
✎HandsHands-on R-on Robotics Devobotics Development using Duckietelopment using Duckietownown

This courses teaches the practicalities of programming robots. At the end, you will
know how to write and deploy simple agents on your Duckiebot.

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/00_00_title.md

ContContentsents

PPartart AA -- [RH1] Connecting and oper[RH1] Connecting and operating a Duckiebotating a Duckiebot.................................. 44
◦ UnitUnit AA-1-1 - Assembly duckumentationAssembly duckumentation.. 55
◦ UnitUnit AA-2-2 - TTerminal basicserminal basics .. 88
◦ UnitUnit AA-3-3 - Duckiebot SetupDuckiebot Setup.. 1010
◦ UnitUnit AA-4-4 - NNetwetworking basicsorking basics.. 1414
◦ UnitUnit AA-5-5 - DockDocker basicser basics.. 2020
◦ UnitUnit AA-6-6 - Basic Duckiebot operBasic Duckiebot operationation .. 2828

PPartart BB -- [RH2] Basic Dev[RH2] Basic Developmentelopment .. 3333
◦ UnitUnit BB-1-1 - Git and GitHubGit and GitHub.. 3434
◦ UnitUnit BB-2-2 - Python prPython progrograms and enams and envirvironmentsonments.. 3737
◦ UnitUnit BB-3-3 - Become a DockBecome a Docker Per Powowerer-User-User.. 4646
◦ UnitUnit BB-4-4 - AIDO submissionsAIDO submissions .. 5151
◦ UnitUnit BB-5-5 - CrCreating Dockeating Docker containerser containers .. 5454
◦ UnitUnit BB-6-6 - My First DuckietMy First Duckietown Python Librown Python Libraryary .. 6464

PPartart CC -- [RH3] A[RH3] Advdvanced Softwanced Softwarare Deve Developmentelopment .. 7171
◦ UnitUnit C-1C-1 - IntrIntroduction toduction to Ro ROSOS.. 7272
◦ UnitUnit C-2C-2 - DevDevelopment in the Duckietelopment in the Duckietown infrown infrastructurastructuree.. 7979
◦ UnitUnit C-3C-3 - WWorking with logsorking with logs.. 100100
◦ UnitUnit C-4C-4 - RRobot behaobot behaviour with Rviour with ROSOS.. 106106

PPartart DD -- [RH4] Implementing Basic R[RH4] Implementing Basic Robot Behaobot Behaviorsviors 109109
◦ UnitUnit DD-1-1 - DuckietDuckietown code structurown code structuree.. 110110
◦ UnitUnit DD-2-2 - DevDeveloping new Duckiebot functionalityeloping new Duckiebot functionality .. 117117

2

PPartart EE -- [RH5] Simulating and Modeling the Duckiebot[RH5] Simulating and Modeling the Duckiebot...................... 124124
◦ UnitUnit E-1E-1 - Simulation in DuckietSimulation in Duckietownown .. 125125
◦ UnitUnit E-2E-2 - Modeling the DuckiebotModeling the Duckiebot.. 130130
◦ UnitUnit E-3E-3 - Odometry with Wheel EncodersOdometry with Wheel Encoders .. 132132

3

✎

PPARARTT AA

[RH1] Connecting and oper[RH1] Connecting and operating a Duckiebotating a Duckiebot

This part will take you through the most basic hardware and software skills you need
in Duckietown. You will start from building your Duckiebot and learning the most fre-
quently used terminal commands and go all the way to running your first Duckiebot
demos!

ContContentsents
UnitUnit AA-1-1 - Assembly duckumentationAssembly duckumentation.. 55
UnitUnit AA-2-2 - TTerminal basicserminal basics .. 88
UnitUnit AA-3-3 - Duckiebot SetupDuckiebot Setup .. 1010
UnitUnit AA-4-4 - NNetwetworking basicsorking basics .. 1414
UnitUnit AA-5-5 - DockDocker basicser basics .. 2020
UnitUnit AA-6-6 - Basic Duckiebot operBasic Duckiebot operationation.. 2828

4

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/00_title.md

✎

✎

UUNITNIT AA-1-1

Assembly duckumentationAssembly duckumentation

We have prepared detailed instructions on how to build your Duckiebot, and, if you
need, a whole Duckietown! Here, we will guide you to the relevant parts of the book
that contain the specific instructions. Once you are done, you can continue with the
next module.

Knowledge and activity graph

RRequirequires:es: Hardware
RResults:esults: Know how to build Duckiebots and Duckietowns.
RResults:esults: Know where to ask for help.

ContContentsents
Section 1.1 - Assembling the Duckiebot .. 55
Section 1.2 - Assembling your Duckietown .. 77

1.1.1.1. Assembling the DuckiebotAssembling the Duckiebot
The content of the Duckiebox including a detailed set of instructions can be found in
the assembly instructions (see exercise below). It is advisable to read through our hard-
ware preliminaries (unknown r(unknown ref opmanual_duckiebot/dbef opmanual_duckiebot/db-opmanual-h-opmanual-hww-pr-prel)el)

wwarningarning next (1 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/db-opmanual-hw-prel'.

Location not known more precisely.
Created by function n/a in module n/a.

section before you get your hands on your own Duckiebot.
The assembly instructions as well as the hardware preliminaries are part of the ex-

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/01_assembly.md
https://get.duckietown.org/
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/01_assembly.md
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html

✎

tensive documentation on Duckietown, which we refer to as the “Duckumentation”.
The Duckumentation is an open-source set of documents that explains everything you
need in order to find your way around the Duckietown universe.
If you cannot find the answer to a specific question you have, you can join our interna-
tional Slack workspace. There you can ask the community about anything. When you
sign up, please add your affiliation. It is always a pleasure to see Duckietown spread-
ing around the world, and we are curious to find out where our new members come
from.
If you run into any issues during the assembly, there are different ways to find help.
First, you can look at the FAQ sections that are on some pages of the Duckumentation.
If this does not help you and you need further assistance, let us know via Slack.

ExExerercisecise 1.1. Duckiebot assemblyDuckiebot assembly..
Assemble the hardware of your Duckiebot according to the assembly instructions.
Based on the Duckiebot model you have, please choose one of the following instruc-
tion guides:
DB18 (unknown r(unknown ref opmanual_duckiebot/assemblingef opmanual_duckiebot/assembling-duckiebot-duckiebot-db18)-db18)

previous wwarningarning next (2 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/assembling-duckiebot-db18'.

Location not known more precisely.
Created by function n/a in module n/a .

DB19 (unknown r(unknown ref opmanual_duckiebot/assemblingef opmanual_duckiebot/assembling-duckiebot-duckiebot-db19)-db19)

previous wwarningarning next (3 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/assembling-duckiebot-db19'.

Location not known more precisely.
Created by function n/a in module n/a .

6 ASSEMBLY DUCKUMENTATION

https://docs.duckietown.org/daffy/
https://duckietown.slack.com/
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/slack
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/01_assembly.md
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html

✎

DB-beta (unknown r(unknown ref opmanual_duckiebot/assemblingef opmanual_duckiebot/assembling-duckiebot-duckiebot-db-db-beta)-beta)

previous wwarningarning next (4 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/assembling-duckiebot-db-beta'.

Location not known more precisely.
Created by function n/a in module n/a .

(only ETHZ students taking AMoD 2020 course)

1.2.1.2. Assembling yAssembling your Duckietour Duckietownown
Now it is time to assemble your city. You can find useful instruction here (unknown r(unknown refef
opmanual_duckietopmanual_duckietown/dtown/dt-ops-ops-assembly)-assembly)

previous wwarningarning next (5 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckietown/dt-ops-assembly'.

Location not known more precisely.
Created by function n/a in module n/a.

. Make sure you check out the city appearance specifications (unknown r(unknown ref opmanu-ef opmanu-
al_duckietal_duckietown/dtown/dt-ops-ops-appear-appearanceance-specif-specifications)ications)

previous wwarningarning next (6 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckietown/dt-ops-appearance-specifications'.

Location not known more precisely.
Created by function n/a in module n/a.

too!

ASSEMBLY DUCKUMENTATION 7

/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/01_assembly.md
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html

✎

UUNITNIT AA-2-2

TTerminal basicserminal basics

Working over the terminal is a skill that every roboticist-to-be needs to acquire. It en-
ables you to work on remote agents or computers without the need for a graphical user
interface (GUI) and lets you work very efficiently. Once you get the hang of it, you will
find out for yourself how it can make your life easier.

Knowledge and activity graph

RRequirequires:es: Laptop setup (unknown r(unknown ref opmanual_duckiebot/laptef opmanual_duckiebot/laptopop-setup)-setup)

previous wwarningarning next (7 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/laptop-setup'.

Location not known more precisely.
Created by function n/a in module n/a.

RRequirequires:es: Duckietown account (unknown r(unknown ref opmanual_duckiebot/dtef opmanual_duckiebot/dt-account)-account)

previous wwarningarning next (8 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/dt-account'.

Location not known more precisely.
Created by function n/a in module n/a.

RResults:esults: Know how to use a terminal

ContContentsents
Section 2.1 - Using a terminal.. 99

8

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/02_terminal_basics.md
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html

✎

✎

Section 2.2 - Using the Duckietown Shell .. 99

2.1.2.1. Using a tUsing a terminalerminal
If you are completely new to working with a terminal, often also called “console” or
“command line”, a beginners tutorial can be found here. It makes sense to get to know
the terminal very well, as this will save you a lot of time along the way.
If you are looking for an extensive list of commands that can be used from the termi-
nal, this is the place to look at.

2.2.2.2. Using the DuckietUsing the Duckietown Shellown Shell
The Duckietown Shell, or dts for short, is a pure Python, easily distributable (few de-
pendencies) utility for Duckietown.
The idea is that most of the functionalities are implemented as Docker containers, and
dts provides a nice interface for that, so that users should not type a very long docker
run command line. These functionalities range from calibrating your Duckiebot and
running demos to building the duckumentation and submitting and evaluating for AI-
DO. You will find the commands that you need along the way during the next steps.
If you followed all the steps in the laptop setup (unknown r(unknown ref opmanual_duckiebot/laptef opmanual_duckiebot/laptopop--
setup)setup)

previous wwarningarning next (9 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/laptop-setup'.

Location not known more precisely.
Created by function n/a in module n/a.

, you already installed dts. If not, now is the time to go back and do it.

TERMINAL BASICS 9

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/02_terminal_basics.md
https://tutorials.ubuntu.com/tutorial/command-line-for-beginners#0
https://ss64.com/bash/
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/02_terminal_basics.md
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html

✎

✎

UUNITNIT AA-3-3

Duckiebot SetupDuckiebot Setup

Major efforts were made to make sure that the setup of your Duckiebot is as comfort-
able as possible for you. We created a set of instructions for initialization and calibra-
tion through which we will guide you here.

Knowledge and activity graph

RRequirequires:es: an assembled Duckiebot.
RResults:esults: A Duckiebot that is ready to operate in Duckietown.

ContContentsents
Section 3.1 - Initialization .. 1010
Section 3.2 - Make your Duckiebot move.. 1111
Section 3.3 - See what your Duckiebot sees .. 1111
Section 3.4 - Calibration .. 1212

3.1.3.1. InitializationInitialization
First of all, you have to flash your SD card. Here you have the possibility to give your
duckiebot a name and choose what network to connect to. We experienced people hav-
ing issues when they called their Duckiebot duckiebot , so make sure to find a creative
name that is different from that.
Follow the initialization instructions here (unknown r(unknown ref opmanual_duckiebot/setupef opmanual_duckiebot/setup-duck--duck-
iebot)iebot)

previous wwarningarning next (10 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/setup-duckiebot'.

10

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/03_initialization.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/03_initialization.md
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html

✎

✎

Location not known more precisely.
Created by function n/a in module n/a.

.

3.2.3.2. MakMake ye your Duckiebot movour Duckiebot movee
As soon as you finished the initialization part successfully, it is time to make your
Duckiebot move. Follow the instructions here (unknown r(unknown ref opmanual_duckiebot/ref opmanual_duckiebot/rc-contrc-control)ol)

previous wwarningarning next (11 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/rc-control'.

Location not known more precisely.
Created by function n/a in module n/a.

to find out how you can maneuver your Duckiebot using your computer keyboard.
This is also the moment to check whether you did a good job at wiring your motors. If
your Duckiebot does not behave as you tell him to, this is probably due to the fact that
some wires are crossed.

NNotote:e: If this is the first time that you try to make your Duckiebot move, give it some
time. It might take some time until the joystick pops up on your screen.

3.3.3.3. See what ySee what your Duckiebot seesour Duckiebot sees
There is another key component missing now: the image stream from the camera. To
find its way around in the city, a Duckiebot needs to be aware of what is going on
around him and where he is allowed to drive and where not. To see the image stream
from your Duckiebot, follow the instructions here (unknown r(unknown ref opmanual_duckiebot/ref opmanual_duckiebot/read-ead-
camercamera-data)a-data)

previous wwarningarning next (12 of 45) index
warning

DUCKIEBOT SETUP 11

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/03_initialization.md
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/03_initialization.md
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html

✎

✎

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/read-camera-data'.

Location not known more precisely.
Created by function n/a in module n/a.

.

