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PPARARTT AA

Object DetObject Detection Exection Exerercisecise

In this exercise you will train an object detection neural network. First, you will create
your own training dataset with the Duckietown simulator. By using the segmentation
maps that it outputs you will be able to label your dataset automatically. Then, you will
adapt a pre-trained model to the task of detecting various classes of objects in the sim-
ulator. You will be graded on the quality of the dataset you made and the performance
of your neural network model.
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UUNITNIT AA-1-1

Object detObject detectionection

In this exercise you will train an object detection neural network. First, you will create
your own training dataset with the Duckietown simulator. By using the segmentation
maps that it outputs you will be able to label your dataset automatically. Then, you will
adapt a pre-trained model to the task of detecting various classes of objects in the sim-
ulator. You will be graded on the quality of the dataset you made and the performance
of your neural network model.

Knowledge and activity graph

RRequirequires:es: Some theory about machine learning
RRequirequires:es: A proper laptop setup.
RRequirequires:es: Some time for neural network training.
RRequirequires:es: A pinch of patience.
RResults:esults: Get a feeling of what machine learning is.

ContContentsents
Section 1.1 - Setup.................................................................................................................................................................................................. 33
Section 1.2 - Step 1: Investigation................................................................................................................................................ 44
Section 1.3 - Step 2: Data collection ........................................................................................................................................ 55
Section 1.4 - Step 3: Model training ........................................................................................................................................ 66

1.1.1.1. SetupSetup

NNotote:e: Setup a virtual environment! If you don’t do this, your Python setup might get
confused between the modified version of the simulator we will be using and the
normal one that you might have previously installed globally.

We recommend using PyCharm, a Python IDE that includes support for venv from
the get-go. PyCharm is free for students, so make sure you sign up with your university
account.
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Clone the template for this assignment.
Then, use the provided utility script to clone the special simulator for this homework
(you might have to use chmod +x to make the script executable):

$ ./clone.sh

Finally, use your IDE of choice to install the requirements.txt that just got copied to
the root of this directory into your venv . On PyCharm, simply press Alt - Enter on every
line of requirements.txt and select the option to install it (this might work only on
recent PyCharm versions and requires that you enable the requirements plugin). You
can also right-click in the requirements.txt file and select Install All Packages .
Alternatively, run the following (make sure you are in the virtual environment you just
created):

$ pip3 install -r requirements.txt

1.2.1.2. StStep 1: Inep 1: Invvestigestigationation
What does an object detection dataset look like? What information do we need?
Try downloading the PennFudanPed dataset, a sample pedestrian detection dataset.
The first step of this exercise is simply understanding what’s in that dataset. You’ll no-
tice that if you try opening the masks in that dataset, your computer will display a
black image. That’s because each segmented pedestrian’s mask is a single digit and the
image only has one channel, even though the mask was saved as a .jpg .
Try scaling the masks from 0 to 255, using something like np.floor(mask /
np.max(mask) * 255).astype(np.uint8) . This will make the masks into something
akin to a .bmp . Then, use OpenCv’s applyColorMap feature on that to visualize the re-
sults. Try looking at the two display functions found in utils.py for inspiration.
This is all optional, of course. But we highly recommend trying it out, so that you can
have an intuition for the type of images you should collect in the next step.
You’ll also notice that the dataset doesn’t include any bounding boxes. That’s okay. For
training with PennFudanPed, we have to compute them through numpy and OpenCV,
just like we will on your own dataset.
Actually, for our own training, we won’t need the masks! All we want are the bounding
boxes. But PennFudanPed is a useful example, as it shows how we can extract bound-
ing boxes from masks, something we will also do for our own dataset. To see how to
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do this, you may skip ahead to the tutorial linked in the Training section.

