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✎

PPARARTT AA

PPererception fundamentalsception fundamentals

In this section you will have to use the knowledge on computer vision you acquired
during your classes. First, you will get familiar with the basics by projecting points and
lines onto an image. In the second stage, you will code your first augmented reality sys-
tem running on a Duckiebot!
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UUNITNIT AA-1-1

PrPreliminarieseliminaries

1.1.1.1. RRequirequired sted stepseps

1)1) CamerCamera calibra calibrationation

In this exercise the only sensor that will be used is the camera. So, ensure that you have
already done intrinsics and extrinsics camera calibration of your Duckiebot.

1.2.1.2. WWorkflow tipsorkflow tips
In this exercise you will extensively use images and inevitably make some mistakes that
you will have to fix. Debugging ROS packages that manipulate images can be very dif-
ficult only from the terminal output of your node and visualizing the image stream can
be useful. Within the Duckietown infrastructure we have a very nice way to do that: use
duckietown shell.
You can start a container connected to the ROS master on you Duckiebot with:

$ dts start_gui_tools DUCKIEBOT_NAME

Once inside this container you can call the rqt commands to visualize the state of the
pipeline on you robot.

$ rqt_image_view

$ rqt_graph

Or you can also use all the ROS related commands like rostopic, rosparam, rosnode,
etc..

$ rostopic ...

$ rosparam ...
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UUNITNIT AA-2-2

Learning matLearning materialserials

2.1.2.1. IntrIntroductionoduction
During lectures, we explained the standard workflow of an image perception pipeline:

Figure 2.1

In this exercise, we are going to look at the pipeline in the opposite direction.
It is often said that:

“The inverse of computer vision is computer graphics.”
The inverse pipeline looks like this:

Figure 2.2

In simple words, instead of extracting information from our camera, we want to intro-
duce some data in the imagery.
For this exercise concept like camera calibration, homography and projection matrices,
image plane and world coordinates are essential. So be sure to have those in mind while
you work your way through the exercises in the next sections.
Here is a quick reminder on what the homography matrix is and how it is obtained:
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Figure 2.3

Figure 2.4
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UUNITNIT AA-3-3

Basic ABasic Augmentugmented Red Reality Exeality Exerercisecise

The goal of this exercise is to familiarize yourself in developing functionalities in
the framemork of a pre-existing pipeline. In particular, the focus is in the perception
pipeline. You will implement a computer graphics algorithm that will be a part of it.

Knowledge and activity graph

RRequirequires:es: Camera calibration (unknown r(unknown ref opmanual_duckiebot/cameref opmanual_duckiebot/camera-calib)a-calib)

wwarningarning next (1 of 17) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/camera-calib'.

Location not known more precisely.
Created by function n/a in module n/a.

RRequirequires:es: Docker basics (unknown r(unknown ref duckietef duckietown-rown-roboticsobotics-dev-development/dockelopment/dockerer-basics)-basics)

previous wwarningarning next (2 of 17) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link
'#duckietown-robotics-development/docker-basics'.

Location not known more precisely.
Created by function n/a in module n/a.

RRequirequires:es: ROS basics (unknown r(unknown ref duckietef duckietown-rown-roboticsobotics-dev-development/swelopment/sw-adv-advanced)anced)

previous wwarningarning next (3 of 17) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link
'#duckietown-robotics-development/sw-advanced'.

Location not known more precisely.
Created by function n/a in module n/a.

RRequirequires:es: Knowledge of the software architecture on a Duckiebot (unknown r(unknown ref duck-ef duck-
ietietown-rown-roboticsobotics-dev-development/duckietelopment/duckietown-codeown-code-structur-structure)e)

previous wwarningarning next (4 of 17) index

https://github.com/duckietown/course-CRA/edit/daffy/book/duckietown-classical-robotics/01_perception/03-exercises/00_augmented_reality_basics.md
/tmp/mcdp_tmp_dir-root/prince_rendercbc_b0bt/warnings.html
/tmp/mcdp_tmp_dir-root/prince_rendercbc_b0bt/warnings.html
/tmp/mcdp_tmp_dir-root/prince_rendercbc_b0bt/warnings.html
/tmp/mcdp_tmp_dir-root/prince_rendercbc_b0bt/warnings.html
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warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link
'#duckietown-robotics-development/duckietown-code-
structure'.

Location not known more precisely.
Created by function n/a in module n/a.

RResults:esults: Skills on how to develop new code as part of the Duckietown framework.
RResults:esults: Insights into a computer graphics pipeline.

3.1.3.1. Segments PrSegments Projection Exojection Exerercisecise
In this exercise you are asked to draw some segments on an image given a yaml file
with their specification namely defining points coordinates and color of each segment.
In order to do that you will have to create a package called augmented_reality_basics
with the functionalities specified below in Section 3.2 - Specification of “augmented_re-
ality_basics”.
Then verify the results of your package in the following 3 scenarios.

1)1) Scenario 1: CalibrScenario 1: Calibration patation pattternern

• Put the robot in the middle of the calibration pattern.
• Run the node augmented_reality_basics with map file calibration_pat-
tern.yaml .
(Adjust the position of your Duckiebot until you get a decent match of reality and aug-
mented reality.)

2)2) Scenario 2: LaneScenario 2: Lane

• Put the robot on a tile, in the middle of a straight lane segment.
• Run the node augmented_reality_basics with map file lane.yaml .
(Adjust the position of your Duckiebot of your Duckiebot until you get a decent match
of reality and augmented reality.)

3)3) Scenario 3: IntScenario 3: Intersectionersection

• Put the robot at a stop line at a 4-way intersection in Duckietown.
• Run the node augmented_reality_basics with map file intersection_4way.yaml .
(Adjust the position of your Duckiebot until you get a decent match of reality and aug-
mented reality.)

3.2.3.2. SpecifSpecification of “ication of “augmentaugmented_red_reality_basics”eality_basics”

8 BASIC AUGMENTED REALITY EXERCISE
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In this assignment you will be writing a ROS package to perform the augmented reality
exercise. The program will be invoked with the following syntax:

$ roslaunch augmented_reality_basics augmented_reality_ba-
sics.launch map_file:= map file veh:="$VEHICLE_NAME"

where map file is a YAML file containing the map as specified in Section 3.3 - Map
Specification. If you use a roslaunch in the launch.sh file remember to put ‘ dt-exec
before each command.
The package structure must be the one provided by the Duckietown template-ros. In
addition, create a map directory where you can store the map files.
Your program is supposed to do the following:
1. Load the intrinsic / extrinsic calibration parameters for the given robot.
2. Read the map file corresponding to the map_file parameter given in the roslaunch
command above.
3. Subscribe to the image topic / robot name /camera_node/image/com-
pressed .
4. When you receive an image, project the map features onto it, and then publish the
result to the topic / robot name / node_name /map file basename /image/
compressed where map file basename is the basename of the file without the
yaml extension.
Create a ROS node called augmented_reality_basics_node , which imports an Aug-
menter class, from an augmented_reality_basics module. The Augmenter class
should contain the following methods:
1. A method called process_image that undistorts raw images.
2. A method called ground2pixel that transforms points in ground coordinates
(i.e. the robot reference frame) to pixels in the image.
3. A method called render_segments that plots the segments from the map files
onto the image.
In the ROS node, you just need a callback on the camera image stream that uses the
Augmenter class to modify the input image. Therefore, implement a method called
callback that writes the augmented image to the appropriate topic.

NNotote:e: As you will subscribe to the camera node’s camera_node/image/compressed
topic, you will need to run the dt-duckiebot-interface container alongside your
own container.

3.3.3.3. Map SpecifMap Specificationication
The map file contains a 3D polygon, defined as a list of points and a list of segments
that join those points.
The format is similar to any data structure for 3D computer graphics. Additionally, we
have these two specifics:

BASIC AUGMENTED REALITY EXERCISE 9
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1. Points are referred to by name.
2. It is possible to specify a reference frame for each point. (This will help make this
into a general tool for debugging various types of problems).
Here is an example of the file contents, which is hopefully self-explanatory. The follow-
ing map file describes three points, and two lines.

points:
# define three named points: center, left, right
center: [axle, [0, 0, 0]] # [reference frame, coordinates]
left: [axle, [0.5, 0.1, 0]]
right: [axle, [0.5, -0.1, 0]]

segments:
- points: [center, left]

color: [rgb, [1, 0, 0]]
- points: [center, right]

color: [rgb, [1, 0, 0]]

1)1) RRefereference frence frame specifame specificationication

The reference frames are defined as follows:
• axle : center of the wheels axle; coordinates are in 3D.
• camera : camera frame; coordinates are in 3D.
• image01 : a reference frame in which (0,0) is top left, and (1,1) is bottom right of
the image; coordinates are 2D.
(Other reference frames will be introduced later, such as the world and tile frames,
which will also need the pose of the robot.)