3.4.3.4. CalibrCalibrationation
As with every real-world system, the hardware of the Duckiebot is always a little differ-
ent. The “same” cameras or motors that you can buy off the shelf will never be exactly
the same. Additionally, the camera might have been mounted in a slightly different
orientation than it was supposed to. But don’t worry, this is what we are going to take
care of in this step.
We have two calibration procedures for the Duckiebot: one for the camera and one for
the motors.

1)1) CamerCamera calibra calibrationation

The camera calibration procedure consists of two parts: the first one is the intrinsic
camera calibration. It accounts for the differences between each camera and is there-
fore only dependent on the camera itself. If you did the intrinsic calibration, make sure
to not play around with the lens of the camera anymore as it will invalidate the intrin-
sic calibration.
The second part is the extrinsic camera calibration. It accounts for the positioning of
the camera relative to its environment (i.e. how you mount it on the Duckiebot). So if
you mounted the camera at a slight angle with respect to the driving direction this part
accounts for it.
Follow the instructions here (unknown r(unknown ref opmanual_duckiebot/cameref opmanual_duckiebot/camera-calib)a-calib)

previous wwarningarning next (13 of 45) index
warning

12 DUCKIEBOT SETUP

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/03_initialization.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/03_initialization.md
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html

✎

✎

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/camera-calib'.

Location not known more precisely.
Created by function n/a in module n/a.

to calibrate the camera of your Duckiebot.
For more detailed background information check out this link.

ExExerercisecise 2.2. CalibrCalibrationation..
During the camera calibration, the Duckiebot will run an automatic verification on
the camera calibration. Check if the projection of the street on the actual picture
fits. If it doesn’t you have to redo the extrinsic calibration.

2)2) Wheel calibrWheel calibrationation

The Duckiebot uses a differential drive. Going forward in a straight line therefore de-
pends on the motors turning at the exact same speed. As in reality every motor is
slightly different, we have to account for these imprecisions using a wheel calibration
procedure. In Duckietown we are currently using a gain-trim approach for that.
Follow the instructions here (unknown r(unknown ref opmanual_duckiebot/wheel-calibref opmanual_duckiebot/wheel-calibration)ation)

previous wwarningarning next (14 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/wheel-calibration'.

Location not known more precisely.
Created by function n/a in module n/a.

to run through the calibration procedure with your Duckiebot and help him drive
straight.

DUCKIEBOT SETUP 13

https://github.com/duckietown/lectures/blob/master/1_ideal/25_computer_vision/cv_calibration.pdf
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/03_initialization.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/03_initialization.md
https://docs.duckietown.org/DT19/learning_materials/out/duckiebot_modeling.html
https://docs.duckietown.org/DT19/learning_materials/out/odometry_calibration.html
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html

✎

UUNITNIT AA-4-4

NNetwetworking basicsorking basics

Networking is extremely vital in Duckietown. And we don’t mean the networking
events where duckies socialize (these are pretty fun), but rather the computer net-
works between the bots, your computers and the rest of the Duckietown equipment.
These networks allow us to do some pretty cool stuff, like controlling your Duckiebot
from your laptop or creating a centralized observation center that combines the video
streams of all watchtowers. Networking’s usefulness is only comparable with its com-
plexity. Indeed, this is often the source of most confusion and problems for Ducki-
etown newbies. That is why we will try to clarify as many things as we can from the
very beginning.

Knowledge and activity graph

RRequirequires:es: Laptop setup (unknown r(unknown ref opmanual_duckiebot/laptef opmanual_duckiebot/laptopop-setup)-setup)

previous wwarningarning next (15 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/laptop-setup'.

Location not known more precisely.
Created by function n/a in module n/a.

.
RRequirequires:es: Duckiebot initialization (unknown r(unknown ref opmanual_duckiebot/setupef opmanual_duckiebot/setup-duckiebot)-duckiebot)

previous wwarningarning next (16 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/setup-duckiebot'.

Location not known more precisely.

14

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/04_networking_basics.md
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html

✎

✎

Created by function n/a in module n/a.

.
RResults:esults: Fundamental networking knowledge.

ContContentsents
Section 4.1 - Why do we care about networking in the first place? 1515
Section 4.2 - How do computer networks work? .. 1515
Section 4.3 - Connecting to your Duckiebot .. 1818

4.1.4.1. WhWhy do wy do we care care about netwe about networking in the forking in the first place?irst place?
Your Duckiebot, just like your computer or your phone, is a network device and you
connect to it through the network. You probably want to control it without having to
attach a screen, a keyboard and a mouse to it, that would defeat the whole “autono-
my” goal. In more complex projects, one computer can also be used to control dozens
of devices at a time. And in one of the most challenging undertakings that we have
attempted so far, we connect 50+ watchtowers into a single mega-hive. All this is en-
abled by smartly configured computer networks!

4.2.4.2. How do computHow do computer netwer networks works work?ork?
A local network is setup with a router at the center, that allows all devices that connect
to it to find each other and communicate. The role of the router is to direct (route)
packages from a sender to a receiver. In big networks you cannot physically connect
all devices to a single router. In this case, you can use switches to combine the network
traffic from a number of devices onto a single connection to a router. The router must
know which device is which and where to find it. To facilitate their communication,
the router and the rest of the devices use IP and MAC addresses.
The MAC address is related to your hardware itself, to your computer (or more accu-
rately, to the network interface). This means that it remains the same even if you move
to the other end of the world and connect to a different network. If your computer
supports both a WiFi and an Ethernet connection, then each one has a different MAC
address. The MAC address is of the form: 0d:12:2c:a7:0d:27 , with each symbol be-
ing a hexadecimal (0-9 + a-f). More importantly, MAC addresses are unique: there is

NETWORKING BASICS 15

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/04_networking_basics.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/04_networking_basics.md
https://en.wikipedia.org/wiki/MAC_address

no other device in the world with the same MAC address as the WiFi adapter in your
laptop. You can consider it as a citizen number: it is unique personal identifier. That
makes MAC addresses extremely useful for routing messages reliably.
While MAC addresses have the benefit of stability, they are very clumsy to work with,
imagine that every time you want to send a letter to your friend you need to write
down their citizen number. And also imagine you are the mailman: it is very different
to deliver mail if you don’t know where the person lives. Computers use IP addresses
to handle these problems.
The IP address of a device is relative to the network it lives in. It is a sequence of num-
bers that are uniquely mapped to devices inside the network. It is coded on 32 bits.
Most home networks use the range of IP from 192.168.1.1 to 192.168.1.255 , so you
may have seen the numbers before. The structure of the IP address shows the hier-
archical nature of the network architecture. This address will change as soon as you
change network, and it is assigned by the network administrator. Typically this is han-
dled by a DHCP server which, in most home networks is part of the router. In a local
network, all addresses use the same subnetwork, which means that the first 24 bits
of it are the same. If my IP is 192.168.1.23 , then my subnetwork is 192.168.1. xyz .
This makes it easy to determine which devices are on the same local network as me,
as then the router can directly deliver my messages. If you are trying to connect to a
device outside your local network (e.g., on the Internet), the router will need to find a
way to deliver the message to it.
This concept is actually quite important. Your router will give you the address of any
device on your local network, such that you can connect to it, but does not work for re-
sources on the Internet, for example, docs.duckietown.org . Therefore, instead, it acts
as an intermediary between your device and the Internet. The technical term for that
is gateway. The router will mask any request that comes from you as if it comes from
the router itself, and once it gets a reply from the remote server, it forwards that back
to your device.
Even though using IP addresses is very convenient for computers, humans do not han-
dle them that well. They change from time to time and are hard to memorize. Instead,
we prefer to name our devices with memorable names such as quackabot or duck-
iecar . These names are called hostnames and you should have picked one for your
Duckiebot when you initialized it. In Duckietown, we mostly use the hostnames for
connecting to devices. However, the ability to find a device by hostname is non-stan-
dard and requires a protocol called multicast DNS (mDNS).

NNotote:e: This mDNS protocol works by default on most home or office networks, but is

16 NETWORKING BASICS

https://en.wikipedia.org/wiki/IP_address
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
https://en.wikipedia.org/wiki/Multicast_DNS

✎

✎

blocked on large corporate networks like the ones of universities. If you have issues
connecting to your Duckiebot thourgh the hostname, that is the most likely reason
and you should first check with your network provider if mDNS is indeed blocked.

ExExerercisecise 3.3. NNetwetwork utilitiesork utilities..
Now we will discuss some useful tools that can help understand the network on
which you are.
There is nothing simpler than finding your hostname: simply type hostname in a
terminal. Now, make sure you are connected to a network first.
We can use the ifconfig command to find some properties of this network. Open a
terminal and type the command ifconfig . You might be missing the package that
provides this command. If that is the case, install it and try again.
The ifconfig command outputs a few paragraphs, one for each network interface.
You typically will find one called something like wlan0 (your wireless interface)
and another one called eth0 (your Ethernet interface). Look at the one through
which you are connected at the moment. After the keyword inet you should see
your IP address and after the keyword ether or HWadress you should get the MAC
address of this interface.
Can you determine what is your sub-network? How many devices can you put on
this sub-network?

Now that you know what your network is, it is time to explore the devices on it. There
are many ways to do this. If you know about a device that should be connected, like
your Duckiebot, then you can directly try to find it. To do so, you can try to ping it. This
will just “poke” the device to see if it is on the network and it is responsive to the pok-
ing. You can ping by IP address and a hostname. Pinging by IP address always works
if a device is connected to the network. Pinging by hostname requries that mDNS is
enabled, therefore if that fails it could mean that either your device is not connected,
or that the mDNS traffic is being blocked on your network.

ExExerercisecise 4.4. PingPing..
Open a terminal. Run ping hostname , where hostname is your Duckiebot’s host-
name. Does it work? What is the output? Now try ping hostname .local instead.
Does this work? For the router to find a device with its hostname, it needs to know
that the hostname is in the local network, not somewhere else on internet. In con-
trast, try to ping a server outside of the local network: ping google.com . You can

NETWORKING BASICS 17

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/04_networking_basics.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/04_networking_basics.md

✎

✎

✎

stop pinging the Duckiebot by pressing CTRL-C .
Now, when you pinged your Duckiebot, did you notice that there was an IP address
in the output? Is it yours? No! It is the IP of the Duckiebot! You can now use this IP
address and try pinging with it. Do you need to add the .local this time? Can you
figure out why?
This part will be very important for a lot of the things you will do in Duckietown.
When a command involving your Duckiebot doesn’t work, the first thing to try is to
ping it and make sure it is still accessible.

ExExerercisecise 5.5. NMapNMap..
We can now investigate what is on our network by using one of the many network
mapping tools that exist out there. Keep in mind that depending on the network
and the devices on it, you might not be able to see every device and every parameter.
Since you know your IP address, you also know your sub-network. Using the tool
nmap , we are going to search the whole sub-network. Try to run nmap -sP YOUR
IP /24 in a terminal. The /24 part tells nmap to keep the 24 first bits the same in
its search. If you don’t put it, then nmap will search the complete space of address
(which are the monstrous 2^32 addresses).
The output should give you the list of all devices connected to your network, with
their IP addresses and most of the time their hostnames. This way, you found your
hostname and its IP, as well as other potentially present Duckiebots or computers.

4.3.4.3. Connecting tConnecting to yo your Duckiebotour Duckiebot
Now that we know what our local network is and how it works, we can this informa-
tion to gain access to Duckiebots. The industry standard way of connecting to remote
devices is a protocol known as SSH (Secure SHell). Then name describes it quite well:
just in the same way that you can run shell commands on your computer in the termi-
nal you can run shell commands, in a secure way, on a remote device. In this case, the
remote device will be your Duckiebot.

ExExerercisecise 6.6. SSHSSH..
Let’s connect to our Duckiebot via SSH. Open a terminal and type ssh user-
name @ hostname .local . The username and hostname should be the ones you sup-
plied when you flashed your card. If you didn’t set a username, then it should be
the default value of duckie . If you are prompted to enter a password, again use the

18 NETWORKING BASICS

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/04_networking_basics.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/04_networking_basics.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/04_networking_basics.md

✎

one you set when flashing, or if you didn’t use the default quackquack password.
Now your terminal is not in your computer anymore but on the Duckiebot. Did the
text before the place where you can enter you command change? Why? What do
these things there mean?
You should now be in a shell in the Duckiebot. Try to move around with terminal
commands like cd and ls , as explained in the terminal basics. Verify that these are
not the directories and files you find on your computer. They actually are the ones
on your robot.
Repeating the steps from one of the previous exercises, find the MAC address of
your Duckiebot.
Once you are ready, you can exit the session on the Duckiebot and return to your
computer by simply typing exit or by pressing CTRL+D .

You can connect to your bot without having to type a password (maybe that was al-
ready the case). This is done by using SSH keys (a private and a public one). You don’t
know this yet, but when you flashed the SD card on your computer, it added an SSH
key to your computer and to the Duckiebot. With this, the Duckiebot recognizes your
computer and won’t ask for a password. On your computer, the key is in ~/.ssh , and
it is called DT18_key_00 . If you in fact try to ssh in a Duckiebot on the network that
was not flashed on your computer, you will have to know the password.

ExExerercisecise 7.7. SSH kSSH keyseys..
Open a new terminal and navigate to ~/.ssh and open the file named config . What
is in there? It is a list of know agents mapped with the key to use. When you run ssh
hostname ssh will directly use the key and the provided Linux username (duckie
by default).