1.3.1.3. StStep 2: Data collectionep 2: Data collection
Now that we know what data we have to collect, we can start collecting it.
Do note that in this exercise, we don’t want to differentiate the objects from one anoth-
er: they will all have the same class. Our images will include duckies, busses, trucks,
and cones.
We thus have five classes:
• 0: background
• 1: duckie
• 2: cone
• 3: truck
• 4: bus
To collect our data, we’ll use the segmented flag in the simulator. Try running the da-
ta_collection.py file, which cycles between the segmented simulator and the nor-
mal one. Notice that, unfortunately, our duckie citizens are still novice in the field of
computer vision, and they couldn’t figure out how to remove the noise generated from
their segmentation algorithm in the segmented images. That’s why there’s all this odd
coloured “snow”.
Notice that when we’re in the segmented simulator, all the objects we’re interested in
have the exact same color, and the lighting and domain randomization are turned off.
Just like the data_collection.py file does, we can also turn the segmentation back
off for the same position of the agent. In other words, we can essentially produce two
100 identical images, save for the fact that one is segmented and the other is not.
Then, collect the dataset:
• We want as many images as reasonable. The more data you have, the better your
model, but also, the longer your training time.
• We want to remove all non- classes pixels in the segmented images. You’ll have to
identify the white lines, the yellow lines, the stop lines, etc, and remove them from the
masks. Do the same for the coloured “snow” that appears in the segmented images.
• We want to identify each class by the numbers mentioned above
• We also want the bounding boxes, and corresponding classes.
Your dataset must respect a certain format. The images must be 224x224x3 images.
The boxes must be in [xmin, ymin, xmax, ymax] format. The labels must be an
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np.array indexed the same way as the boxes (so labels[i] is the label of boxes[i] ).
We want to be able to read your .npz , so you must respect this format:

img = data["arr_0}"]
boxes = data["arr_1"]
classes = data["arr_2"]

Additionally, each .npz file must be identified by a number. So, if your dataset con-
tains 1000 items, you’ll have npz files ranging from 0.npz to 999.npz .
Do note that even though your dataset images have to be of size 224x224, you are al-
lowed to feed smaller or bigger images to your model. If you wish to do so, simply re-
size the images at train/test/validation time.
Hint:Hint: You might want to take a look at the following OpenCV functions:
• findContours , and its hierarchy output which can be handy for filtering inner con-
tours;
• boundingRect ;
• morphologyEx with a suitable structuring element and morphological operation;
Tip:Tip: You might also want to make two separate datasets: one for training, and one for
validation. Depending on your model, around 2000 samples for training should prob-
ably be more than enough.
EEvvaluation:aluation: We will manually look at part of your dataset and make sure that your
bounding boxes match with the images.

1.4.1.4. StStep 3: Model trep 3: Model trainingaining
Now that we have our dataset, we will train on it. You may use PyTorch or TensorFlow;
it doesn’t really matter because we’ll Dockerize your implementation. Note that the
Tensorflow and PyTorch packages are not in requirements.txt . You’ll have to install
the library you want to use manually in your virtual environment.
The creators of this exercise do have a soft spot for Pytorch, so we’ll use it as an exam-
ple. Also some of the template code is setup for PyTorch so you might need to edit it
in order to work for TensorFlow. Hence, unless you have a very strong preference for
TensorFlow, we recommend you to stick with PyTorch.
This being ML, and ML being a booming field dominated by blogposts and online tuto-
rials, it would be folly for us not to expect you to Google “how 2 obj detection pytorch”.
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Let us save you some time. Here’s the first result: pyTorch’s object detection tutorial.
We’ll loosely follow that template.
First, define your Dataset class. Like in the link, for any given image index, it should
provide:
• The bounding boxes for each class in each image (contrary to the tutorial, you cal-
culated this earlier in the Data collection part of this exercise);
• The class labels for each bounding box;
• The normal, non-segmented image;
• An ID for the image (you should just use the index of the .npz ).
Needless to say, each of the items must be index-dependent (the nth item of boxes
must correspond to the nth item of labels ).
We don’t need the areas or the masks here: we’ll change the model so that we only pre-
dict boxes and labels. Here’s the model we will use instead of the tutorial’s suggestion:

model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pre-
trained=True)

# get number of input features for the classifier
in_features = model.roi_heads.box_predictor.cls_score.in_features
# replace the pre-trained head with a new one
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, 5)

Then, you can use your Dataset class to train your model.

