the filter while the lower weights are deleted. Deleting the lower weighted particles
from algorithm, helps to effeciently localize because only the higher weighted particles
are keeped in the algorithm while searching for more particles.

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/22-localization/10-camera/20-camera-localization.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/22-localization/10-camera/20-camera-localization.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/22-localization/10-camera/20-camera-localization.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/22-localization/10-camera/20-camera-localization.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/22-localization/10-camera/20-camera-localization.md
https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/22-localization/10-camera/20-camera-localization.md

The map used for the DuckieSky Drone is distict around the map because the more fea-
tures the better! The accuracy of particles is relatived to the ammount of features used
to represent the Probability Distrubution Function.
How will the map work when the marks on the map are the same?
How do weight particles effect localization?

132 DRONE LOCALIZATION

✎

SSEECCTIONTION MM

MatMaterialserials

This section contains other supplementary materials for this textbook.

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/98-materials/00-overview.md

✎

UUNITNIT M.0.3M.0.3

GlossaryGlossary

This glossary contains an alphanumerically ordered list of terms utilized in this text
book. Some words or phrases are linked to a page where you can learn more about the
definition of the term.
• AI (Artificial Intelligence)

◦ Artificial intelligence allows systems to gain the potential to accomplish tasks
that usually requires the intelligence of humans or decision making skills.

• Basestation
◦ A basestation is a laptop or desktop (ie. not a tablet) with the ability to connect to
WiFi over a network and that has the ability to run/read python.

• Bash
◦ Bash is a type of program language. It is utilized in many shells.

• Branch
◦ A branch is a parallel version of a repository. It is contained within the repository,
but does not affect the primary or master branch allowing you to work freely without
disrupting the “live” version. When you’ve made the changes you want to make, you
can merge your branch back into the master branch to publish your changes.

• Bystander Effect:
◦ The bystander effect describes a phenomem where the more people that are pre-
sent, the less likely someone will help a victim during a situation. Be wary of this,
make sure that if there is a dangerous situation, be cautious and aware, and take ac-
tion to help those who need it.

• B4UFLY App
◦ B4UFLY App is an app created by the FAA, helps recreational flyers to figure out
where they can safely fly and if there are any restrictions in a location.

• Cloning
◦ A clone is a copy of a repository that lives on your computer instead of on a web-
site’s server somewhere, or the act of making that copy. When you make a clone, you
can edit the files in your preferred editor and use Git to keep track of your changes
without having to be online. The repository you cloned is still connected to the re-
mote version so that you can push your local changes to the remote to keep them
synced when you’re online.

• Closed source code
◦ when the source code cannot be accessed by others, or it remains classified, only
seen by those who are authorized to.

• Directory
◦ A directory is another name for a folder.

• DL (Deep Learning)

134

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/98-materials/10-glossary.md
https://study.com/academy/lesson/shell-terminal-bash-kernel-in-linux-definition-basic-commands.html
https://docs.github.com/en/github/getting-started-with-github/github-glossary
https://docs.github.com/en/github/getting-started-with-github/github-glossary
https://techterms.com/definition/directory

◦ Deep Learning is a portion of AI that replicates the human brain by processing
data involved with object and speech recognition, and making decisions (Investope-
dia).

• DuckieSky
◦ DuckieSky is a program within Duckietown lead by Professor Stefanie Tellex that
develops and manages the MOOC-based drone curriculum in this book and that dis-
tributes drone kits to high schools throughout Rhode Island.

• Duckietown Foundation
◦ The Duckietown Foundation is the non-profit foundation that develops and pro-
motes the Duckietown project, which explores autonomous robot platforms. You can
read more about Duckietown.

• Ethics
◦ The term ethics originated from the word “ethos”, which is Greek for “way of
living” (BBC). Ethics incorporates moral principles and values. It affects how we
choose to live our lives, what we think is wrong and right, and what our responsibil-
ities are (BBC).

• FAA (Federal Aviation Administration)
◦ Federal Aviation Administration which is responsible for regulation of civil avia-
tion: including airports, air traffic management, certification of people, certification
of aircraft, and protection of US assets.

• Fork
◦ A fork is a personal copy of another user’s repository that lives on your account.
Forks allow you to freely make changes to a project without affecting the original up-
stream repository. You can also open a pull request in the upstream repository and
keep your fork synced with the latest changes since both repositories are still con-
nected.

• Git
◦ Git is an open-source program for tracking changes in text files. It was written by
the author of the Linux operating system, and is the core technology that GitHub,
the social and user interface, is built on top of.

• GitHub
◦ GitHub is a Git repository hosting service, or an online datastructure that is a ba-
sis for storing and presenting these code projects.

• HTML
◦ HTML [Hypertext Markup Language) is a programming language used to create
webpages.

• Issue
◦ An issue is a suggested improvement, task or question related to the repository.
Issues can be created by anyone (for public repositories), and are moderated by
repository collaborators.