NETWORKING BASICS 19

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/04_networking_basics.md

✎

UUNITNIT AA-5-5

DockDocker basicser basics

If you are frequent user of Python, you have probably experienced that making your
projects portable can sometimes be quite difficult. Your code might work only on a
specific version of Python and requires specific versions of some particular libraries.
But how can you make sure that the users of your code have the same installed?
Thankfully, the Python community has develped wonderful tools to manage that, such
as virtual environments and PyPI. Unfortunately, these tools stop short of extend-
ing their convenice outside the Python world. What about your parameters, libraries,
packages written in different languages, binary executables, system configurations,
and anything else that your code might need to run correctly? How do you make sure
your user has all of this setup correctly? And what if you want this to work accross
different hardware and operating systems? How difficult can achieving true portabili-
ty be? In fact, it turns out, this is an engineering task that has taken thousands of the
world’s brightest developers many decades to implement!
Thanks to the magic of container technology we can now run any Linux program on
almost any networked device on the planet. All of the environment preparation, in-
stallation and configuration steps can be automated from start to finish. Depending on
how much network bandwidth you have, it might take a while, but that’s all right. All
you need to do is type a single command string correctly.
Docker is a tool for portable, reproducible, and self-contained computing. It is used
to perform operating-system-level virtualization, something often referred to as con-
tainerization. While Docker is not the only software that does this, it is by far the most
popular one.

Knowledge and activity graph

RRequirequires:es: Laptop setup (unknown r(unknown ref opmanual_duckiebot/laptef opmanual_duckiebot/laptopop-setup)-setup)

previous wwarningarning next (17 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/laptop-setup'.

20

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/05_docker_basics.md
https://docs.python.org/3/tutorial/venv.html
https://pypi.org/
https://en.wikipedia.org/wiki/OS-level_virtualisation
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html

✎

Location not known more precisely.
Created by function n/a in module n/a.

RResults:esults: The very basic knowledge of using Docker

ContContentsents
Section 5.1 - What’s so special about containerization?.. 2121
Section 5.2 - What is it in a Docker container? .. 2222
Section 5.3 - Working with Docker images .. 2323
Section 5.4 - Working with containers.. 2424

5.1.5.1. What’What’s so special about containerization?s so special about containerization?
A (Docker) container is a packaging around all the software (libraries, configuration
files, services, binary executable, etc.) that a computer needs to run a program. And
by all, we don’t simply mean the source code or the dependencies, we really mean all.
Everything you need, from the lowest level OS components to the user interface. A
container does not care what flavor or release of Linux you try to run it on, it has every-
thing it needs to work everywhere inside it (it is a container, afterall). Not to mention
that Linux Docker containers can generally be also executed on Mac OS and Windows
as well!
Containerization is a process that allows partitioning the hardware and the core soft-
ware (the kernel) of an operating systems in such a way that different containers can
co-exist on the same system independently from one-another. Programs running in
such a container have access only to the resources they are allow to and are completely
independent of libraries and configurations of the other containers and the host ma-
chine. Because of this feature, Docker containers are extremely portable.
Containers are often compared to virtual machines (VMs). The main difference is that
VMs require a host operating system (OS) with a hypervisor (another program) and a
number of guest OS, each with their own libraries and application code. This can re-
sult in a significant overhead. Imagine running a simple Ubuntu server in a VM on
Ubuntu: you will have most of the kernel libraries and binaries twice and a lot of the
processes will be duplicated on the host and on the guest. Containerization, on the
other hand, leverages the existing kernel and OS, keeps track of what you already have

DOCKER BASICS 21

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/05_docker_basics.md
https://en.wikipedia.org/wiki/Virtual_machine

✎

and adds only the additional binaries, libraries and code necessary to run a given ap-
plication. See the illustration below.

(a) Using containers (b) Using VMs

Figure 5.1. Comparison between containers and VMs (from docker.com)

Because containers don’t need a separate OS to run they are much more lightweight
than VMs. This makes them perfect to use in cases where one needs to deploy a lot
of independent services on the same hardware or to deploy on not-that-powerful plat-
forms, such as a Raspberry Pi - the platform Duckiebots use.
Containers allow for reuse of resources and code, but are also very easy to work with
in the context of version control. If one uses a VM, they would need to get into the
VM and update all the code they are using there. With a Docker container, the same
process is as easy as pulling the container image again.
The same feature makes Docker containers great for development. If you mess up a
configuration or a library in a container, all you need to do to fix it is, stop it, remove it,
and try again. There is no trace left on your system and you cannot break down your
OS by committing a simple stupid mistake in a container.
And the best part of it all, Docker containers are extremely portable. That means, that
once you package your mindbogglingly-awesome Duckiebot code as a Docker contain-
er, you can very easily share it with your friends and anyone else in the world, who
would be able to try it on their own robot with a single line in the terminal. Just as
easily you can test it in simulation or even submitting for competing in the AI Driving
Olympics!

5.2.5.2. What is it in a DockWhat is it in a Docker container?er container?
You can think of Docker containers as objects built from Docker images which in turn
are built up of Docker layers. So what are these?
Docker images are build-time constructs while Docker containers are run-time con-

22 DOCKER BASICS

https://docs.docker.com/get-started/
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/05_docker_basics.md

✎

structs. That means that a Docker image is static, like a .zip or .iso file. A container
is like a running VM instance: it starts from a static image but as you use it, files and
configurations might change.
Docker images are build up from layers. The initial layer is the base layer, typically an
official stripped-down version of an OS. For example, a lot of the Docker images we
run on the Duckiebots have rpi-ros-kinetic-base as a base.
Each layer on top of the base layer constitutes a change to the layers below. The Docker
internal mechanisms translate this sequence of changes to a file system that the con-
tainer can then use. If one makes a small change to a file, then typically only a single
layer will be changed and when Docker attempts to pull the new version, it will need
to download and store only the changed layer, saving space, time and bandwidth.
In the Docker world images get organized by their repository name, image name and
tags. As with Git and GitHub, Docker images can be stored in image registers that re-
side on the Internet and allow easy worldwide access to your code. The most popular
Docker register is called DockerHub and it is what we use in Duckietown.
A Duckietown image stored on DockerHub has a name of the form duckietown/rpi-
ros-kinetic-base:daffy . Here the repository name is duckietown , the image name
is rpi-ros-kinetic-base , and the tag is daffy .
All Duckietown-related images are in the duckietown repository. The images them-
selves can be very different and for various applications.
Sometimes a certain image might need to have several different versions. These can be
designated with tags. For example, the daffy tag means that this is the image to be
used with the daffy version of the Duckietown code base.
It is not necessary to specify a tag. If you don’t, Docker assumes you are interested in
the image with latest tag, should such an image exist.

5.3.5.3. WWorking with Dockorking with Docker imager imageses
We will now take a look at how you can use Docker in practice. For this, we assume
you have already set up Docker on your computer as explained in the Laptop Setup
page.
If you want to get a new image from a Docker register (e.g., DockerHub) on your local
machine then you have to pull it. For example, you can get an Ubuntu 18.04 image by
running the following command:

$ docker pull library/ubuntu:18.04

DOCKER BASICS 23

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/05_docker_basics.md

✎

You will now be able to see the new image you pulled if you run:

$ docker image list

Just like that you got a whole new OS on your computer with a single line in the ter-
minal!
If you don’t need this container, or if you’re running down on storage space, you can
remove it by simply running:

$ docker image rm ubuntu:18.04

You can also remove images by their IMAGE ID as printed by the list command.
If you want to look into the heart and soul of your images, you can use the commands
docker image history and docker image inspect to get a detailed view.

5.4.5.4. WWorking with containersorking with containers
Containers are the run-time equivalent of images. When you want to start a container,
Docker picks up the image you specify, creates a file system from its layers, attaches all
devices and directories you want, “boots” it up, sets up the environment, and starts a
pre-determined process in this container. All that magic happens with you running a
single command: docker run . You don’t even need to have pulled the image before-
hand, if Docker can’t find it locally, it will look for it on DockerHub.
Here’s a simple example:

$ docker run ubuntu

This will take the ubuntu image with latest tag and will start a container from it.
The above won’t do much. In fact, the container will immediately exit as it has nothing
to execute. When all processes of a container exit, the container exits as well. By de-
fault this ubuntu image runs bash and as you don’t pass any commands to it, it exits
immediately. This is no fun, though.
Let’s try to keep this container alive for some time by using the -it switch. This tells
Docker to create an interactive terminal session.

24 DOCKER BASICS

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/05_docker_basics.md

$ docker run -it ubuntu

Now you should see something like:

$ root@73335ebd3355:/#

Keep in mind that the part after @ (the container’s hostname) will be different - that is
your container ID .
In this manual, we will use the following icon to show that the command should be
run in the container:

$ command to be run in the container

You are now in your new ubuntu container! Try to play around, you can try to use
some basic bash commands like ls , cd , cat to make sure that you are not in your
host machine.
If you are sure about the difference between the host and the container, you might
want to see what happens when you do rm -rf / IN THE CIN THE CONTONTAINERAINER. Do that ex-
tremely carefully because that wipes out all of the root of a system. You do not want
to run this on your host. By running the above command in a Docker container you
will destroy the OS inside the container - but you can just exit and start another one.
If instead you have confused host and container, at this point you probably need to re-
install your OS.
You can check which containers you are running using the docker ps command -
analogous to the Linux ps command. Open a new terminal window (do not close the
other one just yet) and type:

$ docker ps

An alternative syntax is

$ docker container list

These commands list all running containers.

DOCKER BASICS 25

Now you can go back to your ubuntu container and type exit . This will bring you
back to your host shell and will stop the container. If you again run the docker ps
command you will see nothing running. So does this mean that this container and all
changes you might have made in it are gone? What about all these precious changes
you made in it? Are they forever lost into the entropy abyss of electric noise in your
computer’s memory? Not at all, docker ps and docker container list only list the
currently running containers.
You can see all containers, including the stopped ones with:

$ docker container list -a

Here -a stands for all. You will see you have two ubuntu containers here (remember
the first one that exited immediately?). There are two containers because every time
you use docker run , a new container is created. Note that their names seem strangely
random. We could have added custom, more descriptive names, but more on this later.
We don’t really need both of these containers, so let’s get rid of one of them:

$ docker container rm container name

You need to put your container name after rm . Using the container ID instead is also
possible. Note that if the container you are trying to remove is still running you will
have to first stop it.
You might need to do some other operations with containers. For example, sometimes
you want to start or stop an existing container. You can simply do that with:

$ docker container start container name
$ docker container stop container name
$ docker container restart container name

Imagine you are running a container in the background. The main process is running
but you have no shell attached. How can you interact with the container? You can
open a terminal in it with:

$ docker attach container name

Let’s start again the container that we stopped before. You can check its container ID

26 DOCKER BASICS

and name via docker container list -a . You can then start it again with command
introduced above. You will see that the docker start command will only print the con-
tainer ID and will return you back to the terminal. Rather uneventful, huh? Don’t wor-
ry, your container is actually running: check that with docker ps .
But even though it is running, it seems you cannot do anything with it. But fear not,
use the docker attach command to get back in the container’s shell. Now you’re back
in and ready for the next adventure.
Often, you will need to run multiple processes in a single container. But how could you
do that if you have only a single terminal? Well, Docker has a neat command for that:
docker exec . The full signature of it is docker exec CONTAINER_NAME/ID COMMAND .
Let’s use that to create a file in our Ubuntu container that is already running. Open a
new terminal and simply substitute the container name or ID in the signature above
and use the command touch /quackworld which should create an empty file called
quackworld in the container’s root. The full command should look like that:

$ docker exec c73ee1f963a2 touch /quackworld

Verify that the file was indeed created by running it again, but this time with the com-
mand ls \ instead, which will show you the contents of the root folder. Finally, verify
that the change was made in the same container as the one to which you attached be-
fore by finding the file there and that the change was not made on your host by check-
ing that you don’t have a file called quackworld in your root folder.

DOCKER BASICS 27

✎

✎

UUNITNIT AA-6-6

Basic Duckiebot operBasic Duckiebot operationation

Now that you know more about how to assemble a duckiebot, how to use a terminal,
how to set up a Duckiebot, how to handle a bit of networking and a bit of Docker, it
is high time you learn how to use the basic functionalities of the Duckiebot. In this
section, you will learn multiple ways to operate and manage existing functions of the
Duckiebot.

Knowledge and activity graph

RRequirequires:es: Laptop setup (unknown r(unknown ref opmanual_duckiebot/laptef opmanual_duckiebot/laptopop-setup)-setup)

previous wwarningarning next (18 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/laptop-setup'.

Location not known more precisely.
Created by function n/a in module n/a.

RResults:esults: Know how to use the Dashboard, Portainer and the DT shell for demos.

ContContentsents
Section 6.1 - Remote connection with a browser and an interface 2828
Section 6.2 - Starting a demo using the DT shell .. 3030

6.1.6.1. RRemotemote connection with a bre connection with a browser and an intowser and an interfaceerface
One of the easiest way to use and get an overview of your Duckiebot’s operations ca-
pacities is to use a Duckietown designed web interface, that we call the Dashboard.
The dashboard will allow you to monitor and operate basic functionalities of the Duck-
iebot.

28

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/06_basic_duckiebot_operation.md
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/06_basic_duckiebot_operation.md

✎ExExerercisecise 8.8. Using the DashboarUsing the Dashboardd..
To set up the dashboard, follow this tutorial (unknown r(unknown ref opmanual_duckiebot/duckiebotef opmanual_duckiebot/duckiebot--
dashboardashboard-setup)d-setup)

previous wwarningarning next (19 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/duckiebot-dashboard-setup'.