1)1) A notA note on the tute on the tutorialorial

Make sure to carefully read the tutorial. Blindly copying it won’t directly work. The
training data it expects is very specific, and you should make sure that you follow its
structure exactly.
For example, the PennFudanDataset class does many pre-processing steps that you
should have already performed in the data collection step. Hence, your dataset should
already be (almost) ready for training.
Additionally, weirdly enough, the tutorial expects you to have some files that it does
not link to.
Perhaps having a look (and a download) at these links might save you some time:
• engine.py
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• coco_utils.py
• transforms.py
You can also safely remove the evaluate call that the tutorial uses, and it will save you
the headache of installing most of the coco_utils and coco_evaluate dependencies.

2)2) Making surMaking sure ye your model does the right thingour model does the right thing

You should probably write a way to visually evaluate the performance of your model.
Something like displaying the input image and overlaying the bounding boxes (colored
by class) would be simple but very effective.
You should also carefully read model.py , as there are comments in it that describe the
API your wrapper should respect.

3)3) TTrraining haraining hardwdwararee

But how should you actually train your model? If you have a recent-ish nVidia GPU,
you can directly train on your computer. For reference, using a dataset with 2000
items, training on a GTX960 or a Quadro M1000M was very doable.
If you don’t have a GPU, or if your GPU is too slow, you can still train and evaluate on
your CPU. It is going to be slow but will work.
Alternatively, you can also use Google Colab. We included a .ipynb in the model di-
rectory. You can open it with Google Colab, upload the root of this exercise to your
Google Drive, and the provided notebook will mount the folder from your drive into
the Colab runtime, and then call your training script. To access the saved weights, sim-
ply download them from your Google Drive.
You can also improve the training speed by simplifying your model too and it might be
easier to investigate that first.

4)4) Changing the modelChanging the model

The tutorial offers very good performance, but there are better options out there. You
can essentially use any model you like here. However, make sure that it will work with
our evaluation procedure. To ensure that, do not changdo not change the inte the interface of theerface of the Wrapper
classclass in the model.py source file!
We have also provided the setup that we will use for evaluating your models and a
small dataset of 50 samples which you can use to ensure that your model will run
when we evaluate it. Note that we will be using a different and bigger dataset, so make
sure to not overfit!
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Furthermore, feel free to replace the dataset in eval/dataset with a bigger one you’ve
generated yourself should you wish to get a more accurate assessment of your model.
Of course, do not use the same dataset for training and evaluation!
Apart from the dataset folder do not changdo not change ane anything in theything in the eval dirdirectectoryory! Should
you do that, we don’t guarantee that we will be able to evaluate your model anymore.
The exact evaluate procedure is described in the next section.
Make sure that your model can be evaluated without a GPU, i.e. completely on a CPU.
This involves checking if a GPU is available and initializing the model and the inputs
in the right mode. In the provided template you can see some examples of the specific
PyTorch functions you can use.

5)5) EEvvaluationaluation

We will evaluate this section in two ways:
1. What is the accuracy of your model? Specifically, we will use mean average preci-
sion or mAP to evaluate your model, so you might want to optimize it for that metric.
2. Your complete model should be packages as a Docker image with all the depen-
dencies and model weights included. We have provided a template Dockerfile in the
root directory. This Docker image should be pushed to Dockerhub.
3. We will evaluate your model by using the same setting as in the eval directory but
with a different dataset. We will first try to evaluate your model on a GPU by running:
make eval-gpu SUB={YOUR_IMAGE_NAME} in the eval directory. However, if it does not
work (incompatible hardware, wrong CUDA version, etc.) we will also attempt using
a CPU alone. Hence, as mentioned above, make sure that your code runs without a
GPU too. To evaluate without a GPU we will use the make eval-cpu SUB={YOUR_IM-
AGE_NAME} command. You can use the same two commands to verify that your image
complies with the API we expect.
4. The above two commands will evaluate your code and will provide a final mAP
value. You need to scorscore at least 80% mAPe at least 80% mAP for us to consider your model successful.
5. You will also have to provide the first 100 samples from the dataset you created.
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PPARARTT BB

LearningLearning-based Contr-based Control Exol Exerercisecise

In this exercise you will implement an LQR controller for your Duckiebot using the
Duckietown simulator. First, you will collect Duckiebot data (states and control in-
puts) of the robot performing standard lane following. Second, you will train a ma-
chine learning model with the data collected, and lastly, you will use the model to im-
plement an LQR controller and comment on your performance and implementation.