2)2) Color specifColor specificationication

RGB colors are written as:

[rgb, [ R , G , B ]]

where the RGB values are between 0 and 1. Alternatively, you can use one of the fol-
lowing strings defining some popular colours:
• red , equivalent to [rgb, [1,0,0]] ;
• green , equivalent to [rgb, [0,1,0]] ;
• blue , equivalent to [rgb, [0,0,1]] ;
• yellow , equivalent to [rgb, [1,1,0]] ;
• magenta , equivalent to [rgb, [1,0,1]] ;
• cyan , equivalent to [rgb, [0,1,1]] ;
• white , equivalent to [rgb, [1,1,1] ;
• black , equivalent to [rgb, [0,0,0]] .

10 BASIC AUGMENTED REALITY EXERCISE
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3.4.3.4. Map specifMap specification fication filesiles

1)1) hud.yaml
This pattern serves as a simple test that we can draw lines in image coordinates:

points:
TL: [image01, [0, 0]]
TR: [image01, [0, 1]]
BR: [image01, [1, 1]]
BL: [image01, [1, 0]]

segments:
- points: [TL, TR]

color: red
- points: [TR, BR]

color: green
- points: [BR, BL]

color: blue
- points: [BL, TL]

color: yellow

The expected result is to put a border around the image: red on the top, green on the
right, blue on the bottom, yellow on the left.

2)2) calibration_pattern.yaml
This pattern is based off the checkerboard calibration target used in estimating the in-
trinsic and extrinsic camera parameters:

points:
TL: [axle, [0.315, 0.093, 0]]
TR: [axle, [0.315, -0.093, 0]]
BR: [axle, [0.191, -0.093, 0]]
BL: [axle, [0.191, 0.093, 0]]

segments:
- points: [TL, TR]

color: red
- points: [TR, BR]

color: green
- points: [BR, BL]

color: blue
- points: [BL, TL]

color: yellow

The expected result is to put a border around the inside corners of the checkerboard:
red on the top, green on the right, blue on the bottom, yellow on the left, like below.

BASIC AUGMENTED REALITY EXERCISE 11

https://github.com/duckietown/course-CRA/edit/daffy/book/duckietown-classical-robotics/01_perception/03-exercises/00_augmented_reality_basics.md
https://github.com/duckietown/course-CRA/edit/daffy/book/duckietown-classical-robotics/01_perception/03-exercises/00_augmented_reality_basics.md
https://github.com/duckietown/course-CRA/edit/daffy/book/duckietown-classical-robotics/01_perception/03-exercises/00_augmented_reality_basics.md


✎

Figure 3.1

3)3) lane.yaml
We want something like this:

|   |          | . |             |   |
|   |          | . |             |   |
|   |          | . |             |   |
|   |          | . |             |   |
|   |          | . |             |   |
|   |          | . |             |   |
W   W          Y   Y             W   W
1   2          3   4             5   6

Then we have:

12 BASIC AUGMENTED REALITY EXERCISE
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points:
p1: [axle, [0.15, 0.2794, 0]]
q1: [axle, [0.6096, 0.2794, 0]]
p2: [axle, [0.15, 0.2286, 0]]
q2: [axle, [0.6096, 0.2286, 0]]
p3: [axle, [0.15, 0.0127, 0]]
q3: [axle, [0.6096, 0.0127, 0]]
p4: [axle, [0.15, -0.0127, 0]]
q4: [axle, [0.6096, -0.0127, 0]]
p5: [axle, [0.15, -0.2286, 0]]
q5: [axle, [0.6096, -0.2286, 0]]
p6: [axle, [0.15, -0.2794, 0]]
q6: [axle, [0.6096, -0.2794, 0]]

segments:
- points: [p1, q1]

color: white
- points: [p2, q2]

color: white
- points: [p3, q3]

color: yellow
- points: [p4, q4]

color: yellow
- points: [p5, q5]

color: white
- points: [p6, q6]

color: white

Expected output:

BASIC AUGMENTED REALITY EXERCISE 13
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Figure 3.2

4)4) intersection_4way.yaml

14 BASIC AUGMENTED REALITY EXERCISE
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points:
NL1: [axle, [0.247, 0.295, 0]]
NL2: [axle, [0.347, 0.301, 0]]
NL3: [axle, [0.218, 0.256, 0]]
NL4: [axle, [0.363, 0.251, 0]]
NL5: [axle, [0.400, 0.287, 0]]
NL6: [axle, [0.409, 0.513,   0]]
NL7: [axle, [0.360, 0.314, 0]]
NL8: [axle, [0.366, 0.456, 0]]
NC1: [axle, [0.372, 0.007, 0]]
NC2: [axle, [0.145, 0.008, 0]]
NC3: [axle, [0.374, -0.0216, 0]]
NC4: [axle, [0.146, -0.0180, 0]]
NR1: [axle, [0.209, -0.234, 0]]
NR2: [axle, [0.349, -0.237, 0]]
NR3: [axle, [0.242, -0.276, 0]]
NR4: [axle, [0.319, -0.274, 0]]
NR5: [axle, [0.402, -0.283, 0]]
NR6: [axle, [0.401, -0.479, 0]]
NR7: [axle, [0.352,  -0.415, 0]]
NR8: [axle, [0.352, -0.303, 0]]
CL1: [axle, [0.586, 0.261, 0]]
CL2: [axle, [0.595, 0.632, 0]]
CL3: [axle, [0.618, 0.251, 0]]
CL4: [axle, [0.637, 0.662, 0]]
CR1: [axle, [0.565, -0.253, 0]]
CR2: [axle, [0.567, -0.607, 0]]
CR3: [axle, [0.610, -0.262, 0]]
CR4: [axle, [0.611, -0.641, 0]]
FL1: [axle, [0.781, 0.718, 0]]
FL2: [axle, [0.763, 0.253, 0]]
FL3: [axle, [0.863, 0.192, 0]]
FL4: [axle, [1.185, 0.172, 0]]
FL5: [axle, [0.842, 0.718, 0]]
FL6: [axle, [0.875, 0.271,   0]]
FL7: [axle, [0.879, 0.234, 0]]
FL8: [axle, [1.180, 0.209, 0]]
FC1: [axle, [0.823, 0.0162, 0]]
FC2: [axle, [1.172, 0.00117, 0]]
FC3: [axle, [0.845, -0.0100, 0]]
FC4: [axle, [1.215, -0.0181, 0]]
FR1: [axle, [0.764, -0.695, 0]]
FR2: [axle, [0.768, -0.263, 0]]
FR3: [axle, [0.810, -0.202, 0]]
FR4: [axle, [1.203, -0.196, 0]]
FR5: [axle, [0.795, -0.702, 0]]
FR6: [axle, [0.803, -0.291, 0]]
FR7: [axle, [0.832, -0.240, 0]]
FR8: [axle, [1.210, -0.245, 0]]

segments:
- points: [NL1, NL2]

color: white
- points: [NL3, NL4]

color: white

BASIC AUGMENTED REALITY EXERCISE 15



✎3.5.3.5. SuggSuggestionsestions
Start by using the file hud.yaml . To visualize it, you do not need the calibration data. It
will be helpful to make sure that you can do the easy parts of the exercise: loading the
map, and drawing the lines.
To write the segments you can use this function:

def draw_segment(self, image, pt_x, pt_y, color):
defined_colors = {

'red': ['rgb', [1, 0, 0]],
'green': ['rgb', [0, 1, 0]],
'blue': ['rgb', [0, 0, 1]],
'yellow': ['rgb', [1, 1, 0]],
'magenta': ['rgb', [1, 0 , 1]],
'cyan': ['rgb', [0, 1, 1]],
'white': ['rgb', [1, 1, 1]],
'black': ['rgb', [0, 0, 0]]}

_color_type, [r, g, b] = defined_colors[color]
cv2.line(image, (pt_x[0], pt_y[0]), (pt_x[1], pt_y[1]), (b * 255, g

* 255, r * 255), 5)
return image

To read a generic YAML file you can use this function:

def readYamlFile(self,fname):
"""
Reads the YAML file in the path specified by 'fname'.
E.G. :

the calibration file is located in : `/data/config/calibrations/
filename/DUCKIEBOT_NAME.yaml`

"""
with open(fname, 'r') as in_file:

try:
yaml_dict = yaml.load(in_file)
return yaml_dict

except yaml.YAMLError as exc:
self.log("YAML syntax error. File: %s fname. Exc: %s"

%(fname, exc), type='fatal')
rospy.signal_shutdown()
return

For other functionalities (i.e. loading the calibration files), we recommend that you in-
vest some time in looking into the existing Duckietown code. You can find some help-
ful functions and methods there.