Location not known more precisely.
Created by function n/a in module n/a.

. Once on the dashboard, explore the interface and try to understand its features.
Through the dashboard you can, e.g., move the Duckiebot. You can find a tutorial
on how to do so on (unknown r(unknown ref opmanual_duckiebot/setupef opmanual_duckiebot/setup-r-rosos-w-websockebsocketet-imag-image)e)

previous wwarningarning next (20 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/setup-ros-websocket-image'.

Location not known more precisely.
Created by function n/a in module n/a.

.
You can even see what the Duckiebot is seeing Through the dashboard. You can fol-
low the instructions from (unknown r(unknown ref opmanual_duckiebot/imagef opmanual_duckiebot/imagee-dashboar-dashboard)d)

previous wwarningarning next (21 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/image-dashboard'.

Location not known more precisely.
Created by function n/a in module n/a.

BASIC DUCKIEBOT OPERATION 29

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/06_basic_duckiebot_operation.md
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html

✎

✎

to do so.

The dashboard is really useful for quick debugging and for moving the Duckiebot. We
suggest you use it every time you have doubts about the camera nor working or the
motors not being plugged in the right way.
But this interface has its limits, as it hides everything that is actually running on the
duckiebot. To better understand the duckiebot, let’s take a look at what is under the
hood : we will use portainer.
To manage and use containers, the command line interface is not so easy to use. But
there exist a tool that create a nice interface to manage containers: Portainer. Portainer
is itself a container that runs on a device. Let’s learn how to use it.

ExExerercisecise 9.9. Using PUsing Portainerortainer..
Luckily, We have one running directly on the duckiebots at startup. Go to host-
name .local:9000 on your web browser. You should arrive on an interface. Navi-
gate on the side window to Containers . Here you will see all the containers that
are running or that are stopped on your duckiebot.
Look for the one that has duckiebot_interface in the name. This one contains all
the drivers you need to drive around, use the camera and the leds.
Select it, click on stop, then try to move your duckiebot around again with the dash-
board. It doesn’t work anymore. Select it again and start it. Now, find the logs but-
ton, right next to the name. This will open the logs output of the container. This can
be very useful to debug new containers. In here you might see the error messages if
something goes wrong.

With this interface, you can also attach a shell to the container, monitor its memory
and cpu usage, and inspect its configuration.
Portainer is really helpful to manage images and containers that are already on the
duckiebot, but what about if you want to create a new container or run a new demo.
You could still do it from there, but it is not very intuitive. We commonly use the dt
shell , that you already have installed.

6.2.6.2. Starting a demo using the DStarting a demo using the DT shellT shell
In the Duckietown world, demos are containers that contain a set of functionalities

30 BASIC DUCKIEBOT OPERATION

https://www.portainer.io/
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/06_basic_duckiebot_operation.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/06_basic_duckiebot_operation.md

✎

ready to work, if the rest of the Duckiebot is set up properly (e.g. dt-car-interface and
dt-duckiebot-interface are running). This is also the moment where the work done in
Section 3.4 - Calibration finally pays off. In order for the demo to work nicely, every
Duckiebot must have undergone a calibration procedure to account for its motors’ and
camera’s characteristics. In other words, the calibration procedure ensures that every
Duckiebot will behave in the same way when it is given the same set of inputs or com-
mands. The demos all follow the same workflow, which is described here (unknown r(unknown refef
opmanual_duckiebot/runningopmanual_duckiebot/running-demos)-demos)

previous wwarningarning next (22 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/running-demos'.

Location not known more precisely.
Created by function n/a in module n/a.

.

ExExerercisecise 10.10. TTry out the lanery out the lane-following demo-following demo..
Let’s now start a lane_following demo. To do so, follow these instructions (unknown(unknown
rref opmanual_duckiebot/demoef opmanual_duckiebot/demo-lane-lane-following)-following)

previous wwarningarning next (23 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/demo-lane-following'.

Location not known more precisely.
Created by function n/a in module n/a.

.

After following the instructions completely, you should have run the lane following
demo, and seen the visual output of the lane filter node.
In the duckiebot operation manual, you can find the instructions for the other demos.

BASIC DUCKIEBOT OPERATION 31

/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/01_connecting_and_operating_a_Duckiebot/06_basic_duckiebot_operation.md
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html

We mainly use the indefinite_navigation one.

32 BASIC DUCKIEBOT OPERATION

✎

PPARARTT BB

[RH2] Basic Dev[RH2] Basic Developmentelopment

In this part you will get to make your first small program that runs on your Duckiebot!
But before that, we will cover some important tool and handy skill you need.

ContContentsents
UnitUnit BB-1-1 - Git and GitHubGit and GitHub.. 3434
UnitUnit BB-2-2 - Python prPython progrograms and enams and envirvironmentsonments.. 3737
UnitUnit BB-3-3 - Become a DockBecome a Docker Per Powowerer-User-User .. 4646
UnitUnit BB-4-4 - AIDO submissionsAIDO submissions.. 5151
UnitUnit BB-5-5 - CrCreating Dockeating Docker containerser containers .. 5454
UnitUnit BB-6-6 - My First DuckietMy First Duckietown Python Librown Python Libraryary.. 6464

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/00_title.md

✎

✎

UUNITNIT BB-1-1

Git and GitHubGit and GitHub

Working on software in a group is great for development, but it automatically brings
many pitfalls and issues. How to handle code that has been modified at the same time
by two members of the group? How to keep an eye on what other members write in
the code? How to keep enough history of the code to be able to go back to a stable
version when something bad was added? How to do that when a few hundred people
work on the same code and not go crazy. The answer is simple: code vcode versioning tersioning toolsools.
These tools allow communities to swiftly handle these issues. The most used one, and
the one we will use, is gitgit.

Knowledge and activity graph

RRequirequires:es: Laptop setup (unknown r(unknown ref opmanual_duckiebot/laptef opmanual_duckiebot/laptopop-setup)-setup)

previous wwarningarning next (24 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/laptop-setup'.

Location not known more precisely.
Created by function n/a in module n/a.

RResults:esults: Know how to extensively use a code versioning tools, git

ContContentsents
Section 1.1 - Learning git .. 3434
Section 1.2 - What is github .. 3535
Section 1.3 - Being a good git citizen .. 3535

1.1.1.1. Learning gitLearning git
Git is a great tool, that is mandatmandatoryory to anyone doing any sort of code. Learning how

34

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/01_github.md
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/01_github.md

✎

✎

✎

✎

✎

to use it is essential.

ExExerercisecise 11.11. Git tutGit tutorialorial..
To learn how to use all of git’s functionalities, complete this tutorial.

1.2.1.2. What is githubWhat is github
“GitHub is a code hosting platform for version control and collaboration. It lets you
and others work together on projects from anywhere.” (source : github.com)
Github is where all the code is stored. It provides tools to handle pull requests, issues,
and much more. The Duckietown organization github page hosts all relevant code. It
is comprised of many different repositories.

1.3.1.3. Being a gBeing a good git citizenood git citizen
Knowing how to use git is the first step. The second step, which is of the same impor-
tance, is knowing how to use it well.

1)1) CommitsCommits

• Commits need to be grgranularanular: One commit contains on fix, or one function. It can-
not have two new functions, and three bug fix. This means that it is better to do too
many commits that not enough. This is helpful when doing cherry picks, or when
checking out a previous version of the code.
• Commits need to have meaningful messagmeaningful messageses: The message of the commit should
describe its content.

2)2) BrBranches, forks, pull ranches, forks, pull request and peer request and peer revieweview

If you are going to work on a new function, but are not sure yet how it is going to go,
then you cannot work on the master branch. This master branch needs to only receive
code that has been tested, reviewed and approved by the team.
You then have twtwo solutionso solutions:
• BrBranchinganching On the main remote, you can branch out of the master branch, as ex-
plained in the above tutorial. Please give a relevant name to the branch (example : “de-
vel-new-flying-function”). On repositories that you and a small team use a lot, this is
the best option.

GIT AND GITHUB 35

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/01_github.md
https://learngitbranching.js.org/
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/01_github.md
https://github.com/duckietown
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/01_github.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/01_github.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/01_github.md

• FForkingorking You can fork the main repo into you own workspace, and work from here.
On repositories that are used by a lot of people, or that you very rarely will modify, this
is the best option.
No matter the chosen solution, you then do your work, commit it, and then push it to
github. On github, your branches will appear in your repository. When you feel like it
is ready to be integrated to the master branch, you can open a pull request. This will
allow your co workers to see the modifications you made.
What yWhat you need tou need to do:o do:
• Check that you are not committing wrong things by error.
• Provide a clear description of your work
• explain why it is relevant
• test it before opening the pull request, and explain that the test worked
• assign relevant co-workers to review the code
What the rWhat the revieweviewers need ters need to do (all in the github into do (all in the github interface):erface):
• Go through the modified code
• Comment directly on lines that raise questions and doubts
• Propose modifications
• And then, when all conversation are resolved, approve and merge the pull request
A pull request must never be approved and merged by the person who submitted it.
Peer review is one of the most important part of software development. Not only it
does allow for error proofing, but it also allows for someone to make a code sugges-
tion alone. This way the code can be easily discussed and improved, even when it was
functional to start with.

36 GIT AND GITHUB

https://help.github.com/en/articles/about-pull-requests

✎

✎

UUNITNIT BB-2-2

Python prPython progrograms and enams and envirvironmentsonments

We assume you are already quite comfortable with Python. Nevertheless, when you
work with big and complex projects, there are some subtleties that you must consider
and some handy tools that can make your life easier. Let’s take a look at some of these
now.

Knowledge and activity graph

RRequirequires:es: Laptop setup (unknown r(unknown ref opmanual_duckiebot/laptef opmanual_duckiebot/laptopop-setup)-setup)

previous wwarningarning next (25 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/laptop-setup'.

Location not known more precisely.
Created by function n/a in module n/a.

RResults:esults: Developer knowledge of Python.

ContContentsents
Section 2.1 - Define a basic project structure .. 3737
Section 2.2 - Run a basic program on your Laptop.. 4141
Section 2.3 - Run a basic program on your Duckiebot .. 4343
Section 2.4 - Install dependencies using package managers (e.g., apt , pip)4444

2.1.2.1. DefDefine a basic prine a basic project structuroject structuree
In Duckietown, everything runs in Docker containers. All you need in order to run a
piece of software in Duckietown is a Duckietown-compliant Docker image with your
software in it.
A boilerplate is provided by the following repository.

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/02_python_01_programs_and_environments.md
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/02_python_01_programs_and_environments.md
https://github.com/duckietown/template-basic/

The repository contains a lot of files, but do not worry, we will analyze them one by
one. Click on the green button that says “Use this template”.

Figure 2.1

This will take you to a page that looks like the following:

Figure 2.2

Pick a name for your repository (say my-program) and press the button Create reposi-
tory from template. Note, you can replace my-program with the name of the repository

38 PYTHON PROGRAMS AND ENVIRONMENTS

that you prefer, make sure you use the right name in the instructions below.
This will create a new repository and copy everything from the repository template-
basic to your new repository. You can now open a terminal and clone your newly cre-
ated repository.

$ git clone https://github.com/ YOUR_NAME /my-program
$ cd my-program

NNotote:e: Replace YOUR_NAME in the link above with your GitHub username.
The repository contains already everything you need to create a Duckietown-compli-
ant Docker image for your program. The only thing we need to change before we can
build an image from this repository is the repository name in the file Dockerfile. Open
it using the text editor you prefer and change the first line from:

ARG REPO_NAME=" REPO_NAME_HERE "

to

ARG REPO_NAME="my-program"

and then similarly update the DESCRIPTION and the MAINTAINER ARGs.
Save the changes. We can now build the image, even though there is not going to be
much going on inside it until we place our code in it.
Now, in a terminal, move to the directory created by the git clone instruction above
and run the following command(beware that it might take some time):

$ dts devel build -f

NNotote:e: If the above command is not recognized, you will first have to install it with
dts install devel .

If you correctly installed Docker and dts , you should see a long log that ends with
something like (but not necessary exactly like) the following:

PYTHON PROGRAMS AND ENVIRONMENTS 39

Figure 2.3

You can now run your container by executing the following command.

$ dts devel run

This will show the following message:

40 PYTHON PROGRAMS AND ENVIRONMENTS

✎

The environment variable VEHICLE_NAME is not set. Using ' LAPTOP_HOST-
NAME '.
WARNING: robot_type file does not exist. Using 'duckiebot' as default
type.
WARNING: robot_configuration file does not exist.
=> Launching app...
This is an empty launch script. Update it to launch your application.
<= App terminated!

Congratulations! You just built and run your first Duckietown-compliant Docker im-
age.

2.2.2.2. RRun a basic prun a basic progrogram on yam on your Laptour Laptopop
Now that we know how to build a Docker image for Duckietown, let’s put some code
in one of them.
We will see how to write a simple Python program, but any language should do it.
Open a terminal and go to the directory my-program created above. In Duckietown,
Python code must belong to a Python package. Python packages are placed inside the
directory code in my-program . Let go ahead and create a directory called my_package
inside packages.

$ mkdir -p ./packages/my_package

A Python package is simply a directory containing a special file called __init__.py .
So, let’s turn that my_package into a Python package.