• Kill Switch
◦ The kill switch on the drone is the spacebar on the keyboard which immediately

GLOSSARY 135

https://sites.brown.edu/duckiesky/
https://www.duckietown.org/about/duckietown-foundation
https://docs.github.com/en/github/getting-started-with-github/github-glossary
https://docs.github.com/en/github/getting-started-with-github/github-glossary
https://docs.github.com/en/github/getting-started-with-github/github-glossary
https://techterms.com/definition/html
https://docs.github.com/en/github/getting-started-with-github/github-glossary

disarms the drone after they have begun flying it. If something goes wrong during
flight, press the spacebar.

• ML (Machine Learning)
◦ Machine Learning is a portion of AI that lets systems learn and improve from
their experiences without programming it into the system.

• Markdown
◦ Markdown is a text-to-HTML conversion tool for web writers.

• Markduck
◦ Markduck is a Markdown dialect that supports many Markdown features. It is
the language that the majority of the Duckiesky High School Textbook [including
this document) was written in.

• NTSB (National Transportation Safety Board)
◦ US investigative body for vehicle/transportation accidents.

• Open source code:
◦ when the source code can be accessible by the public.

• Open-sourced Project
◦ An open-sourced project is a project where the code used to make a particular
program or application is available to everyone.

• OSHA (Occupational Safety and Health Adminstration)
• Pull Request

◦ A pull request is a proposed change to a repository submitted by a user and ac-
cepted or rejected by a repository’s collaborators.

• Repository
◦ A repository is the most basic element of GitHub. They’re easiest to imagine as a
project’s folder. A repository contains all of the project files [including documenta-
tion), and stores each file’s revision history. Repositories can have multiple collabo-
rators and can be either public or private.

• See and Avoid Concept
◦ The see and avoid concept is the concept of taking action to avoid what you see.
If you are able to see a ball coming at you, you can take action: catch, dodge, etc. In
the Midair Collision, time was too short to be able to take any action.

• Shell
◦ A shell is a programming language that takes input and gives the input to the
computer and operating system to analyze and perform the task that the input asks
for.

• SSH
◦ SSH (Secure Shell) is a method that allows a user to remotely log in from one
computer/device to another.

• Syntax
◦ Syntax refers to the rules that specify the correct combined sequence of symbols
that can be used to form a correctly structured program using a given programming

136 GLOSSARY

https://www.markdowntutorial.com/
https://docs.duckietown.org/DT19/duckumentation/out/markduck_basic.html
https://github.com/open-source
https://docs.github.com/en/github/getting-started-with-github/github-glossary
https://docs.github.com/en/github/getting-started-with-github/github-glossary
https://study.com/academy/lesson/shell-terminal-bash-kernel-in-linux-definition-basic-commands.html
https://techterms.com/definition/ssh
https://www.techopedia.com/definition/3959/syntax

language.
• Terminal

◦ A terminal is a program that allows the user to interact with the shell.
• UAS (unmanned aerial systems)

◦ systems/vehicles with no human pilot, like drones.
• Version Control Systems

◦ Version control systems are software programs that allow programmers and code-
based project workers to manage the changes to their code-based projects over time
with new versions.

• VS Code
◦ Visual Studio Code (VSCode) is a code editor offered by Microsoft.

GLOSSARY 137

https://study.com/academy/lesson/shell-terminal-bash-kernel-in-linux-definition-basic-commands.html
https://www.atlassian.com/git/tutorials/what-is-version-control
https://code.visualstudio.com/

✎

SSEECCTIONTION NN

BibliogrBibliographaphyy

Please see [1].
[1] Roger R Labbe Jr. Kalman and bayesian filters in python. Published as a Jupyter Notebook hosted
on GitHub at https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python and in PDF form at
https://drive.google.com/file/d/0By_SW19c1BfhSVFzNHc0SjduNzg/view?usp=sharing (accessed Au-
gust 29, 2018), May 2018.

138

https://github.com/duckietown/docs-duckiesky_high_school_student/edit/daffy/book/duckiesky_high_school_student/99-bibliography/00-overview.md

	Duckiesky Student Curriculum
	Introduction
	Importance of Robotics
	Intro to the Course
	Development of Robotics
	What Does The Future Hold For Robotics?
	Vocabulary

	Intro to Ethics
	What is Ethics?
	Correctness and Uncertainty of Algorithms
	Algorithmic Bias
	Security and Systems Utilized in Society:
	Militarization
	Medical, Healthcare, and Caregiver Robots
	Availability/Accessibility/Uses
	Future impact of AI on human jobs and responsibilities
	Useful Resources and Links if Interested

	Interacting with our Curriculum
	Git and Github
	Creating a GitHub Account
	Git and GitHub Information
	Learning Git and Github

	Markdown and Contributions
	Learning Markdown
	Learning Markduck
	Editing the DuckieSky Textbook
	Helpful Materials to Propose Changes

	Students: Leave your mark here!
	Dev’s Section
	Mrs. Jones Section v3
	George’s Section
	Lucas Furtado Section
	Luisangel Morales
	Serigne section
	Nahiomy’s Section
	HILSON’S Reason
	The reason I chose this class was because I wanted to try something new.