16 BASIC AUGMENTED REALITY EXERCISE
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UUNITNIT AA-4-4

AAdvdvanced Aanced Augmentugmented Red Reality Exeality Exerercisecise

The goal of this exercise is to put your skills in computer graphics to the test by project-
ing a complex 3D model on an AprilTag at an arbitrary position.

Knowledge and activity graph

RRequirequires:es: Camera calibration (unknown r(unknown ref opmanual_duckiebot/cameref opmanual_duckiebot/camera-calib)a-calib)

previous wwarningarning next (5 of 17) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/camera-calib'.

Location not known more precisely.
Created by function n/a in module n/a.

RRequirequires:es: Docker basics (unknown r(unknown ref duckietef duckietown-rown-roboticsobotics-dev-development/dockelopment/dockerer-basics)-basics)

previous wwarningarning next (6 of 17) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link
'#duckietown-robotics-development/docker-basics'.

Location not known more precisely.
Created by function n/a in module n/a.

RRequirequires:es: ROS basics (unknown r(unknown ref duckietef duckietown-rown-roboticsobotics-dev-development/swelopment/sw-adv-advanced)anced)

previous wwarningarning next (7 of 17) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link
'#duckietown-robotics-development/sw-advanced'.

Location not known more precisely.
Created by function n/a in module n/a.

RRequirequires:es: Knowledge of the software architecture on a Duckiebot (unknown r(unknown ref duck-ef duck-
ietietown-rown-roboticsobotics-dev-development/duckietelopment/duckietown-codeown-code-structur-structure)e)

previous wwarningarning next (8 of 17) index
warning
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/tmp/mcdp_tmp_dir-root/prince_rendercbc_b0bt/warnings.html
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I will ignore this because it is an external link.

> I do not know what is indicated by the link
'#duckietown-robotics-development/duckietown-code-
structure'.

Location not known more precisely.
Created by function n/a in module n/a.

RRequirequires:es: Basic Augmented Reality Exercise
RResults:esults: Advanced skills on how to manipulate transformations in Computer
Graphics.
RResults:esults: Insights into the computer graphics pipeline.

4.1.4.1. 3D Model Pr3D Model Projection Exojection Exerercisecise
In this exercise you are asked to render a complete 3D model of a duckie on an image.
The duckie model is provided as an .obj file. Similarly to many augmented reality
games the model needs to be projected on an easily recognizable flat pattern. In this ex-
ercise you will use an AprilTag for this purpose. You should have received some traffic
signs with AprilTags with the your Duckiebot box. They should look something like:
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Figure 4.1

In Duckietown, AprilTags are recognized and managed through the lib-dt-apriltags
Python package. Check it out to see how to use it!
In order to solve the exercise you will have to create a package called augmented_real-
ity_apriltag with the functionalities specified in Unit A-3 - Basic Augmented Reality
Exercise.

4.2.4.2. InstructionsInstructions
1. This exercise package structure will be based on the one provided by the AprilTag
Template. Inside there you will find everything you need like the 3D model and the
provided files.
2. In this exercise you will have to use the AprilTag library so check that it has been
added in the dependencies-py3.txt as dt-apriltags .
3. We provided you a file called renderClass.py . Inside you will find the Renderer
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class which allows you to draw a 3D .obj model onto an image. If you are curious
about how this happens, the code inside this file is a modified version of Pygame OB-
JFileLoader. The provided Renderer class contains the method render(img, projec-
tion_matrix) , where img is the image you want to project the model onto and projec-
tion_matrix is the 3x4 matrix that transforms the 3D model coordinates to the April-
Tag reference system allowing you to project it. The constructor of an instance of the
Renderer class requires the 3D model as input. Keep the 3D model in a directory with
the path src/models . You can use the code below to correctly initialize an instance of
the Renderer class:

# Import class from file.
from renderClass import Renderer

rospack = rospkg.RosPack()

# Initialize an instance of Renderer giving the model in input.
self.renderer = Renderer(rospack.get_path('YOUR PACKAGE NAME')+'/src/
models/duckie.obj')

Please refrain from changing the renderClass.py file. It has been tested and any
change might lead to unexpected errors and problems that will not be supported.
1. You will also get a function to load the calibration parameters of your Duckiebot
camera which should be in the node python file.
2. Conversely to the exercise in the previous section, here you are not asked to rectify
the image to reduce the delay of this node. You are nonetheless invited to try this your-
self and see how accuracy and speed are affected.

4.3.4.3. ExExerercise Structurcise Structuree
Looking at the project as a whole may make it seem more difficult than it really is. But
we will follow the latin proverb divide et impera (divide and rule). In other words, we
will brake down the big monolithic problem into a few smaller and manageable tasks.
First, let’s focus on what we are trying to achieve: to project a 3D model onto an image
such that the position and orientation of the model match the position and orientation
of an AprilTag. The break-down of this task looks like that:
1. Detect the AprilTag and extract its reference frame.
2. Estimate the homography matrix: determine the transformation from the reference
frame of the AprilTag (2D) to the reference frame of the target image (2D). This trans-
formation is the homography matrix. For this step and the previous one, have a look at
the lib-dt-apriltags repository, you will find it quite useful.
3. Derive the transformation from the reference frame of the AprilTag to the target
image reference frame: if we want to project a 3D model placed on top of the reference
surface to the target image, we need to extend the previous transformation to handle
cases were the height of the point to project is different from zero. This can be achieved
with some knowledge about coordinate system transformations and a bit of algebra. To
know more about homography and orthonormal basis give a look here.
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4. Project our 3D model in the image (pixel space) and draw it: you can use the pro-
vided Renderer class for this. This class has a method called render which gets an
input img of type InputOutputArray and projection_matrix (3x4 floating-point ma-
trix). The render method colors the polygons formed by the vertices of the .obj file.
The expected outcome of this exercise should something like this:

Figure 4.2

4.4.4.4. PPararametameter Ter Twweakingeaking
As you might have seen the AprilTag detection adds some delay to the pipeline. Howev-
er, you can try to change some parameters for a better accuracy and speed trade-off. Try
to play around with the parameters nthreads and quad_decimate of the dt_aprilt-
ags.Detector class. What do they change? Does the speed improve? What about the
stability and accuracy of the detector?
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UUNITNIT BB-1-1

PrPreliminarieseliminaries

1.1.1.1. RRequirequired sted stepseps

1)1) RRun the eun the exxerercisecise

Run the exercise container:

$ docker -H DUCKIEBOT_NAME .local run --name lane_following_cra2
--net host -v /data:/data duckietown/lane-following-cra2:daffy

This container runs an extended version of the lane following demo from dt-core . It
includes additional parameters which are important for this exercise.

2)2) RRun rvizun rviz

rviz (ROS visualization) is a 3D visualizer for displaying sensor data and state infor-
mation from ROS. More on information can be found in the official ROS wiki
For this exercise rviz will be helpful for displaying sensor messages from the Duck-
iebot. By selecting the appropriate topic we can output desired information.

Figure 1.1

First, make sure that your display can be accessed from a container. Run:

$ xhost +local:root

NNotote:e: When you are done with the exercise, you should run the reverse command in
order to secure your screen access again:

$ xhost -local:root

https://github.com/duckietown/course-CRA/edit/daffy/book/duckietown-classical-robotics/02_localization/01-prelims/00_prelim.md
https://github.com/duckietown/course-CRA/edit/daffy/book/duckietown-classical-robotics/02_localization/01-prelims/00_prelim.md
https://github.com/duckietown/course-CRA/edit/daffy/book/duckietown-classical-robotics/02_localization/01-prelims/00_prelim.md
https://github.com/duckietown/course-CRA/edit/daffy/book/duckietown-classical-robotics/02_localization/01-prelims/00_prelim.md
http://wiki.ros.org/rviz
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To start rviz run the following container:

$ docker run -it --net=host -e VEHICLE_NAME= DUCKIEBOT_HOSTNAME
--env="DISPLAY" --volume="$HOME/.Xauthority:/root/.Xauthority:rw"
duckietown/rviz-cra2:daffy /bin/bash

then:

$ export ROS_MASTER_URI="http:// DUCKIEBOT_IP :11311"

and also:

$ export ROS_IP= DUCKIEBOT_IP

finally we can launch the application:

$ rviz

After starting rviz we need to add the required topics we want to inspect
• / DUCKIEBOT_NAME /duckiebot_visualizer/segment_list_markers

• / DUCKIEBOT_NAME /lane_filter_node/belief_img

• / DUCKIEBOT_NAME /lane_pose_visualizer_node/lane_pose_markers

After adding these 3 topics, rviz should show the output as in the figure above.