$ touch ./packages/my_package/__init__.py

Now that we have a Python package, we can create a Python script in it. Use your fa-
vorite text editor to create the file ./packages/my_package/my_script.py and place
the following code inside it.

message = "Hello World!"
print(message)

PYTHON PROGRAMS AND ENVIRONMENTS 41

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/02_python_01_run_basic.md

We now need to tell Docker we want this script to be the one executed when we run
the command docker run . In order to do so, open the file ./launchers/default.sh
and replace the line

echo "This is an empty launch script. Update it to launch your applica-
tion."

with the line

dt-exec python3 -m "my_package.my_script"

NNotote:e: Always prepend dt-exec to the main command in ./launchers/default.sh .
If you are curious about why that is important, we can tell you that it helps us deal
with an interesting problem called “The zombie reaping problem” (more about this in
this article).
You can also create different custom executable scripts, if you want to know more
about that check out the file ./readme.md.
Let us now re-build the image:

$ dts devel build -f

and run it:

$ dts devel run

This will show the following message:

42 PYTHON PROGRAMS AND ENVIRONMENTS

https://blog.phusion.nl/2015/01/20/docker-and-the-pid-1-zombie-reaping-problem/

✎

The environment variable VEHICLE_NAME is not set. Using '774a2521b42e'.
Adding /code/my-program to PYTHONPATH
Adding /code/dt-commons to PYTHONPATH
Activating services broadcast...
Done!

Hello World!

Deactivating services broadcast...
Done!

Congratulations! You just built and run your own Duckietown-compliant Docker im-
age.

2.3.2.3. RRun a basic prun a basic progrogram on yam on your Duckiebotour Duckiebot
Now that we know how to package a piece of software into a Docker image for Ducki-
etown, we can go one step further and write code that will run on the robot instead of
our laptop.
This part assumes that you have a Duckiebot up and running with hostname MY_RO-
BOT . Of course you don’t need to change the hostname to MY_ROBOT , just replace it with
your robot name in the instructions below. You can make sure that your robot is ready
by executing the command

$ ping MY_ROBOT.local

If we can ping the robot, we are good to go.
Let us go back to our script file my_script.py and change it to:

import os
message = "Hello from %s!" % os.environ['VEHICLE_NAME']
print(message)

We can now modify slightly the instructions for building the image so that the image
gets built directly on the robot instead of your laptop or desktop machine. Run the
command

PYTHON PROGRAMS AND ENVIRONMENTS 43

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/02_python_02_run_duckiebot.md

✎

$ dts devel build -f --arch arm32v7 -H MY_ROBOT.local

As you can see, we changed two things, one is --arch arm32v7 which tells Docker to
build an image that will run on ARM architecture (which is the architecture the CPU
on the robot is based on), the second is -H MY_ROBOT.local which tells Docker where
to build the image.
Once the image is built, we can run it on the robot by running the command

$ docker -H MY_ROBOT.local run -it --rm --net=host duckietown/my-pro-
gram:latest-arm32v7

Please take into consideration that the image tag may be different, you can check the
correct image name and tag in the end of the output the build command. If everything
worked as expected, you should see the following output,

The environment variable VEHICLE_NAME is not set. Using 'MY_ROBOT'.
Adding /code/my-program to PYTHONPATH
Adding /code/dt-commons to PYTHONPATH
Activating services broadcast...
Done!

Hello from MY_ROBOT!

Deactivating services broadcast...
Done!

Congratulations! You just built and run your first Duckietown-compliant and Duck-
iebot-compatible Docker image.

2.4.2.4. Install dependencies using packagInstall dependencies using package manage managers (e.gers (e.g.,., apt,, pip))
It is quite common that our programs need to import libraries, thus we need a way to
install them. Since our programs reside in Docker images, we need a way to install li-
braries in the same image.
The template provided by Duckietown supports two package managers out of the box:
• Advanced Package Tool (apt)

44 PYTHON PROGRAMS AND ENVIRONMENTS

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/02_python_03.md

✎

• Pip Installs Packages for Python3 (pip3)
List your apt packages or pip3 packages in the files dependencies-apt.txt and de-
pendencies-py3.txt respectively before running the command dts devel build .

ExExerercisecise 12.12. Basic NumPy prBasic NumPy progrogramam..
Write a program that performs the sum of two numbers using NumPy. Add numpy
to the file dependencies-py3.txt to have it installed in the Docker image.

Here you go! Now you can handle pip dependencies as well!

PYTHON PROGRAMS AND ENVIRONMENTS 45

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/02_python_03.md
https://numpy.org/

✎

✎

UUNITNIT BB-3-3

Become a DockBecome a Docker Per Powowerer-User-User

We already introduced in Unit A-5 - Docker basics what Docker containers are and
how you can start them and do basic operations. Recall that a Docker container is a
closed environment and any change you do there cannot affect your host system or
other containers. This can be great if you want to protect your laptop from possible
mischief coming from inside a container, but at the same time limits what you can do
with it. Thankfully, Docker has some very powerful ways to interact with your system
and the outside world.

Knowledge and activity graph

RRequirequires:es: Laptop setup (unknown r(unknown ref opmanual_duckiebot/laptef opmanual_duckiebot/laptopop-setup)-setup)

previous wwarningarning next (26 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/laptop-setup'.

Location not known more precisely.
Created by function n/a in module n/a.

RRequirequires:es: Docker basics
RResults:esults: Advanced knowledge of using Docker images and containers

ContContentsents
Section 3.1 - Getting data in and out of your container .. 4646
Section 3.2 - Docker and networking.. 4747
Section 3.3 - Handling devices.. 4848
Section 3.4 - Other fancy option .. 4848

3.1.3.1. GetGetting data in and out of yting data in and out of your containerour container

46

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/03_docker_poweruser.md
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/03_docker_poweruser.md

✎

✎

Docker provides a few ways to extract and import files from and to a container. We will
look only at volume mounting as it is the most used and versatile way. In the simplest
terms, mounting a volume to a container essentially means that you make a directo-
ry on your host machine available in the container. Then, you can think of these two
directories as perfect copies of each-other: if you change something in one of them, it
will be changed in the other as well. Therefore, if your container needs some data or
configuration files to operate properly, or if you need to export your results out of it,
volume mounting is the way to go. So, how does it work?
You can use docker run with the -v host_dir:container_dir option. Here -v is a
shortcut for --volume . This specifies that container_dir in the container will be re-
placed with host_dir from your computer. Give it a try:

ExExerercisecise 13.13. DockDocker ver volume mountingolume mounting..
Run a new Ubuntu container where you mount your home directory in the contain-
er’s home directory:

$ docker run -it -v ~:/home ubuntu

In bash ~ is a shortcut for your home directory (/home/your_username). Now if
you check which files are in the container’s home directory by running ls /home
you’d see the files you have on your host machine. Try to change one of them (hope-
fully one not that important file) or to create a new one with, for example, touch
test.txt . The easiest way to modify a simple file is to append a string to its content
with something like echo "hello" >> test.txt . Check in your host home folder
if the changes appear there as well. Now do the opposite: make a change in your
host and observe if there’s a corresponding change in the container. To visualize the
content of a simple file you can use the command cat test.txt .

3.2.3.2. DockDocker and netwer and networkingorking
The default network environment of a Docker container (a bridge network driver)
gives your container access to the Internet but not much more. If you run, for example,
a web server in the container, you wouldn’t be able to access it from your host. This is
not ideal for us as most of the Duckietown code-base actually uses similar technolo-
gies to connect the various parts of the code.
However, by adding --network host to the docker run command, we can remove the
network isolation between the container and the Docker host and therefore, you can

BECOME A DOCKER POWER-USER 47

https://docs.docker.com/storage/volumes/
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/03_docker_poweruser.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/03_docker_poweruser.md
https://docs.docker.com/network/

✎

✎

use the full range of networking capabilities that your host has within the convenient
environment in the container.

3.3.3.3. Handling devicesHandling devices
The Docker containers do not have access to the devices on your computer by default.
Yup, if you put your code in a container it cannot use the camera, wheels and LEDs
of your Duckiebot. No fun, right? Thankfully, just like with the network, Docker has a
solution for that! You can manually allow each device to be available to your contain-
er or you can allow all of them by simply passing the --privileged option to docker
run . You will see that option being often used in Duckietown.

3.4.3.4. Other fancy optionOther fancy option
Docker provides many more options for configuring your containers. Here’s a list of
the most common ones:

48 BECOME A DOCKER POWER-USER

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/03_docker_poweruser.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/03_docker_poweruser.md

✎

Table 3.1. DOCKER RUN options

Short commandShort command Full commandFull command ExplanationExplanation
-i --interactive Keep STDIN open even if not attached, typi-

cally used together with -t.
-t --tty Allocate a pseudo-TTY, gives you terminal

access to the container, typically used to-
gether with -i.

-d --detach Run container in background and print con-
tainer ID.

--name Sets a name for the container. If you don’t
specify one, a random name will be generat-

ed.
-v --volume Bind mount a volume, exposes a folder on

your host as a folder in your container. Be
very careful when using this.

-p --publish Publish a container’s port(s) to the host, nec-
essary when you need a port to communi-

cate with a program in your container.
-d --device Similar to -v but for devices. This grants the

container access to a device you specify. Be
very careful when using this.

--privileged Give extended privileges to this container.
That includes access to allall devices. Be eex-x-

trtremelyemely careful when using this.
--rm Automatically remove the container when it

exits.
-H --hostname Specifies remote host name, for example

when you want to execute the command on
your Duckiebot, not on your computer.

--help Prints information about these and other op-
tions.

ExamplesExamples

Set the container name to joystick :

--name joystick

BECOME A DOCKER POWER-USER 49

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/03_docker_poweruser.md

Mount the host’s path /home/myuser/data to /data inside the container:

-v /home/myuser/data:/data

Publish port 8080 in the container as 8082 on the host:

-p 8082:8080

Allow the container to use the device /dev/mmcblk0 :

-d /dev/mmcblk0

Run a container on the Duckiebot:

-H duckiebot.local

50 BECOME A DOCKER POWER-USER

✎

✎

✎

UUNITNIT BB-4-4

AIDO submissionsAIDO submissions

The Duckietown platform is one of many possibilities. In particular it is used for a in-
ternational competition named AIDO. You will probably have part in it in one way or
the other. You need to be able to participate in it.

Knowledge and activity graph

RRequirequires:es: Laptop setup (unknown r(unknown ref opmanual_duckiebot/laptef opmanual_duckiebot/laptopop-setup)-setup)

previous wwarningarning next (27 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/laptop-setup'.

Location not known more precisely.
Created by function n/a in module n/a.

RResults:esults: Know how to participate in AIDO.

ContContentsents
Section 4.1 - Getting started .. 5151
Section 4.2 - Make a simple submission .. 5252
Section 4.3 - Customize a solution .. 5353

4.1.4.1. GetGetting startting starteded
The AIDO book is complete and already has all the necessary instructions.

ExExerercisecise 14.14. Setup ySetup your account and softwour account and softwararee..
Follow the instructions accounts needed (unknown r(unknown ref AIDO/cm-accounts)ef AIDO/cm-accounts)

previous wwarningarning next (28 of 45) index

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/04_aido_submission.md
https://www.duckietown.org/research/ai-driving-olympics
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/04_aido_submission.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/04_aido_submission.md
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html

✎

✎

warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#AI-
DO/cm-accounts'.

Location not known more precisely.
Created by function n/a in module n/a.

and software requirements (unknown r(unknown ref AIDO/cm-sw)ef AIDO/cm-sw)

previous wwarningarning next (29 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#AI-
DO/cm-sw'.

Location not known more precisely.
Created by function n/a in module n/a.

.

4.2.4.2. MakMake a simple submissione a simple submission
To first get started and understand the workflow of AIDO submission, you will submit
one with its default version.

ExExerercisecise 15.15. MakMake a simple submissione a simple submission..
Follow the instructions here (unknown r(unknown ref AIDO/cm-fef AIDO/cm-first)irst)

previous wwarningarning next (30 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#AI-
DO/cm-first'.

Location not known more precisely.
Created by function n/a in module n/a.

52 AIDO SUBMISSIONS

/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/04_aido_submission.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/04_aido_submission.md
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html

✎

. You will have to :
• retrieve a submission repository
• submit the default solution
• monitor your submission
• explore the leaderboard
On the AIDO website, find your submissions jobs, and play around with the follow-
ing parameters:
• priority : changes the order of evaluation priority amongst your various submis-
sions
• resetting : reset a job to make it restart
• retiring : removing a job from the evaluation queue

4.3.4.3. CustCustomize a solutionomize a solution
Of course, the idea is not to submit the default solutions, but to improve them. This
part is not mandatory, but you can go around and try to do better, by following the
quickstart instructions (unknown r(unknown ref AIDO/quickstartef AIDO/quickstart-lanefollowing)-lanefollowing)

previous wwarningarning next (31 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#AIDO/
quickstart-lanefollowing'.

Location not known more precisely.
Created by function n/a in module n/a.

.

AIDO SUBMISSIONS 53

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/04_aido_submission.md
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html

✎

UUNITNIT BB-5-5

CrCreating Dockeating Docker containerser containers

We spent a lot of time looking at how to use Docker containers and the image that
they start from. But that still leaves a very important question open: how can you make
your own image? Now you will have the opportunity to make your first image that will
do some basic computer vision processing on your Duckiebot!

Knowledge and activity graph

RRequirequires:es: Laptop setup (unknown r(unknown ref opmanual_duckiebot/laptef opmanual_duckiebot/laptopop-setup)-setup)

previous wwarningarning next (32 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/laptop-setup'.