ContContentsents
UnitUnit BB-1-1 - LearningLearning-based Contr-based Control - Data Collectionol - Data Collection............................................................................ 1111
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UUNITNIT BB-1-1

LearningLearning-based Contr-based Control - Data Collectionol - Data Collection

Knowledge and activity graph

RRequirequires:es: Docker Basics (unknown r(unknown ref duckietef duckietown-rown-roboticsobotics-dev-development/dockelopment/dockerer-basics)-basics)

wwarningarning (1 of 1) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link
'#duckietown-robotics-development/docker-basics'.

Location not known more precisely.
Created by function n/a in module n/a.

RRequirequires:es: Knowledge about machine learning
RRequirequires:es: Some knowledge of control theory
RResults:esults: Implement an LQR Controller using learning for your Duckiebot.

ContContentsents
Section 1.1 - Overview of the task .......................................................................................................................................... 1111
Section 1.2 - Duckietown Gym - Duckietown Exercises Notebook .............................. 1212
Section 1.3 - Data collection ............................................................................................................................................................ 1212
Section 1.4 - Model Training............................................................................................................................................................ 1414
Section 1.5 - Linear Quadratic Regulator - Control .................................................................................. 1515

1.1.1.1. OvOverview of the taskerview of the task
For this task, we will be using the Duckietown Gym to run standard lane following in
simulation and obtain data of the Duckiebot model. We will collect the information
about the state , and the control input , where and .
• is the distance of the center of the Duckiebot’s axle to the center of the right lane.
• is the angle (rads) from centerline to heading of the Duckiebot.
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• is the steering input (in radians per second).

1.2.1.2. DuckietDuckietown Gym - Duckietown Gym - Duckietown Exown Exerercises Ncises Nototebookebook
We will be working in the Duckietown Gym. Gym-Duckietown is a simulator for the
Duckietown Universe, written in pure Python/OpenGL (Pyglet). It places your agent,
a Duckiebot, inside of an instance of a Duckietown: a loop of roads with turns, in-
tersections, obstacles, Duckie pedestrians, and other Duckiebots. If not yet familiar,
please read the docs directly on the Gym-Duckietown to get a better understanding
about working with the simulator.
We will run the exercise directly from a Jupyter Notebook. To run, follow the next
steps:

$ git clone --recursive https://github.com/duckietown-ethz/lqr-exer-
cise.git

$ cd lqr-exercise

$ pip3 install -r requirements.txt

$ dts exercises notebooks

This is where you will develop your solution. You will find a Jupyter-notebook for
model training and sample collection. In addition, the lraClass.py file has been in-
cluded to facilitate loading and saving your data.
Troubleshooting: If you forgot to do --recursive you can type git submodule init
and then git submodule update from the exercise root folder.
Troubleshooting: You might need to install the image display package ffmpeg, you can
do this by typing sudo apt-get install ffmpeg .

1.3.1.3. Data collectionData collection

1)1) Collecting the data using default ContrCollecting the data using default Controlleroller

The first task is to collect the state and control input data. For this, you will need to
create an Gym instance of the Duckietown Environment. An example of this setup
procedure is shown below. The function env.render() displays a graphical represen-
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tation of the environment to your screen.

from simulator.src.gym_duckietown.simulator import Simulator
#   Create the environment

env = Simulator(
map_name = "udem1",
domain_rand = False,
draw_bbox = False

)

obs = env.reset()
env.render()