	Ivaldino’s section
	Sylvia’s Section
	Rebecca’s Section
	Elijah’s Section

	Drone Operation
	Sensors and Actuators
	Important Vocabulary
	Sensors in your drone:
	Actuators in your drone:
	Controllers in your drone:

	Safety
	Case Study: The Midair Collision in 2009
	FAA rules
	Where to fly:
	Possible Sources for Danger:
	Safe Environment
	Pre-flight Safety Checklist
	First Flight:

	Electronics
	Circuitry
	Simple Circuits
	Voltage, Current, Resistance
	Signals and Connections
	Soldering
	Intro to Soldering
	Building Skill
	Troubleshooting
	Build: 1
	Computing and Networking
	Using the Pi
	Networking
	7 Layers of Abstraction
	Basestations
	Networking with our Drone

	Bash
	What is Bash
	Learning Bash
	Exploring the Pi’s Directories and Files
	Using Bash

	Blinking an LED
	Step 1: Blinking the LED in the REPL
	Step 2: Blinking the LED using a bash script
	Additional Reference

	Sensors, Actuators, and Control: 1
	Overview
	Intro to Sensors
	Build: 2
	Sensors, Actuators, and Control: 2
	Sensing
	Calibration
	Background
	How the IR sensor works
	Datasheet
	Read through
	Looking at the graphs

	Experimental derivation
	Collect Data
	Analyze the Data
	Interpolate
	Understand the data
	Set limits
	Linearize the graph
	Best fit line

	Geometrical derivation

	Reading Sensors
	Background
	Analog to digital conversion
	Communication protocols
	Software libraries

	Activity 1: Reading ADC values
	Power up your Pi
	Create a new directory
	Create a new file
	Import the library
	Create an ADS1115 instance
	Read the ADC value
	Run the Python Script

	Activity 2: Creating a Loop
	Add the while loop
	Run the Script
	Slow down!
	Run the Script

	Activity 3: Navigating a Python Library
	Search for your hardware device
	Look for examples

	Activity 4: Function Composition
	Relationship of ADC output to IR sensor Output
	Find the Constant
	Function Composition
	Dimensional Analysis

	Activity 5: Calibration in Code
	Define the function
	Fill in Constants
	Call the Function
	Run the script

	Middleware: ROS
	Intro to ROS
	Motivation
	Example

	Software Architecture on the DuckieDrone
	Hardware
	Software
	Middleware

	ROS jargon
	Node
	Publishers
	Messages
	Topic
	Subscriber
	Callback
	Master
	Summary

	ROS commands
	roscd
	roscore
	rostopic list
	rostopic info
	rosbag

	Environment Variables
	ROS MASTER URI

	Catkin workspace

	Creating a ROS Publisher
	Flashback to the sensor reading code
	Creating a ROS publisher
	Import the ROS python library and the needed message types.
	Create a publisher
	Create an infrared sensor node
	Publish the message in the previously created while loop
	Change the structure of the while loop to a ROS manner. (This step is just a change of syntax)

	Subscriber, PWM and Open Loop
	PWM
	TON (On Time): Is the time the signal is high.
	TOFF (Off Time): Is the time the signal is low.
	Period: Is the sum total of on time and off time.
	Duty Cycle: It is the percentage of time when the signal was high in the time of the period.
	Frequency: Is the number of cycles per second (measured in Hz)

	Open Loop Controllers
	Writing a ROS Subscriber:

	Build: 3
	Sensors, Actuators, and Control: 3
	Motors
	Intro to the Motors
	IMU
	Intro to the IMU
	Applications

	Build: 4
	Closed Loop Control
	PID Controller
	Intro to PID
	Open Vs Closed Loop Systems
	PID Terms
	Example relating to biological system:
	The General Algorithm

	The Three PID Terms
	The Three PID Term Definitions
	The Overall Control Function
	Tuning:
	Altitude PID in Simulation

	Implementation of PID
	Altitude PID in Simulation
	Problem 1: Implement an Idealized PID
	Problem 2: Tuning a PID with Latency
	Problem 3: Tuning a PID with Latency, Noise, and Drag
	Tuning 1D Controls: Part 1: Planar Tuning

	Trimming your Drone
	Problem 1: Understanding the Controller
	Problem 2: Tune the Throttle
	Problem 3: Set the Trim
	Footnotes
	Tuning 1D Controls: Part 2: Altitude Tuning

	Problem 1: Flying with Your Altitude PID!
	Footnotes
	Tuning 1D Controls: Part 3: Position Control
	How to Engage Position Control
	Position Control Demo

	Problem 1: Flying with Velocity Control
	Problem 2: Flying with Position Control

	Localization
	Camera
	Comparing Images
	Compiling Map Image For Drone Use

	Drone Localization
	Monte Carlo Localization
	Prediction Phase
	Update Phase
	ReSamplying Phase
	Particle FIlters

	Materials
	Glossary
	Bibliography