Location not known more precisely.
Created by function n/a in module n/a.

RRequirequires:es: Duckiebot initialization (unknown r(unknown ref opmanual_duckiebot/setupef opmanual_duckiebot/setup-duckiebot)-duckiebot)

previous wwarningarning next (33 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/setup-duckiebot'.

Location not known more precisely.
Created by function n/a in module n/a.

RRequirequires:es: Docker basics
RRequirequires:es: Docker poweruser skills
RResults:esults: Advanced knowledge of using Docker images and containers.

54

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/05_creating_docker_containers.md
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html

✎

ContContentsents
Section 5.1 - Where do Docker containers come from? .. 5555
Section 5.2 - Environment variables and Docker containers.. 5757
Section 5.3 - Guide to the Dockerfile keywords .. 5858
Section 5.4 - Creating your first functional Docker image .. 5858
Section 5.5 - Pushing to DockerHub .. 6262

5.1.5.1. WherWhere do Docke do Docker containers come frer containers come from?om?
So far we saw that you can get a Docker image from the DockerHub by knowing its
name. How do these images get on DockerHub? Well, the simple answer is that you
register an account and then similarly to git, you can push one of your images to Dock-
erHub. And how do you create an image in the first place?
A simple, though rarely practiced way is to convert a container in which you have
made some changes into a new image. This can be done through the docker commit
command. However, as this is not the preferred mode of operation we won’t discuss it
further. But you can find more details in the official documentation.
The more popular and accepted way is to build an image from a “recipe”, called a
Dockerfile. A Dockerfile is a text file that specifies the commands required to create
a Docker image, typically by modifying an existing container image using a scripting
interface. They also have special keywords (which are always CAPITALIZED), like
FROM , RUN , ENTRYPOINT , and so on. For example, create a file called Dockerfile with
the following content:

FROM ubuntu
RUN touch new_file1
CMD ls -l

The first line above defines the base image on top of which we will build our container.
The second line simply executes the Linux command touch new_file1 which creates
a new file with this name. And the last line is the default command that will be run
when the container is started (unless the user provides a different command).
Now, to build the image we can simply run:

$ docker build -t my_first_container:v1 .

CREATING DOCKER CONTAINERS 55

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/05_creating_docker_containers.md
https://hub.docker.com/
https://hub.docker.com/signup
https://docs.docker.com/engine/reference/commandline/commit/

The last part of this command denotes the directory (called context) which contains
your Dockerfile. The . shorthand refers to the current directory.
You should see something like:

Sending build context to Docker daemon 2.048kB
Step 1/3 : FROM ubuntu
--- ea2f90g8de9e

Step 2/3 : RUN touch new_file1
--- e3b75gt9zyc4

Step 3/3 : CMD ls -l
--- Running in 14f834yud59

Removing intermediate container 14f834yud59
--- 05a3bd381fc2

Successfully built 05a3bd381fc2
Successfully tagged my_first_container:v1

Now run the command docker images in your terminal, and you should see an image
called my_first_container with tag v1 :

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
my_first_container v1 05a3bd381fc2 2 seconds ago 88.9MB

An interesting observation is that the container size is 88.9MB . Now, instead of need-
ing to carry around a 88.9MB file, we can just store the 4KB text file and rest assured
that all our important setup commands are contained within. In a sense, a whole OS,
with our custom file inside is compressed to 3 lines of code.
Now, similarly to before, we can simply run:

56 CREATING DOCKER CONTAINERS

✎

$ docker run -it my_first_container:v1
total 64
drwxr-xr-x 2 root root 4096 Mar 7 2019 bin
drwxr-xr-x 2 root root 4096 Apr 24 2018 boot
drwxr-xr-x 5 root root 360 Sep 21 18:45 dev
drwxr-xr-x 1 root root 4096 Sep 21 18:45 etc
drwxr-xr-x 2 root root 4096 Apr 24 2018 home
drwxr-xr-x 8 root root 4096 May 23 2017 lib
drwxr-xr-x 2 root root 4096 Mar 7 2019 lib64
drwxr-xr-x 2 root root 4096 Mar 7 2019 media
drwxr-xr-x 2 root root 4096 Mar 7 2019 mnt
-rw-r--r-- 1 root root 0 Sep 21 18:41 new_file1
drwxr-xr-x 2 root root 4096 Mar 7 2019 opt
dr-xr-xr-x 328 root root 0 Sep 21 18:45 proc
drwx------ 2 root root 4096 Mar 7 2019 root
drwxr-xr-x 1 root root 4096 Mar 12 2019 run
drwxr-xr-x 1 root root 4096 Mar 12 2019 sbin
drwxr-xr-x 2 root root 4096 Mar 7 2019 srv
dr-xr-xr-x 13 root root 0 Sep 21 18:45 sys
drwxrwxrwt 2 root root 4096 Mar 7 2019 tmp
drwxr-xr-x 1 root root 4096 Mar 7 2019 usr
drwxr-xr-x 1 root root 4096 Mar 7 2019 var

Notice that as soon as we run the container Docker will execute the ls -l command
as specified by the Dockerfile, revealing that new_file1 was indeed stored in the image.
However, we can still override ls -l by passing a command line argument: docker
run -it your/duck:v3 [custom_command] .

5.2.5.2. EnEnvirvironment vonment variables and Dockariables and Docker containerser containers
Environment variables are often used to control the behavior of one or more programs.
As the name hints, these variables are associated with a particular (terminal) environ-
ment and are shared among processes. In fact, all processes started from an environ-
ment inherit its set of environment variables. If you are curious, you can check out the
Wikipedia article about them.
In bash you can set an environment variable with export VAR_NAME=var_value , and
to check a variable’s current value use echo \$VAR_NAME . Python allows you to easi-
ly get the environment variable of the environment where the program was started in
through the os module and its dictionary os.environ['VAR_NAME'] .

CREATING DOCKER CONTAINERS 57

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/05_creating_docker_containers.md
https://en.wikipedia.org/wiki/Environment_variable

✎

✎

✎

ExExerercisecise 16.16. EnEnvirvironment vonment variables in Dockariables in Dockerer..
Open a terminal and set a new environment variable MY_VAR with any value you
like. Then start an interactive Python session in the same terminal and check the
value of MY_VAR using the above function.

In the Docker universe environment variables are particularly useful to configure a
container when you run it. Imagine that your code can be run with different configu-
ration variables (e.g. gain for the motors, exposure mode of the camera, etc.). Then you
can set the value of this variable when you run the container, e.g.

$ docker run -e CAMERA_EXPOSURE='sport' my_fancy_camera:alpha

Then the Python code in the container can obtain the value you passed via the os.en-
viron dictionary. In this way you make a single Docker image that can initialize con-
tainers with all sorts of configurations. Quite powerful, right?

5.3.5.3. Guide tGuide to the Docko the Dockerferfile kile keyweyworordsds
Here are some of the most commonly used Dockerfile keywords. You will see them in
many of the Duckietown Dockerfiles and you will often make use of them. You can
find much more information and details on how to use them on Docker’s official doc-
umentation.

Table 5.1. Dockerfile keywords

KKeyweyworordd
FROM Designates the base image on top of which this container imag
RUN
CMD Executes any shell command at run time, unless the user specifies another command. This is the default command the container will e
ENV Sets an environment v

COPY Copies file from the cont
WORKDIR Chang

5.4.5.4. CrCreating yeating your four first functional Dockirst functional Docker imager imagee
Now that you know your way around Dockerfiles, it is time to finally build something
meaningful that works on your Duckiebot! We are going to build a very basic vision
system: we will try to measure how much of the image stream the camera sees is cov-

58 CREATING DOCKER CONTAINERS

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/05_creating_docker_containers.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/05_creating_docker_containers.md
https://docs.docker.com/engine/reference/builder/#usage
https://docs.docker.com/engine/reference/builder/#usage
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/05_creating_docker_containers.md

✎

ered with pixels of a particular color.

ExExerercisecise 17.17. CrCreating a color deteating a color detectector in Dockor in Dockerer..

NNotote:e: The following exercise will use the camera on your robot, bear in mind that
only one process can access the camera at a time. Therefore, if there is another
process on your bot that is already using the camera, your code will likely fail.
Make sure that the dt-duckiebot-interface and any other container that can
use the camera are stopped. You can use Portainer to do that.

We will divide the image that the camera acquires into N_SPLITS equal horizontal
sectors. N_SPLITS will be an environment variable we pass to the container. Think
of it as a configuration parameter. The container should find which color is most
present in each sector. Or alternatively you can look at the color distribution for
each split. It should print the result in a nicely formatted way with a frequency of
about 1Hz.
You can start your Dockerfile from duckietown/dt-duckiebot-interface:daffy-
arm32v7 . Most of the stuff you need should already be in there. Make a require-
ments.txt file where you list all your pip dependencies. We would expect that you
would need at least picamera and numpy . Using a requirements.txt file is a good
practice, especially when you work with big projects. The Dockerfile then copies
this file and passes it to pip which installs all the packages you specify there. Final-
ly copy your code in the container and specify it should be the starting command.
Here’s an example Dockerfile:

FROM duckietown/dt-duckiebot-interface:daffy-arm32v7
use daffy-arm64v8 if you are using a Duckiebot MOOC Founder's Edi-
tion

WORKDIR /color_detector_dir

COPY requirements.txt ./

RUN pip install -r requirements.txt

COPY color_detector.py .

CMD python3 ./color_detector.py

CREATING DOCKER CONTAINERS 59

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/05_creating_docker_containers.md

Make sure you understand what each single line is doing. Keep in mind that you
might need to modify it in order to work for you.
Working with the camera can sometimes be tricky so you can use this template for
color_detector.py to get started:
Use this if you are using a Raspberry Pi equipped Duckiebot:

import picamera
import picamera.array
from time import sleep

with picamera.PiCamera() as camera:
camera.resolution = (320, 240)

while True:
with picamera.array.PiRGBArray(camera) as output:

camera.capture(output, 'rgb')
output = output.array

You can now treat output as a normal numpy array
Do your magic here

sleep(1)

Instead use this function template if you are using a Duckiebot MOOC Founder’s
Edition:

60 CREATING DOCKER CONTAINERS

#!/usr/bin/env python3
import cv2
import numpy as np
from time import sleep

def gst_pipeline_string():
Parameters from the camera_node
Refer here : https://github.com/duckietown/dt-duckiebot-inter-

face/blob/daffy/packages/camera_driver/config/jetson_nano_camera_node/
duckiebot.yaml

res_w, res_h, fps = 640, 480, 30
fov = 'full'
find best mode
camera_mode = 3 #
compile gst pipeline
gst_pipeline = """ \

nvarguscamerasrc \
sensor-mode= exposuretimerange="100000 80000000" ! \
video/x-raw(memory:NVMM), width=, height=, format=NV12,

framerate=/1 ! \
nvjpegenc ! \
appsink \

""".format(
camera_mode,
res_w,
res_h,
fps

)

print("Using GST pipeline: ``".format(gst_pipeline))
return gst_pipeline

cap = cv2.VideoCapture()
cap.open(gst_pipeline_string(), cv2.CAP_GSTREAMER)

while(True):
Capture frame-by-frame
ret, frame = cap.read()
Put here your code!
You can now treat output as a normal numpy array
Do your magic here

CREATING DOCKER CONTAINERS 61

✎

Once you have your color_detector.py file ready to be tested, you can build it di-
rectly on your bot by running:

$ docker -H DUCKIEBOT_NAME .local build -t colordetector .

Do you remember what -H does? It takes the context (the folder in which you are)
and ships it to the device specified by -H and build the container there. Once the
container is built (typically it takes more time the first time), you can test it with:

$ docker -H DUCKIEBOT_NAME .local run -it --privileged colordetec-
tor

If you want to run the image on a DB21M instead, you must mount the ar-
gus_socket volume to allow using the GStreamer pipeline from the Docker con-
tainer.

$ docker -H DUCKIEBOT_NAME .local run -it --privileged -v /tmp/ar-
gus_socket:/tmp/argus_socket colordetector

Again there is the -H option (why?) and we also have the --privileged option. Do
you remember what it does? Try to remove it and see what happens.
We omitted to mention what to do about a lot of implementation details which
can significantly affect the performance of your color detector. For example, what
should the value of N_SPLITS be? Should we consider the whole width of the image
or just a central part? How many colors should we detect, which ones and what is
the best way to do it? Should you use RGB or HSV color space? All this is left for
you to decide. This is typically the case in robotics: you know what the final result
should be, but there are multiple ways to get there and it is up to you to decide
which is the best solution for the particular case. Experiment and find what makes
your color detector really good. We recommend investing some time in this, as this
color detector will be a building block in the next module.

5.5.5.5. Pushing tPushing to Docko DockerHuberHub
Say that you want to share your awesome color detector with your friend. How can
you do that? You can of course repeat the same procedure as above, just replacing your
Duckiebot’s name with theirs. But that is cumbersome and requires them to have the

62 CREATING DOCKER CONTAINERS

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/05_creating_docker_containers.md

code. DockerHub makes all this much easier. It allows you to push your image to their
repository and then anyone can directly use it. That is where all the base images you
saw so far come from.
To do this, first make sure you have a DockerHub account. Let’s say your account
name is duckquackermann . Then sharing your container with the world is as easy as
building it under your account name:

$ docker -H DUCKIEBOT_NAME .local build -t duckquackermann/col-
ordetector .