You can use the default controller basic_control.py to make your Duckiebot move.
In the while loop, you will need to do two things:
1. Extract the steering input (in radians per second)
2. Collect the data.
Run your simulation until it finished or crashes, and then save the data to a csv file.
Tip: For data collection, you can use the LRA helper function collectData(u,x)
which takes inputs a scalar and a vector .
Tip: For saving your data, you can use the LRA helper function saveDa-
ta("filepath.csv") .
You should now have a .csv file containing your training data. An example of what
this file should look like is shown below:

d,phi,u
-0.1618443443591879,-0.298587790613436,-1.6330326457217237
-0.16389157947457456,-0.29663545184459117,-1.632756126910639
-0.16590270172174604,-0.28918014534655817,-1.6122521921396433
-0.17345815224603006,-0.25618446121623173,-1.5169998357130914
-0.17518546625467168,-0.2396585301709049,-1.4624035526137578
-0.1767672947637351,-0.21713463020459525,-1.3854049199878498
...
...

2)2) Collecting the data with rCollecting the data with random contrandom control signalsol signals

LEARNING-BASED CONTROL - DATA COLLECTION 13

https://github.com/duckietown/course-LRA/edit/daffy/book/duckietown-learning-robotics/03_learning_based_control/01_model_based_lr.md


✎

✎

Repeat the process you just did, but this time use random control signals that are un-
correlated to the states. Run the simulation and record the states, and control input.
Save the file for your random control input as a separate .csv file.
A successful run will output the video of your Duckiebot moving in the simulation. A
sample output can be seen below:

Figure 1.1. Example video from data collection process with PID control

1.4.1.4. Model TModel Trrainingaining
The next step is to use the data you collected to develop a linear model of the Duck-
iebot. The model can be written as follows:

Where, * *
The goal is to find the matrices and .

1)1) Data CleaningData Cleaning

Not all the collected data might be relevant, it is your task now to determine what data
to include and why.
The data can be easily loaded using the LRA helper function loadData("data.csv") .

lra = LRA2_HELPER()
data = lra.loadData("model_data.csv")
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Hint: the data is imported as a pandas DataFrame. This can easily be sliced, truncated,
sorted, and allows for other operations. You should look at the .iloc[] and .loc[]
methods to facilitate data cleaning and pre-processing.

NNotote:e: Note that an important factor is that the control signal should be bound by a
magnitude of 1.

2)2) Model trModel trainingaining

You are free to use any model you want for training. The goal is to use regression to
find and . One way to do this is to use sklearn.linear_model library to initialize
a model.
In sklearn models follow the convention of X,Y, where X represents the training data,
and Y the outputs. The model you are trying to predict is shown below: Keep in mind
that we are fitting a linear model.

Deliverable: Submit your A and B matrices for the data collected using the PID con-
troller.
Deliverable: Submit your A and B matrices for the data collected using random control
signals.
Deliverable: What are the advantages and disadvantages of using the data collected us-
ing the PID controller?
Deliverable: What are the advantages and disadvantages of using the data collected us-
ing the random control signals?
Deliverable: Is all the data collected useful? Explain why or why not. In addition, elab-
orate on any type of data cleaning you might have performed.

1.5.1.5. Linear QuadrLinear Quadratic Ratic Regulategulator - Contror - Controlol
Now that you have learned the model of the Duckiebot using machine learning, the
objective is to implement a controller to test how accurate the model prediction is. To
do this you will use a Linear Quadratic Regulator (LQR).
The LQR formulation is shown below:
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The LQR is an optimization problem that penalizes the state and control inputs ac-
cording to the matrices and , respectively. You will need to solve the discrete Alge-
braic Riccati Equation
The solution of the ARE can be used to obtain the gains. Compute the gain matrix K
and implement it in your control. Run the simulator again, and record your screen for
your Duckiebot running on your custom model-based-learning controller.
Deliverable: A short video (~5-10 sec) of your simulated Duckiebot running on your
LQR controller.
Deliverable: Your Q and R matrices
Deliverable: Your K matrix
Deliverable: Question: How does the performance of your controller compare to the
controller you used to collect data initially?
Deliverable: Question: Are you penalizing control input, why?
Deliverable: Question: Are you penalizing the states, why?
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https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.linalg.solve_discrete_are.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.linalg.solve_discrete_are.html
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