3)3) ChangChange re rosparosparamsams

The following functions will be useful to change the dynamic parameters in the exer-
cises:

$ dts start_gui_tools DUCKIEBOT_NAME

1) Listing the parameters:

$ rosparam list

2) Getting the parameters:

$ rosparam get PARAMETER_NAME

3) Setting the parameters:

$ rosparam set PARAMETER_NAME VALUE
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UUNITNIT BB-2-2

Learning matLearning materialserials

The goal of this material is to get familiar with the pipeline that extracts lane localiza-
tion from the image stream. This is the base of the Lane Following demo.

Figure 2.1. From camera image to lane pose.

2.1.2.1. OvOverview of the pipelineerview of the pipeline
Determining its own position in the lane is essential for any Duckiebot to drive safely in
Duckietown. In the following section we will go step by step through the various steps
of the image pipeline: from image to lane pose estimation.
Figure 2.2 shows the two most important parts of the localization: the line detector and
the lane filter, and where they stand in the complete image to control pipeline. The
control aspect will be the focus of the next set of exercises. We will focus here only on
the two above-mentioned parts.

https://github.com/duckietown/course-CRA/edit/daffy/book/duckietown-classical-robotics/02_localization/02-docs/00_docs.md
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Figure 2.2. The two steps of focus are highlighted in yellow.

2.2.2.2. Line detLine detectector nodeor node

1)1) RRole of the nodeole of the node

The line detector node is responsible for detecting lines in the field of view of the Duck-
iebot. As the color of the lines provides localization information, we are also interested
in clustering them into three different colors: red, white and yellow.

2)2) RROS intOS interfacing of the nodeerfacing of the node

The line detector node subscribes to:
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• The corrected image stream
The line detector node publishes:
• Segment list (type: SegmentList.msg ) is an array which saves all segments (type:
Segment.msg ) found in the image. A segment consists of color (red, yellow, white)
and 2D vector (startpoint, endpoint) .

3)3) RRelevelevant part of the codeant part of the code

We won’t go too much into the details of the code, but the most important bits are here:
Snippet of the main function:

def processImage_(self, image_msg):
...
white = self.detector_used.detectLines('white')
yellow = self.detector_used.detectLines('yellow')
red = self.detector_used.detectLines('red')
...max] = self.filter.getEstimate()

...

Snippet of the detectLines function:

class LineDetectorHSV(dtu.Configurable, LineDetectorInterface):
...
def detectLines(self, color):

with dtu.timeit_clock('_colorFilter'):
bw, edge_color = self._colorFilter(color)

with dtu.timeit_clock('_HoughLine'):
lines = self._HoughLine(edge_color)

with dtu.timeit_clock('_findNormal'):
centers, normals = self._findNormal(bw, lines)

return Detections(lines=lines, normals=normals,
area=bw, centers=centers)

...

In a nutshell, the code first filters the image pixels by color, then uses a Hough line de-
tector from OpenCV, and extract the normals to the detected lines. The most important
part is executed in the Hough detector. Find the file here if you want to read more.

4)4) The focus of the eThe focus of the exxerercisecise

Over all the parameters we could choose to play with here, we decided to focus on the
number of segments that this node will output to the next one:
• If it gives too few segments, the localization will be imprecise but quick
• If it gives too many segments, the localization will be on average more accurate, but
also slower to compute
There is a segment_max_threshold parameter that allows the user to limit the number
of segments that are sent. The parameter limits the maximum number of segments for
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each of the colors individually. Setting it for example to 10 will yield an output of 10
yellow, 10 white and 10 red segments. Exercise 1 - Choosing the best number of seg-
ments (frequency) will give you the opportunity to play with it and see the effects of the
trade-off.

2.3.2.3. Lane fLane filtilter nodeer node

1)1) RRole of the nodeole of the node

The lane filter node is responsible for estimating the position of the Duckiebot with re-
spect to the center of the driving lane.

2)2) RROS intOS interfacing of the nodeerfacing of the node

The lane filter node subscribes to:
• The segment list from the line detector node
The lane filter node publishes:
• Lane pose (type: duckietown_msgs/lane_pose ): is struct with the following para-
meters which are currently in use:
• ( float32 ) the lateral offset, where = 0 is the middle of the right lane.
• ( float32 ) the angle from the center of the lane to the orientation of the Duckiebot.

NNotote:e: When the Duckiebot is perfectly aligned in the center of its lane, facing forward,
this estimation should be

3)3) BaBayyes fes filtilterer

To track the estimated pose of the Duckiebot in the lane, we use a Bayes filter. As
usual, it relies on the predict and update steps.
Let’s focus on the update step, as the predict step is simply applying the model of the
dynamics on the belief.
In this node, the estimation of is represented as a matrix, holding on one axis
and on the other. This means that the space of is discretized. The discretization
step is controlled by the matrix_mesh_size parameter. The bigger the discretization is,
the rougher the estimates will be. The smaller the discretization is, the finer the esti-
mates will be.
But since the minimum and maximum values of both and are constant, the size
of the matrix increases when the discretization step becomes smaller. In Exercise 3 -
Choosing the best matrix size, you will have to play with this parameter to understand
the trade-off between the granularity of the estimation and the computation time.
Snippet of the bayes filter:
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def processSegments(self,segment_list_msg):
...
#(v and w come from car_cmd)
self.filter.predict(dt=dt, v=v, w=w)

#input: line segments from line detector
#output: belief matrix
self.filter.update(segment_list_msg.segments)

#input: belief matrix
#output: maximal d and phi from belief matrix
[d_max, phi_max] = self.filter.getEstimate()
...

4)4) The histThe histogrogram fam filtilter (for the updater (for the update ste step)ep)

Each 2D white and yellow segment is projected onto the Duckiebot reference frame.
Then the corresponding tuple is extracted from geometric knowledge of the lane.
Each segment’s extracted tuple casts a vote in the measurement likelihood his-
togram matrix, as mentioned above. This matrix can be then displayed as an image
stream.
One would hope that the majority of the segments will vote to the same area of the his-
togram. With this matrix, the belief matrix is updated.
Then, the maximum is extracted from the updated belief matrix. The maximum’s coor-
dinates give us the best estimate of the tuple .
Snippet of the the generation of votes for the histogram filter:
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#Generation of votes for the the histogram filter
def generateVote(self, segment):

p1 = np.array([segment.points[0].x, segment.points[0].y])
p2 = np.array([segment.points[1].x, segment.points[1].y])
t_hat = (p2 - p1) / np.linalg.norm(p2 - p1)

n_hat = np.array([-t_hat[1], t_hat[0]])
d1 = np.inner(n_hat, p1)
d2 = np.inner(n_hat, p2)
l1 = np.inner(t_hat, p1)
l2 = np.inner(t_hat, p2)
if (l1 < 0):

l1 = -l1
if (l2 < 0):

l2 = -l2

l_i = (l1 + l2) / 2
d_i = (d1 + d2) / 2
phi_i = np.arcsin(t_hat[1])
if segment.color == segment.WHITE: # right lane is white

if(p1[0] > p2[0]): # right edge of white lane
d_i = d_i - self.linewidth_white

else: # left edge of white lane
d_i = - d_i
phi_i = -phi_i

d_i = d_i - self.lanewidth
elif segment.color == segment.YELLOW: # left lane is yellow

if (p2[0] > p1[0]): # left edge of yellow lane
d_i = d_i - self.linewidth_yellow
phi_i = -phi_i

else: # right edge of white lane
d_i = -d_i

d_i = - d_i

weight = 1
d_i += self.center_lane_offset

return d_i, phi_i, l_i, weight

For more about this part of the code, go here.
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UUNITNIT BB-3-3

ExExerercises - lane pose estimationcises - lane pose estimation

The goal of this exercises is to play with existing parameters to understand the different
trade-offs mentioned in Unit B-2 - Learning materials.