Then push it to DockerHub:

$ docker -H DUCKIEBOT_NAME .local push duckquackermann/colorde-
tector

NNotote:e: You will probably have to first connect your Duckiebot’s Docker client with
your DockerHub account. So first open an SSH connection to the robot and then
run docker login in it. You will be prompted to provide your DockerHub username
and password. If you want to be able to push images directly from your laptop, you
should do the same there.

After you’ve pushed your image to DockerHub your code can be executed on any sin-
gle Duckiebot around the world with a single command:

$ docker -H DUCKIEBOT_NAME .local run -it --privileged duckquacker-
mann/colordetector

CREATING DOCKER CONTAINERS 63

✎

✎

UUNITNIT BB-6-6

My First DuckietMy First Duckietown Python Librown Python Libraryary

6.1.6.1. Get the DuckietGet the Duckietown librown library tary templatemplatee
A boilerplate is provided by the library template repository.
The repository contains a lot of files, but do not worry, we will analyze them one by
one. Click on the green button that says “Use this template”.

Figure 6.1

This will take you to a page that looks like the following:

64

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/06_python_library.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/06_python_library.md
https://github.com/duckietown/template-library

Figure 6.2

Pick a name for your repository (say my-library) and press the button Create reposi-
tory from template. Note, you can replace my-library with the name of the repository
that you prefer.
This will create a new repository and copy everything from the repository template-
library to your new repository. You can now open a terminal and clone your newly
created repository.

$ git clone https://github.com/ YOUR_NAME /my-library
$ cd my-library

MY FIRST DUCKIETOWN PYTHON LIBRARY 65

✎

✎

✎

✎

✎

NNotote:e: Replace YOUR_NAME in the link above with your GitHub username.

6.2.6.2. FFeatureatures of the libres of the library tary templatemplatee
We have the following features:
• Unit-tests using Nose.
• Building/testing in Docker environment locally.
• Integration with CircleCI for automated testing.
• Integration with CodeCov for displaying coverage result.
• Integration with Sphinx to build code docs. (So far, only built locally.)
• Jupyter notebooks, which are run also in CircleCI as tests.
• Version bump using Bumpversion.
• Code formatting using Black.
• Command-line program for using the library.

6.3.6.3. AnatAnatomomy of the libry of the library tary templatemplatee
This repository describes a library called “ duckietown_pondcleaner ” and there is one
command-line tool called dt-pc-demo.

1)1) Meta-fMeta-filesiles

• .gitignore : Files ignore by Git.
• .dtproject : Enables the project to be built and used by dts devel tools
• .bumpversion.cfg : Configuration for bumpversion
• Makefile : Build tools configuration with Make

2)2) Python packagingPython packaging

• requirements.txt : Contains the pinned versions of your requirement that are
used to run tests.
• MANIFEST.in : Deselects the tests to be included in the egg.
• setup.py : Contains meta information, definition of the scripts, and the dependen-
cies information.

3)3) Python codePython code

66 MY FIRST DUCKIETOWN PYTHON LIBRARY

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/06_python_library.md
https://nose.readthedocs.io/en/latest/
https://circleci.com/gh/duckietown
https://codecov.io/gh/duckietown
https://www.sphinx-doc.org/en/master/
https://jupyter.org/
https://github.com/peritus/bumpversion
https://github.com/psf/black
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/06_python_library.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/06_python_library.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/06_python_library.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/06_python_library.md

✎

✎

✎

✎

✎

• src/ - This is the path that you should set as “sources root” in your tool
• src/duckietown_pondcleaner : Contains the code.
• src/duckietown_pondcleaner/__init__.py : Contains the __version__ library.
• src/duckietown_pondcleaner_tests : Contains the tests - not included in the egg.

4)4) DockDocker ter testingesting

These are files to build and run a testing container.
• .dockerignore : Describes what files go in the docker container.
• Dockerfile : …

5)5) SphinxSphinx

• src/conf.py : Sphinx settings
• src/index.rst : Sphinx main file
• src/duckietown_pondcleaner/index.rst : Documentation for the package

6)6) CovCovereragagee

• .coveragerc : Options for code coverage.

7)7) NNototebooksebooks

• notebooks : Notebooks that are run also as a test.
• notebooks-extra : Other notebooks (not run as test)
• notebooks/*.ipynb : The notebooks themselves.

6.4.6.4. CrCreating yeating your Librour Libraryary
Using the repo you have already created:
• Clone the newly created repository;
• Place your Python packages inside src/ ;
• List the python dependencies in the file dependencies.txt ;
• Update the appropriate section in the file setup.py ;
Make sure that there are no other remains:

$ grep -r . pondcleaner

MY FIRST DUCKIETOWN PYTHON LIBRARY 67

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/06_python_library.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/06_python_library.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/06_python_library.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/06_python_library.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/06_python_library.md

✎

✎

✎

✎

Update the branch names in README.md .

1)1) Other set up (for admins)Other set up (for admins)

The following are necessary steps for admins to do:
1. Activate on CircleCI. Make one build successful.
2. Activate on CodeCov. Get the CODECOV_TOKEN . Put this token in CircleCI environ-
ment.

6.5.6.5. How tHow to use the utilities in the libro use the utilities in the library tary templatemplatee

1)1) TTest the codeest the code

Test the code using Docker by:

$ make test-docker

This runs the test using a Docker container built from scratch with the pinned depen-
dencies in requirements.txt . This is equivalent to what is run on CircleCI.
To run the tests natively on your pc, use:

$ make test

NNotote:e: To do so you will need to have installed the libraries listed in the file require-
ments.txt on your computer.

For that we assume you have already setup a Python virtual environment.

NNotote:e: To do so you will need to pip install virtualenv then virtualenv ducki-
etown then source duckietown/bin/activate . In order to install the requirements
to run the test do pip install -r requirements.txt .

2)2) DevDevelopmentelopment

In the same virtual environment as above run:

$ python setup.py develop

68 MY FIRST DUCKIETOWN PYTHON LIBRARY

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/06_python_library.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/06_python_library.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/06_python_library.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/06_python_library.md

✎

✎

✎

✎

✎

This will install the library in an editable way (rather than copying the sources some-
where else).
If you don’t want to install the deps, do:

$ python setup.py develop --no-deps

For example, this is done in the Dockerfile so that we know we are only using the de-
pendencies in requirements.txt with the exact pinned version.

3)3) AAdding tdding testsests

To add another tests, add files with the name test_*py in the package ducki-
etown_podcleaner_tests . The name is important.
Tip: make sure that the tests are actually run looking at the coverage results.

4)4) NNototes on using the notes on using the notebooksebooks

Always clean the notebooks before committing them:

$ make -C notebooks cleanup

If you don’t think you can be diligent, then add the notebooks using Git LFS.

5)5) RReleasing a new veleasing a new versionersion

Updating the version:
The first step is to change the version and tag the repo. DO NODO NOTT change the version
manually; use the CLI tool bumpversion instead.
The tool can be called by:

$ make bump # bump the version, tag the tree

If you need to include the version in a new file, list it inside the file .bumpversion.cfg
using the syntax [bumpversion:file: <FILE_PATH >] .
Releasing the package:
The next step is to upload the package to PyPy. We use twine. Invoke using:

MY FIRST DUCKIETOWN PYTHON LIBRARY 69

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/06_python_library.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/06_python_library.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/06_python_library.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/06_python_library.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/02_basic_development/06_python_library.md
https://pypi.org/project/twine/

$ make upload # upload to PyPI

For this step, uou need to have admin permissions on PyPy.

70 MY FIRST DUCKIETOWN PYTHON LIBRARY

✎

PPARARTT CC

[RH3] A[RH3] Advdvanced Softwanced Softwarare Deve Developmentelopment

In this section, you will learn how to use the Robot Operating System (ROS) to enable
different processes running on your Duckiebot to communicate with each other. You
will also learn how to monitor/visualize these communications, change the behaviour
of your robot on-the-fly, and work with ROS logs.

ContContentsents
UnitUnit C-1C-1 - IntrIntroduction toduction to Ro ROSOS .. 7272
UnitUnit C-2C-2 - DevDevelopment in the Duckietelopment in the Duckietown infrown infrastructurastructuree .. 7979
UnitUnit C-3C-3 - WWorking with logsorking with logs.. 100100
UnitUnit C-4C-4 - RRobot behaobot behaviour with Rviour with ROSOS .. 106106

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/00_index.md

✎

UUNITNIT C-1C-1

IntrIntroduction toduction to Ro ROSOS

The official wiki describes ROS as:

... an open-source, meta-operating system for your robot. It provides
the services you would expect from an operating system, including hard-
ware abstraction, low-level device control, implementation of commonly-
used functionality, message-passing between processes, and package man-
agement. It also provides tools and libraries for obtaining, building,
writing, and running code across multiple computers.

You probably have some idea about what the above words mean. However, if this is
your first encounter with ROS, you are already overestimating how complicated it is.
Worry do not.
Putting it in very simple terms, as a roboticist, ROS is what will prevent you from rein-
venting the wheel at every step of building a robot. It is a framework which helps you
manage the code you write, while providing you with a plethora of tools which will
speed up the process.

Knowledge and activity graph

RRequirequires:es: Laptop setup (unknown r(unknown ref opmanual_duckiebot/laptef opmanual_duckiebot/laptopop-setup)-setup)

previous wwarningarning next (34 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/laptop-setup'.

Location not known more precisely.
Created by function n/a in module n/a.

RRequirequires:es: Duckiebot initialization (unknown r(unknown ref opmanual_duckiebot/setupef opmanual_duckiebot/setup-duckiebot)-duckiebot)

previous wwarningarning next (35 of 45) index

72

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/01_ros_devel/00_intro_ros.md
http://wiki.ros.org/ROS/Introduction
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html

✎

warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/setup-duckiebot'.

Location not known more precisely.
Created by function n/a in module n/a.

RRequirequires:es: Docker poweruser skills
RResults:esults: Basic understanding of ROS

ContContentsents
Section 1.1 - Why ROS? .. 7373
Section 1.2 - Basics of ROS.. 7575
Section 1.3 - Installation (Optional).. 7878
Section 1.4 - ROS Tutorials .. 7878

1.1.1.1. WhWhy Ry ROS?OS?
Your Duckiebot is a very simple robot which has very few sensors. In case of DB-18
only one sensor: the camera. However if you are working with newer configuration
such as DB-19 or DB-Beta you will have the camera plus the wheel encoders. Every
robot also has two actuators: the motors. You can probably write all the code for the
basic funtionality of a Duckiebot yourself. You start by getting images from the cam-
era, processing them to detect lanes, generating suitable motor commands, and finally
executing them. You create a single program for all of this which looks like this:

img = get_image_from_camera()
pose = get_pose_from_image(img)
cmd = get_command_from_pose(pose)
run_motors(cmd)

The next day, your Duckiebot crashes into a duckie which was crossing the road, so
you want to add duckie detection into your program to prevent such accidents. You

INTRODUCTION TO ROS 73

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/01_ros_devel/00_intro_ros.md

modify your program and it now looks like this:

img = get_image_from_camera()
pose = get_pose_from_image(img)
cmd = get_command_from_pose(pose)

if duckie_detected(img):
cmd = EMERGENCY_STOP

run_motors(cmd)

You realize, however, that your Duckiebot is not at level 5 autonomy yet and you want
to add manual control for difficult to navigate regions in the city. Your code now looks
like this:

img = get_image_from_camera()
pose = get_pose_from_image(img)
cmd = get_command_from_pose(pose)

if mode == AUTONOMOUS:
if duckie_detected(img):

cmd = EMERGENCY_STOP
else:

cmd = get_command_from_joystick()

run_motors(cmd)

It is easy to see that when you start thinking about having even more advanced modes
of operation such as intersection navigation, Duckiebot detection, traffic sign detec-
tion, and auto-charging, your program will end up being a massive stack of if-else
statements. What if you could split your program into different independent build-
ing blocks, one which only gets images from cameras, one which only detects duckie
pedestrians, one which controlls the motors and so on. Would that help you with or-
ganizing your code in a better way? How would those blocks communicate with each
other? Moreover, how do you switch from autonomous mode to manual mode while
your Duckiebot is still running? And what will happen once you try to do this for ad-
vanced robots with a lot of sensors and a large number of possible behaviors?

74 INTRODUCTION TO ROS

✎1.2.1.2. Basics of RBasics of ROSOS
Look at the following system

Figure 1.1

It performs exactly the same task as before. Unlike before, each of the building blocks
is independent from the rest of the blocks, which means that you can swap out certain
parts of the code with those written by others. You can write the lane pose extraction
algorithm, while your friend works on converting that pose to a motor command. Dur-
ing runtime, the lane pose extractor and duckie detection algorithm run in parallel,
just helping you utilize your resources better. The only missing piece to get a work-
ing system is making these blocks communicate with each other. This is where ROS
comes in.
In ROS terminology, each box is a node, and each solid arrow connection is a topic.
It is intuitive that each topic carries a different type of a message. The img topic has
images which are matrices of numbers, whereas the pose topic may have rotation and
translation components. ROS provides a lot of standard message types ranging from
Int , Bool , String to images, poses, IMU measurements. You can also define your
own custom messages combining different message types in one.
The nodes which send out data on a topic are called publishers of that topic and the
ones which receive the data and use it are called subscribers of that topic. As you can
seem from the diagram above, a node can be a publisher for one topic and subscriber
for another at the same time.
You may have noticed a dashed arrow from the joystick node to the mode_handler .
This represents that you can switch from manual to autonomous mode and vice versa
using a button on your (virtual) joystick. Unlike sending images, which is a continu-
ous flow of information, you will not keep switching modes all the time. ROS has a
framework designed specifically for such case. This is called a service. Just like with

INTRODUCTION TO ROS 75

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/01_ros_devel/00_intro_ros.md

messages, you can also define your own services. Here, the mode_handler node offers
a service and the joystick node is the client of that service.
What manages the connections between nodes is the rosmaster . The rosmaster is
responsible for helping individual nodes find one another and setting up connections
between them. This can also be done over a network. Remember that you are able to
see what your Duckiebot sees (unknown r(unknown ref opmanual_duckiebot/ref opmanual_duckiebot/read-cameread-camera-data)a-data)

previous wwarningarning next (36 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/read-camera-data'.