Knowledge and activity graph

RRequirequires:es: Camera calibration (unknown r(unknown ref opmanual_duckiebot/cameref opmanual_duckiebot/camera-calib)a-calib)

previous wwarningarning next (9 of 17) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/camera-calib'.

Location not known more precisely.
Created by function n/a in module n/a.

RRequirequires:es: Docker basics (unknown r(unknown ref duckietef duckietown-rown-roboticsobotics-dev-development/dockelopment/dockerer-basics)-basics)

previous wwarningarning next (10 of 17) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link
'#duckietown-robotics-development/docker-basics'.

Location not known more precisely.
Created by function n/a in module n/a.

RRequirequires:es: ROS basics (unknown r(unknown ref duckietef duckietown-rown-roboticsobotics-dev-development/swelopment/sw-adv-advanced)anced)

previous wwarningarning next (11 of 17) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link
'#duckietown-robotics-development/sw-advanced'.

Location not known more precisely.
Created by function n/a in module n/a.

RRequirequires:es: Knowledge of the software architecture on a Duckiebot (unknown r(unknown ref duck-ef duck-
ietietown-rown-roboticsobotics-dev-development/duckietelopment/duckietown-codeown-code-structur-structure)e)

previous wwarningarning next (12 of 17) index
warning
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I will ignore this because it is an external link.

> I do not know what is indicated by the link
'#duckietown-robotics-development/duckietown-code-
structure'.

Location not known more precisely.
Created by function n/a in module n/a.

RResults:esults: Understand the trade-offs when dealing with image processing parameters
RResults:esults: Insights into the image pipeline of a Duckiebot.

3.1.3.1. TTask 1: Line detask 1: Line detectector eor exxerercisecise
As previously introduced, the line_detector_node detects white, yellow and red seg-
ments. The more segments we get, the more accurate we expect the lane filter to be, but
also the more resources we need for computation of the pose estimate (memory as well
as CPU usage). This is a trade-off between accuracy and computational efficiency. The
goal of this exercise is to analyze this trade-off by determining the relationship between
the number of segments processed and the quality and frequency of pose estimates that
are being computed.
For this task the parameter / DUCKIEBOT_NAME /line_detector_node/seg-
ment_max_threshold can be dynamically adjusted.

ExExerercisecise 1.1. Choosing the best number of segments (frChoosing the best number of segments (frequency)equency)..
Put the Duckiebot in the city and let it drive one whole loop with the exercise-
provided lane following. For every whole loop use a different parameter / DUCK-
IEBOT_NAME /line_detector_node/segment_max_threshold and record a rosbag of
lane_pose for each value of segment_max_threshold . You should know how to do
that from (unknown r(unknown ref duckietef duckietown-rown-roboticsobotics-dev-development/relopment/rosos-logs)-logs)

previous wwarningarning next (13 of 17) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link
'#duckietown-robotics-development/ros-logs'.

Location not known more precisely.
Created by function n/a in module n/a.

.
Write a custom Python script to analyze the publishing_frequency of the topic
/ DUCKIEBOT_NAME /lane_filter_node/lane_pose for each bag. Plot the relation-
ship between segment_max_threshold on one axis and the mean and standard de-
viation of the lane_pose publishing frequency on the other axis. Provide at least 4
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points on the plot. Include a point with a very high segment_max_threshold to vir-
tually allow all segments to be computed.

Frequency isn’t the only relevant metric. Using one segment per color will give fast
computation but very noisy and unstable estimation. Using the rviz tool that you
launched before, you can analyze the stability of the lane_pose.

ExExerercisecise 2.2. Choosing the best number of segments (stability)Choosing the best number of segments (stability)..
Create a graph, ploting on the y-axis against time on the x-axis for each of the
loops from the previously recorded rosbags.

3.2.3.2. TTask 2: Lane pose eask 2: Lane pose exxerercisecise
As outlined in the introduction section, lane_filter_node estimates the Duckiebot’s
desired pose by means of recursive Bayes estimation. The sizes of the belief/likelihood
matrices are adjustable parameters. We are interested in analyzing the effect of various
matrix sizes on the precision/standard deviation of the lane pose estimation.
For this task the parameter / DUCKIEBOT_NAME /lane_filter_node/ma-
trix_mesh_size can be dynamically adjusted.

ExExerercisecise 3.3. Choosing the best matrix sizeChoosing the best matrix size..
While running the exercise-provided lane following, play with matrix_mesh_size ,
and record different rosbags for the topic lane_pose (one for each value of ma-
trix_mesh_size ).
Write a custom Python script to analyze the frequency of the topic / DUCK-
IEBOT_NAME /lane_filter_node/lane_pose for each bag (should be the same as last
exercise). Plot the relationship between matrix_mesh_size on one axis and the the
mean and standard deviation of the frequency of the lane_pose topic on the other
axis. Provide at least 4 points on the plot.

Warning: sometimes, when dynamically changing the parameters, errors might
occur since the matrix size might be changing during computation of the seg-
ments. In the occurrence of such a problem, you can restart the node or set the
previous value of the mesh and then retry.

3.3.3.3. TTask 3: English drivask 3: English driverer
One of our brave Duckiebots wanted to make a visit to a fellow Duckiebot at the Lon-
don Science Museum in Great Britain (yup, must be really brave to go right before Brex-
it :X). However, it needs to adhere to the local driving rules. Therefore you will have to
help it learn to drive on the left side of the road.

ExExerercisecise 4.4. Driving the English styleDriving the English style..
The task is to make the Duckiebot drive on the left side of the road. The parameter
/ DUCKIEBOT_NAME /lane_filter_node/lane_offset and the provided snippet
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provided code snippet is sufficient to complete this task. Coding is not necessary for
this exercise.
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UUNITNIT BB-4-4

ExExerercises - statcises - state estimation and sensor fusione estimation and sensor fusion

In this exercise you will learn how to create estimators with both proprioceptive and
exteroceptive sensors and how to manipulate the frame transformations tree to easily
fuse these estimates.

Knowledge and activity graph

RRequirequires:es: Odometry with Wheel Encoders (unknown r(unknown ref duckietef duckietown-rown-roboticsobotics-dev-develop-elop-
ment/odometryment/odometry-modeling)-modeling)

previous wwarningarning next (14 of 17) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link
'#duckietown-robotics-development/odometry-modeling'.

Location not known more precisely.
Created by function n/a in module n/a.

RRequirequires:es: Modeling the Duckiebot and Representations (unknown r(unknown ref duckietef duckietown-rown-ro-o-
boticsbotics-dev-development/relopment/reprepresentationsesentations-modeling)-modeling)

previous wwarningarning next (15 of 17) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link
'#duckietown-robotics-development/representations-
modeling'.

Location not known more precisely.
Created by function n/a in module n/a.

RRequirequires:es: Advanced Augmented Reality Exercise
RResults:esults: Understand how to build a TF tree in ROS and visualize it in RViz.
RResults:esults: Be able to create a multi-package Dockerized ROS workspace, and deploy
it on the Duckiebot.
RResults:esults: Experience with working with ROS Timers and Services
RResults:esults: Create a wheel-encoder based estimator. Understand the benefits and
drawbacks of such an estimator.
RResults:esults: Create an Apriltag-based estimator. Understand the benefits and draw-
backs of this estimator.
RResults:esults: Create a sensor fusion node that fuses estimates from the above individual
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estimators.

The overall goal of this exercise is to create a state estimation system that localizes the
Duckiebot in global coordinates. So far we have only seen how this can be done locally,
relative to the lane. This has two major limitations. First, we don’t know how far we
have travelled in the lane, as we only can get estimates on our lateral offset from the
center of the lane. Second, we don’t know if we are in a straight or turning lane seg-
ment. In this exercise, however, we will work towards localizing the robot in a global
coordinate frame.
To be able to perform such a complex task, we will have to use all sensors onboard
the robot, namely the camera and the wheel encoders. We will achieve our localization
goal in several incremental steps. First, we will develop an estimator using only wheel
encoders. Then, we will develop an estimator using only camera information via the
Apriltag detection library. Finally, we will fuse these estimates so that we get the best of
both worlds.
ExExerercisecise 5.5. Encoder localization packagEncoder localization packagee..
The first package you’ll create in your Dockerized ROS workspace is one that will con-
tain a node that publishes a TransformStamped message at 30Hz with the following
fields:
• frame_id : map ;
• child_frame_id : encoder_baselink ;
• stamp : timestamp of the last wheel encoder tick;
• transform : a 2D pose of the robot baselink (see Figure 4.2 for a definition of this
frame).
The node will also have to broadcast the TF map - encoder_baselink .
DelivDelivererables:ables:
• A screen recording similar to this Figure 4.1 where you drive the robot in a loop and
try to “close the loop” (by driving to the point where you started from). Make sure that
the video contains the camera images as well as the TF tree in Rviz. Use a visible land-
mark as the origin of the map frame.
• A link to a Github repository containing a package called encoder_localization .
Hints:Hints:
• For the estimates to be in a global frame, you will have to provide an initial pose
estimate.
• Use tf.TransformBroadcaster() to broadcast a TF which can be visualized in
RViz. Note that you can pass the exact same message as the one that your publisher us-
es.
• For the kinematic model of the Duckiebot, you’ll have to load the following para-
meters from the kinematics calibration file: baseline , radius .
• To open RViz, simply run dts start_gui_tools hostname.local and run rviz
from inside the container. Note that if you keep the container running you can save
your RViz configuration file so that when you reopen it, it automatically displays your
topics of interest.
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• Rviz uses the following color-code convention for frame axes: red for the x-axis,
green for the y-axis, and blue for the z-axis.
• To publish messages at a fixed frequency, consider using a ROS Timer. It works very
similar to a subscriber except for the fact that the callback get called after a fixed dura-
tion of time.
• This link contains many useful methods from the tf library that allow you to
switch between representations (e.g. expressing an euler yaw angle as a quaternion).

Figure 4.1. Example video deliverable for the encoder localization package

Figure 4.2. Position of the baselink and camera frames on the robot

As you have probably realized, some of the advantages of this localization system is
that as long as the robot is moving, the wheel encoders will provide information about
the state of the robot, at a high rate and with little delay. However, the pose of the ro-
bot is an integration of the wheel encoder measurements, meaning that it is subject to
drift as any inaccuracies in measurement get propagated through time. When driving
aggressively or through a slippery surface these inaccuracies are amplified (try this for
yourself!).
A common way of getting rid of drift in mobile robots is to either use absolute position
measurements (with GPS, for instance) or to use fixed landmarks in the world as ref-
erence. This is how we humans also navigate the environment. Since there is no GPS
on-board the Duckiebot, we will have to use the latter approach. This is what we will
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explore in the next exercise, where our landmarks will be traffic signs with Apriltags
(see Figure 4.3).

Figure 4.3. Example traffic sign to be used for Apriltag localization. In order to accurately construct your
TF tree, please measure the height indicated

ExExerercisecise 6.6. Apriltag localization packagApriltag localization packagee..
In this package you’ll have to place a node that subscribes to /camera_node/image/com-
pressed and publishes a TransformStamped message (if an image with an Apriltag has
been received) with the following fields:
• frame_id : map ;
• child_frame_id : at_baselink ;
• stamp : timestamp of the last image received;
• transform : a 3D pose of the robot baselink (see Figure 4.2 for a definition of this
frame).
This node will also have to broadcast the following TFs: map - apriltag , apriltag - cam-
era , camera - at_baselink . Make sure that when you place the Apriltag in front of the
robot you get something that looks roughly like Figure 4.5. This will make it easier to
fuse this pose with the pose from the encoders.
DelivDelivererables:ables:
• A screen recording similar to the one in Figure 4.6 where you move the Apriltag in
front of the robot from one side of the Field-of-View (FOV) to the other. Make sure that
the video contains the camera images as well as the TF tree in Rviz.
• Instead of directly using compressed images, rectify them before passing them to
the Apriltag detector. You will see that this significantly improves the accuracy of the
detector but at the cost of significant delay. Provide a screen recording similar to this
Figure 4.7 where you move the Apriltag in front of the robot from one side of the FOV
to the other. Make sure that the video contains the camera images as well as the TF tree
in Rviz. You should observe that the map and baselink are now in the same plane (or
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at least much closer to it than with compressed images).
• (Bonus) Offload the computation of the rectified image to the GPU of the Jetson
Nano so that the improved accuracy can be obtained without significant delay.
• A link to your Github repository containing a package called at_localization .
Hints:Hints:
• A frame cannot have two parents. If you try to broadcast the following TFs:
map - baselink and camera - baselink , you will see that you’ll only be able to see the
individual frames in RViz.
• To rectify images, use the following cv2 methods:

newCameraMatrix = cv2.getOptimalNewCameraMatrix(cameraMatrix,
distCoeffs,
(640, 480),
1.0)

cv2.initUndistortRectifyMap(cameraMatrix,
distCoeffs,
np.eye(3),
newCameraMatrix,
(640, 480),
cv2.CV_32FC1)

cv2.remap(compressed_image, map1, map2, cv2.INTER_LINEAR)

• To use the Apriltag detector, consult this link. You can extract the pose of the Aprilt-
ag in the camera frame with tag.pose_R (rotation matrix) and tag.pose_t (translation
vector). Keep in mind that the coordinate frame convention (see Figure 4.4) is different
than the one you are supposed to use in the deliverable!
• To broadcast static transforms, use

self.static_tf_br = tf2_ros.StaticTransformBroadcaster()

To calculate the static transform between the map and apriltag frames (

) use Figure 4.3 as reference. To calculate the static transform between the baselink
and camera frames, you can use Figure 4.2 as reference, or you can try to use the ho-
mography matrix obtained during extrinsic calibration.
• To convert between frames, we recommend that you use 4x4 transformation matri-
ces. An example of such a matrix is

which transforms a vector in frame B to frame A. During your manipulations, keep in
mind that

and

EXERCISES - STATE ESTIMATION AND SENSOR FUSION 39

https://github.com/duckietown/lib-dt-apriltags


for any frames

and

.

Figure 4.4. Frame convention used by Apriltag library when returning pose.

Figure 4.5. Goal TF tree for the AT localization package with rectified images and the robot facing the
Apriltag
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Figure 4.6. Example video deliverable for the AT localization package with compressed images

Figure 4.7. Example video deliverable for the AT localization package with rectified images

The detected Apriltag can provide accurate pose estimates with respect to landmarks
but at the cost of a significant delay and a low frequency. Moreover, one cannot contin-
uously rely on such estimates since the Apriltag could go out of sight. To combat this,
we can fuse the estimates of the Apriltag and the wheel encoders for continuous, accu-
rate and robust localization. This is the goal of the next exercise.
ExExerercisecise 7.7. Fused localization packagFused localization packagee..
In this package you’ll have to place a node that publishes a TransformStamped message
with the following fields:
• frame_id : map ;
• child_frame_id : fused_baselink ;
• stamp : current time,
• transform : a 2D pose of the robot baselink.
The node will also have to broadcast the TF map - fused_baselink . As a minimum, your
fusion node should have the following behaviour:
• The first time the Apriltag becomes visible, you have to calibrate the en-
coder_baselink frame/estimate to match exactly the Apriltag pose. This should be
done with a ROS Service provided by and encoder_localization_node (server) which
fused_localization_node (client) can call. If you need an example of a Duckietown
package that defines a similar service, check this out (pay a special attention to the
CMakeLists.txt and package.xml files).
• Publish the robot pose using the Apriltag estimate (when available) projected on the
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ground plane (recall that this node publishes 2D poses).
• If the Apriltag is not visible, use the encoder estimates, starting from the last April-
tag pose received (there should be no pose jump if the Apriltag goes out of sight).
• If the Apriltag becomes visible again, switch back to using Apriltag estimates (a
jump in fused pose is allowed).
• You don’t have to handle the delay or the variance of the individual estimates to
complete the exercise, but you are more than welcome to!
DelivDelivererables:ables:
• A screen recording similar to this Figure 4.8, where you drive the robot in a loop
around the Apriltag with the virtual joystick. Start the recording with the Apriltag not
visible, so that you validate that your calibration service is working and when it does
bacome visible all the frames align. You should end the trajectory where you started it
(feel free to use a marker on the ground). Make sure that the video contains the camera
images as well as the TF tree in Rviz.
• A link to a github repository containing a package called fused_localization

Figure 4.8. Example video deliverable for the fused localization package with rectified images and slow
driving
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PPARARTT CC

Modeling and contrModeling and controlol

In the last chapter of this book you have learned how the Duckiebot can localize itself
in the lane. In this chapter, you are going to learn how to leverage this knowledge to im-
plement different control algorithms which enable the Duckiebot to keep itself in the
lane and you will be introduced to a range of details that need to be addressed when
controlling a real system.

https://github.com/duckietown/course-CRA/edit/daffy/book/duckietown-classical-robotics/03_modeling_and_control/00_title.md
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UUNITNIT C-1C-1

PrPreliminarieseliminaries

Preliminaries…
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UUNITNIT C-2C-2

Learning matLearning materialserials

Learning materials
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UUNITNIT C-3C-3

ExExerercise: Contrcise: Controlol

In this exercise you will learn how to implement different control algorithms on a
Duckiebot and gain intuition on a range of details that need to be addressed when con-
trolling a real system.

Knowledge and activity graph

RRequirequires:es: Terminal Basics (unknown r(unknown ref duckietef duckietown-rown-roboticsobotics-dev-development/telopment/terminal-basics)erminal-basics)

previous wwarningarning next (16 of 17) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link
'#duckietown-robotics-development/terminal-basics'.

Location not known more precisely.
Created by function n/a in module n/a.

RRequirequires:es: Docker Basics (unknown r(unknown ref duckietef duckietown-rown-roboticsobotics-dev-development/dockelopment/dockerer-basics)-basics)

previous wwarningarning (17 of 17) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link
'#duckietown-robotics-development/docker-basics'.

Location not known more precisely.
Created by function n/a in module n/a.

RRequirequires:es: Control Theory Basics
RResults:esults: Ability to implement a controller on a real robot.

ContContentsents
Section 3.1 - Overview ....................................................................................................................................................................................4646
Section 3.2 - PI control ..................................................................................................................................................................................4747
Section 3.3 - Linear Quadratic Regulator (Optional) ................................................................................5353

3.1.3.1. OvOverviewerview
In the following exercise you will be asked to implement two different kinds of control
algorithms to control the Duckiebot. In a first step, you will write a PI controller and
gain some intuition on different factors that are important for the controller design
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such as the discretization method, the sampling time, and the latency of the estimate.
You will also learn what an anti-windup scheme is and how it can be useful on a real
robot.
In a second step, you will implement a Linear Quadratic Regulator, or LQR for short.
You then augment it by an integral part, making it a LQRI. This is a more high-level
approach to the control problem. You will see how it is less intuitive but at the same
time it brings certain advantages as you will see in the exercise.

3.2.3.2. PI contrPI controlol

1)1) ModelingModeling

As you have learned, using Figure 3.1 one can derive a continuous-time nonlinear
model for the Duckiebot. Considering the state , one can write

. Where is the linear velocity and the yaw rate of the Duckiebot.

Figure 3.1. Top view of the Duckiebot on a road with its two states.

After linearization around the operation point (if you do not remember

linearization, have a look at chapter 5.4 in [1]), one has

where the input is the desired yaw rate of the Duckiebot. Furthermore, you are pro-
vided the output model
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Using the linearized version of the model, you can compute the transfer function of the
system:

.

If you do not remember how, have a look at chapter 8 in [1].
Consider now the error to be . Using a PI-controller (if you do not re-
member what a PI-controller is, have a look at chapter 10 in [1]), one can write

with k_\text{P} being the proportional gain and k_\text{I} being the integral gain.
In frequency domain, this corresponds to

,
with

ExExerercisecise 8.8. Find the gFind the gainsains..
Using the above defined model of the Duckiebot and the structure for a PI controller,
find the parameters for the proportional and integral gain of your PI controller such
that the closed-loop system is stable. You can follow the steps below to do this:
• For the Duckiebot you are assuming a constant linear velocity . Given
this velocity and using a tool of your choice (for example the Duckiebot bodeplot
tool), find a proportional gain such that has a crossover frequen-
cy of approximately .
• Next, find an integral gain such that has a gain margin of approximately

. (this refers to a gain of the controller which is about 19 times high-
er than the critical minimal gain that is needed for stability).
The aforementioned numbers are needed in order to guarantee stability. You are free
to play around with them and see for yourself how this impacts the behaviour of
your Duckiebot.

2)2) DiscrDiscretizationetization

Now that you have found a continuous time controller, you need to discretize it in order
to implement it on your Duckiebot. There are several ways of doing this. In the follow-
ing exercise, you are asked to implement the designed PI controller in reality, using dif-
ferent discretization techniques.

ExExerercisecise 9.9. DiscrDiscretization of a PI contretization of a PI controlleroller..
There is a template for this and the following exercises of this chapter. It is a Docker
image of the dt-core with an additional folder called CRA3 . This folder contains two
controller templates, controller-1.py and controller-2.py . The first one will be
used for the exercises with the PI controller and the other one for the implementa-
tion of the LQR(I) which you will do from exercise Exercise 13 - Implement a LQR
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onwards. Start by pulling the image and running the container with the following
command:

$ docker -H DUCKIEBOT_NAME .local run --name dt-core-CRA3 -v
/data:/data --privileged --network=host -it duckietown/dt-
core:CRA3-template /bin/bash

NNotote:e: in case you have to stop the container at any point (in case you take a break
or the Duckiebot decides to crash and therefore makes you take a break), start
the container again (for example by using the portainer interface ( http://host-
name.local:9000/#/containers )) and jump into it using the following command:

$ docker -H DUCKIEBOT_NAME .local attach dt-core-CRA3

The text editor vim is already installed inside the container such that you can change
and adjust files within the container without having to rebuild the image every time
you want to change something. If you are not familiar with vim, you can either
read through this short beginners guide to vim or install another text editor of your
choice.
Now use vim or your preferred text editor to open the file controller-1.py which
can be found in the folder CRA3 .
The file contains a template for your PI controller including input and output vari-
ables of the controller and several variables which will be used within this exercise.
As inputs you will get the lane pose estimate of the Duckiebot and you will have to
compute the output which is in the form of the yaw rate .
Familiarize yourself with the template and fill in the previously found values for the
proportional and integral gain and .
Now you are ready to implement a PI controller using different discretization meth-
ods:

Assume constant sampling timeAssume constant sampling time
In a first attempt, you can use an approximation for your sampling time. The Duck-
iebot typically updates its lane pose estimate, i.e. where the Duckiebot thinks it is
placed within the lane, at around 12 Hz. If you assume this sampling rate to be con-
stant, you can discretize the PI controller you designed. Implement your PI con-
troller under the assumption of a constant sampling in the file controller-1.py .
When discretizing the system, choose Euler forward as the discretization technique
(if you do not remember how, have a look at chapter 2.3 in [4]). You can run the con-
troller you just designed by executing the following command:

$ roslaunch duckietown_demos lane_following_exercise.launch
veh:= DUCKIEBOT_NAME exercise_name:=1

Observe the behaviour of the Duckiebot. Does it perform well? What do you observe?
Think about why this is the case.
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Optional: repeat the above task using the Tustin discretization method. Do you ob-
serve any difference?

Assume a dynamic sampling timeAssume a dynamic sampling time
Now you will use the actual time that has passed in between two lane pose estimates
of the Duckiebot to discretize the system. The time between two lane pose estimates
is already available to you in the template and is called dt_last . Adjust the dis-
cretization method (either Euler forward or Tustin) of your controller to account for
the actual sampling time. After you adjusted your file, use the same command as
above to test your controller. Observe the behaviour again, what differences do you
notice? Why is that?

Assume a largAssume a large sampling timee sampling time
In the last exercise you implemented a discrete time controller and saw how slight
variations in the sampling time can have an impact on the performance of the Duck-
iebot. You now want to further explore how the sampling time impacts the perfor-
mance of the controller by increasing it and observing the outcome. For the follow-
ing, consider Euler forward as the discretization technique. The model of a Duck-
iebot only works on a specific range of consequent states . If these val-
ues grow too abruptly, the camera loses sight of the lines and the estimation of the
output is not anymore possible. By increasing in controller-1.py , check how
much you can reduce the sampling rate before the system destabilizes. Notice that
since your controller is discrete, you can only increase the sampling time in dis-
crete steps where . This functionality is already implemented in the
lane controller node for you. To reduce the sampling rate, the Duckiebot only han-
dles every -th measurement ( ), and drops all the other
measurements. Adjust the parameter such that the Duckiebot becomes unstable.
What is the approximate sampling time when the Duckiebot becomes unstable?
Again run your code with:

$ roslaunch duckietown_demos lane_following_exercise.launch
veh:= DUCKIEBOT_NAME exercise_name:=1

After you have found a value for that destabilizes your Duckiebot, try to improve
the robustness of your controller against the smaller sampling rate and make it sta-
ble again. There are different ways to do this. Explain how you did it and why.

3)3) LatLatency of the estimatency of the estimatee

Until now, the delay which is present in the Duckiebot (the plant) has not been explic-
itly addressed. From the moment an image is recorded until the lane pose estimate is
available, it takes roughly 85ms. This implies that you will never be able to act upon the
exact state that your Duckiebot is observed to be in. In the following exercise you will
examine how the Duckiebot behaves if this delay between image acquisition and pose
estimation changes.
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ExExerercisecise 10.10. IncrIncreasing the delaeasing the delayy..

Stability - TheorStability - Theoreticaletical
As you have already seen in the previous tasks, the time delay of 85ms does not
destabilize your system. By using your calculations from Section 3.2 - PI control, you
are indeed able to identify a maximal time delay such that your system is still sta-
ble in theory. This can be done by having a look at the transfer function of a time-
delayed system: with being the time delay. An increase of
leads to a shift of the phase in negative direction. Therefore, must not be larger
than the phase margin of (which was roughly in our case) to prevent desta-
bilizing the system. Calculate the maximal such that the system is still stable.
Stability - PrStability - Practicalactical
Before you can reach the theoretical limit you found in the previous task, the Duck-
iebot will most likely leave the road and the pose estimation will fail since the lines
are not in the field of view of the camera anymore. In controller-1.py , increase
the time delay gain of the system until the Duckiebot cannot stay in the lane any-
more. Notice that the time delay is implemented in discrete steps of where T
is the sampling time. Again run your code with:

$ roslaunch duckietown_demos lane_following_exercise.launch
veh:= DUCKIEBOT_NAME exercise_name:=1

How big is the difference between the theoretical and the practical limit?
Optional: Check if using another discretization technique substantially changes
these numbers.

4)4) IncrIncrease performance of yease performance of your PI controur PI controlleroller

The integral part in the controller comes with a drawback in a real system: Due to the
fact that the motors on a Duckiebot can only run up to a specific speed, you are not
able to perform unbounded high inputs demanded by the controller. If the Duckiebot
cannot execute the commands which the controller demands, the difference between
the demanded input and the executed input will remain and therefore be added on top
of the demanded input which is already too high to be executed. This leads us to a situ-
ation in which the integral term can become very large. If you now reach your desired
equilibrium point, the integrator will still have a large value, causing the Duckiebot to
overshoot.
But behold, there is a solution to this problem! It is called anti-windup filter and will be
examined in the next exercise.

ExExerercisecise 11.11. Effect of an Anti-Windup FiltEffect of an Anti-Windup Filterer..
In Figure 3.2, you can see a diagram of an anti-windup logic for a PI-controller.
determines how fast the integral is reset and is usually chosen in the order of .
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Figure 3.2. A PI-controller with an anti-windup logic implemented, Feedback Systems from Aström
and Murray, page 308.

Typically, the actuator saturation (i.e. when it reaches its physical limit) can be mea-
sured. In our case, however, as there is no feedback on the wheels commands that
are being executed, we will make an assumption. You will simulate a saturation of
the motors at a value of .
Below you can find a simple helper function that you can use to add an anti-windup
to your existing PI controller. It takes an unbounded input and limits it to the men-
tioned saturation input value . Use it to extend your existing PI controller with
an anti-windup scheme.
Furthermore you are given the parameter in the file controller-1.py . It shall be
used as a gain on the difference between the input and the saturation input value

which is fed back to the integrator part of the controller as it is shown in Figure
3.2. As a first step, test the performance of the Duckiebot with the anti-windup term
turned off (i.e. ). You will see that the performance is poor after curves. If you
increase the integral gain , you are even able to destabilize the system! In order to
avoid destabilization and improve the performance of the system, set to roughly
the same value as . Note the difference! You can run your code as before with:

$ roslaunch duckietown_demos lane_following_exercise.launch
veh:= DUCKIEBOT_NAME exercise_name:=1

Optional: With different values of and , one could improve the behaviour even
more.
TTemplatemplate for sature for saturation function:ation function:

def sat(self, u):
if u > self.u_sat:

return self.u_sat
if u < -self.u_sat:

return -self.u_sat
return u

As you may have found out, for very aggressive controllers with an integral part and
systems which saturate for relatively low inputs, the use of an anti-windup logic is
necessary. In the case of a Duckiebot however, an anti-windup logic is only needed if
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you want to introduce a limitation to the angular velocity - for example to simulate
a real car (minimal turning radius).

By now you should have a nicely working controller to keep your Duckiebot in the lane,
which is robust against a range of perturbations which arise from the real world. But is
the solution that you found optimal and does it give us a guarantee on its stability? The
answer to both of these questions is no. Also, you saw that the fact that your model is
not exactly matching the reality can lead to a worse performance.
Therefore, it would be useful to have a control algorithm which does not depend heav-
ily on the given model and gives us guarantees on its stability. In the last two exercise
parts, you will look at a different controller which will help us solve the above men-
tioned problems; namely a Linear-Quadratic-Regulator (LQR).

3.3.3.3. Linear QuadrLinear Quadratic Ratic Regulategulator (or (OptionalOptional))
A Linear Quadratic Regulator (LQR) is a a state feedback control approach which
works by minimizing a cost function. This approach is especially suitable if we want
to have some high-level tuning parameters where the cost can be traded off against the
performance of the controller. Here, we typically refer to “cost” as the needed input
and “performance” as the reference tracking and robustness characteristics of the con-
troller. In addition, LQR control works well even when no precise model is available as
it is often the case in practical applications. This makes it a suitable controller for real
world applications.

ExExerercisecise 12.12. DiscrDiscretize the modeletize the model..
As in the part above, you will start with the model of the Duckiebot. This time
though you are going to discretize the system before creating a controller for it which
will make updating the weights easier once you test your controllers on the real sys-

tem. The continuous time model of a Duckiebot is:

With state vector and input . Notice, that the

matrix is an identity matrix, which means that the states are directly mapped to
the outputs. Discretize the system in terms of velocity and the sampling time us-
ing exact discretisation (if you do not remember how, have a look at chapter 1.4 in
[5]) and test your discretization using the provided Matlab-files). What do you ob-
serve? Add the found matrices in the template controller-2.py .

ExExerercisecise 13.13. Implement a LImplement a LQRQR..
To achieve a better lane following behaviour, a LQR can be implemented. The struc-
ture of a state feedback controller such as the LQR looks as in Figure 3.3:
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Figure 3.3. Block diagram of a state feedback control.

Because of limited computation resources, a steady-state (or infinite horizon) ver-
sion of the LQR will be implemented. Because you are considering the discrete time
model of the Duckiebot, the Discrete-time Algebraic Riccati Equation (DARE) has
to be solved:

To solve this equation use the Python control library (see Python control library doc-
umentation).

Note that what you will implement is not exactly a LQR controller. In fact, since you
have state estimation, it would be preciser to talk about a LQG. However, the state es-
timation is not a proper gaussian filter, meaning that you are dealing with a LQGish.
A wA worord on wd on weightingeighting
In general, it is a good idea to choose the weighting matrices to be diagonal, as this
gives you the freedom of weighting every state individually. Also you should normal-
ize your and matrices. Choose the corresponding weights and tune them until
you achieve a satisfying behaviour on the track. To find suitable parameters for the
weighting matrices, keep in mind that we are finding our control input by minimiz-
ing a cost function of the form

So intuitively, one can note that a low weight on a certain state means that it has
less of an impact when trying to minimize the overall cost function. A high weight
means that we want to minimize this state more in order to minimize the overall
function.
For example, if we give a low weight on the input , i.e. the weighting matrix
contains smaller values than the weighting matrix , the controller will care less
about the input used and therefore converge to the desired reference faster.
Once you are ready, run your LQR with:

$ roslaunch duckietown_demos lane_following_exercise.launch
veh:= DUCKIEBOT_NAME exercise_name:=2

Explain what happens when you assign the entries in your weighting matrices dif-
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ferent values. Can you describe it intuitively?

ExExerercisecise 14.14. Implement a LImplement a LQRIQRI..
The above controller should yield satisfactory results already. But you can even do
better! As the LQR does not have any integrator action, a steady state error will per-
sist. To eliminate this error, you will expand your continuous time state space system
by an additional state which describes the integral of the distance . The expanded
system then looks as follows:

Bonus questionBonus question (optional): Why don’t you also account for the integral state of the
angle?
Now discretize the above system as before and extend the state space matrices and
the weighting matrices in your existing code in controller-2.py . Run it again with

$ roslaunch duckietown_demos lane_following_exercise.launch
veh:= DUCKIEBOT_NAME exercise_name:=2

How does your controller perform now?
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