Location not known more precisely.
Created by function n/a in module n/a.

? That was because your laptop connected to the rosmaster of your Duckiebot. So,
without knowing, you are already doing distributed robotics! It is important to keep in
mind though that a single node can be managed by only one rosmaster at a time.
Another key building block of ROS are the parameters for each node. Recall when you
calibrated your Duckiebot’s wheels (unknown r(unknown ref opmanual_duckiebot/wheel-calibref opmanual_duckiebot/wheel-calibration)ation)

previous wwarningarning next (37 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/wheel-calibration'.

Location not known more precisely.
Created by function n/a in module n/a.

or camera (unknown r(unknown ref opmanual_duckiebot/cameref opmanual_duckiebot/camera-calib)a-calib)

previous wwarningarning next (38 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/camera-calib'.

76 INTRODUCTION TO ROS

/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html

Location not known more precisely.
Created by function n/a in module n/a.

. These calibration parameters need to be stored somewhere so that they are not lost
when your Duckiebot powers off. The ROS parameters are also very useful for config-
uring the nodes and therefore, the behavior of your robot. Say, that you want your lane
controller to react faster, then you simply need to change the proportional gain para-
meter. You can hard-code that, but then changing it would require you to modify the
source code. ROS offers a much nicer framework for handling hundreds of parameters
for large robotics projects called rosparam. You can also use parameters in conjunc-
tion with services to dynamically modify their behaviour.
In ROS, code is organized in the form of packages. Each package is essentially a col-
lection of nodes which perform very specific, related tasks. ROS packages also con-
tain messages, services, and default parameter configuration files used by the nodes. A
standard ROS package looks like this:

Figure 1.2

Note that the above diagram is just one of the ways to organize the flow of data. What
happens actually on your Duckiebot is a little different.

INTRODUCTION TO ROS 77

✎

✎

✎

1.3.1.3. Installation (Optional)Installation (Optional)
If you wish to install ROS on your computer, you can do so using this link. Please note
that this might not be possible depending on your OS. Regardless of that, you should
be able to use ROS through Docker, because it creates an environment which is com-
pletely independent of your OS. Quite powerful right? So much that all ROS develop-
ment in Duckietown happens through Docker. This is why ROS installation on your
pc is not mandatory. Keep in mind that currently all Duckietown ROS software works
in ROS Noetic Ninjemys and if you want to use a native installation with your Duck-
iebot, you should install this version, otherwise you will likely run into compatibility
issues. However, we strongly recommend using Docker for all ROS related software
development.

1.4.1.4. RROS TOS Tututorialsorials
Tutorials on using ROS with Duckietown are covered in the next section. These tuto-
rials are tailored to the Duckietown development process. Apart from this, we strong-
ly recommend going through the official ROS tutorials. You should even try out the
Beginner Level tutorials yourself if you have a native ROS installation. If not, read
through them at least and proceed to the next section

1)1) AAdditional Rdditional Readingeading

• ROS Graph Concepts

78 INTRODUCTION TO ROS

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/01_ros_devel/00_intro_ros.md
http://wiki.ros.org/ROS/Installation
http://wiki.ros.org/noetic
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/01_ros_devel/00_intro_ros.md
https://wiki.ros.org/ROS/Tutorials
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/01_ros_devel/00_intro_ros.md
http://wiki.ros.org/ROS/Concepts

✎

UUNITNIT C-2C-2

DevDevelopment in the Duckietelopment in the Duckietown infrown infrastructurastructuree

In this section, you will learn everything about creating a Duckietown-compliant
Docker image with ROS.

Knowledge and activity graph

RRequirequires:es: Laptop setup (unknown r(unknown ref opmanual_duckiebot/laptef opmanual_duckiebot/laptopop-setup)-setup)

previous wwarningarning next (39 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/laptop-setup'.

Location not known more precisely.
Created by function n/a in module n/a.

RRequirequires:es: Duckiebot initialization (unknown r(unknown ref opmanual_duckiebot/setupef opmanual_duckiebot/setup-duckiebot)-duckiebot)

previous wwarningarning next (40 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/setup-duckiebot'.

Location not known more precisely.
Created by function n/a in module n/a.

RRequirequires:es: Docker poweruser skills
RRequirequires:es: Basic understanding of ROS
RResults:esults: Developer knowledge of ROS

ContContentsents
Section 2.1 - Basic Project Structure .. 8080

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/02_devel_duckietown/00_devel_dt.md
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html

✎

Section 2.2 - ROS Publisher on Laptop .. 8484
Section 2.3 - ROS Publisher on Duckiebot .. 8989
Section 2.4 - ROS Subscriber on Duckiebot .. 9090
Section 2.5 - Launch files .. 9292
Section 2.6 - Namespaces and Remapping .. 9494
Section 2.7 - Multi-agent Communication .. 9898

2.1.2.1. Basic PrBasic Project Structuroject Structuree
In Duckietown, everything runs in Docker containers. All you need in order to run a
piece of software that uses ROS in Duckietown is a Duckietown-compliant Docker im-
age with your software in it.
A boilerplate is provided here. The repository contains a lot of files, but do not worry,
we will analyze them one by one.
Click on the green button that says “Use this template”.

Figure 2.1

This will take you to a page that looks like the following:

80 DEVELOPMENT IN THE DUCKIETOWN INFRASTRUCTURE

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/02_devel_duckietown/00_devel_dt.md
https://github.com/duckietown/template-ros

Figure 2.2

Pick a name for your repository (say my-ros-program) and press the button Create
repository from template. Note, you can replace my-ros-program with the name of the
repository that you prefer, make sure you use the right name in the instructions below.
This will create a new repository and copy everything from the repository template-
ros to your new repository. You can now open a terminal and clone your newly creat-
ed repository.

$ git clone https://github.com/ YOUR_NAME /my-ros-program
$ cd my-ros-program

DEVELOPMENT IN THE DUCKIETOWN INFRASTRUCTURE 81

NONOTETE: Replace YOUR_NAME in the link above with your GitHub username.
The repository contains already everything you need to create a Duckietown-compli-
ant Docker image for your ROS program. The only thing we need to change before we
can build an image from this repository is the repository name in the file Dockerfile .
Open it using the text editor you prefer and change the first line from:

ARG REPO_NAME="<REPO_NAME_HERE>"

to

ARG REPO_NAME="my-ros-program"

Similarly update the DESCRIPTION and MAINTAINER ARGs.
Save the changes.
We can now build the image, even though there won’t be much going on inside it until
we place our code in it.
Open a terminal and move to the directory created by the git clone instruction above.
Run the following command:

$ dts devel build -f

NNotote:e: If the above command is not recognized, you will first have to install it with
dts install devel .

If you correctly installed Docker and the duckietown-shell, you should see a long log
that ends with something like the following:

82 DEVELOPMENT IN THE DUCKIETOWN INFRASTRUCTURE

Figure 2.3

You can now run your container by executing the following command.

DEVELOPMENT IN THE DUCKIETOWN INFRASTRUCTURE 83

✎

$ dts devel run

This will show the following message:

The environment variable VEHICLE_NAME is not set. Using ' LAPTOP_HOST-
NAME '.
WARNING: robot_type file does not exist. Using 'duckiebot' as default
type.
WARNING: robot_configuration file does not exist.
= Launching app...
This is an empty launch script. Update it to launch your application.
= App terminated!

CCONGRAONGRATULATULATIONS!TIONS! You just built and run your first ROS-based Duckietown-com-
pliant Docker image.

2.2.2.2. RROS Publisher on LaptOS Publisher on Laptopop
Now that we know how to build a Docker image for Duckietown, let’s put some code
in one of them. We will see how to write a simple ROS program with Python, but any
language supported by ROS should do it.
Open a terminal and go to the directory my-ros-program created above. In ROS, every
ROS node must belong to a ROS package. ROS packages are placed inside the directory
packages in my-ros-program . Let go ahead and create a directory called my_package
inside packages .

$ mkdir -p ./packages/my_package

A ROS package is simply a directory containing two special files, package.xml and
CMakeLists.txt . So, let’s turn the my_package folder into a ROS package by creating
these two files.
Create the file package.xml inside my_package using your favorite text editor and
place/adjust the following content inside it:

84 DEVELOPMENT IN THE DUCKIETOWN INFRASTRUCTURE

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/02_devel_duckietown/00_devel_dt.md

<package>
<name>my_package</name>
<version>0.1.0</version>
<description>
This package is a test for RH3.
</description>
<maintainer email="YOUR_EMAIL@EXAMPLE.COM">YOUR_FULL_NAME</maintainer>
<license>None</license>

<buildtool_depend>catkin</buildtool_depend>
</package>

Create the file CMakeLists.txt inside my_package using your favorite text editor and
place/adjust the following content inside it:

cmake_minimum_required(VERSION 2.8.3)
project(my_package)

find_package(catkin REQUIRED COMPONENTS
rospy

)

catkin_package()

Now that we have a ROS package, we can create a ROS node inside it. Create the direc-
tory src inside my_package and use your favorite text editor to create the file ./pack-
ages/my_package/src/my_publisher_node.py and place the following code inside it:

DEVELOPMENT IN THE DUCKIETOWN INFRASTRUCTURE 85

#!/usr/bin/env python3

import os
import rospy
from duckietown.dtros import DTROS, NodeType
from std_msgs.msg import String

class MyPublisherNode(DTROS):

def __init__(self, node_name):
initialize the DTROS parent class
super(MyPublisherNode, self).__init__(node_name=node_name,

node_type=NodeType.GENERIC)
construct publisher
self.pub = rospy.Publisher('chatter', String, queue_size=10)

def run(self):
publish message every 1 second
rate = rospy.Rate(1) # 1Hz
while not rospy.is_shutdown():

message = "Hello World!"
rospy.loginfo("Publishing message: '%s'" % message)
self.pub.publish(message)
rate.sleep()

if __name__ == '__main__':
create the node
node = MyPublisherNode(node_name='my_publisher_node')
run node
node.run()
keep spinning
rospy.spin()

And don’t forget to declare the file my_publisher_node.py as an executable, by run-
ning the command:

$ chmod +x ./packages/my_package/src/my_publisher_node.py

We now need to tell Docker we want this script to be the one executed when we run

86 DEVELOPMENT IN THE DUCKIETOWN INFRASTRUCTURE

the command docker run In order to do so, open the file ./launchers/de-
fault.sh and replace the line

dt-exec echo "This is an empty launch script. Update it to launch your
application."

with the following lines

roscore &
sleep 5
dt-exec rosrun my_package my_publisher_node.py

Let us now re-build the image

$ dts devel build -f

NNotote:e: It is a good idea to make sure that the base image (dt-ros-commons in this
case) is up to date. You can do so by adding the flag --pull to the command above,
i.e., dts devel build -f --pull .

and run it

$ dts devel run

This will show the following message:

DEVELOPMENT IN THE DUCKIETOWN INFRASTRUCTURE 87

The environment variable VEHICLE_NAME is not set. Using 'b17d5c5d1855'.
... logging to /root/.ros/log/45fb649e-e14e-11e9-afd2-0242ac110004/
roslaunch-b17d5c5d1855-56.log
Checking log directory for disk usage. This may take awhile.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://172.17.0.4:46725/
ros_comm version 1.15.8

SUMMARY
========

PARAMETERS
* /rosdistro: noetic
* /rosversion: 1.15.8

NODES

auto-starting new master
process[master]: started with pid [67]
ROS_MASTER_URI=http://172.17.0.4:11311/

setting /run_id to 45fb649e-e14e-11e9-afd2-0242ac110004
process[rosout-1]: started with pid [80]
started core service [/rosout]

[INFO] [1602534741.100483]: [/my_publisher_node] Initializing...
[INFO] [1602534741.137653]: [/my_publisher_node] Health status
changed [STARTING] -> [STARTED]
[INFO] [1602534741.139893]: Publishing message: 'Hello World!'
[INFO] [1602534742.141385]: Publishing message: 'Hello World!'
[INFO] [1602534743.141426]: Publishing message: 'Hello World!'
[INFO] [1602534744.141346]: Publishing message: 'Hello World!'

CCONGRAONGRATULATULATIONS!TIONS! You just built and run your own Duckietown-compliant ROS
publisher!
If you want to stop it, just use Ctrl + C .

88 DEVELOPMENT IN THE DUCKIETOWN INFRASTRUCTURE

✎2.3.2.3. RROS Publisher on DuckiebotOS Publisher on Duckiebot
Now that we know how to package a piece of software into a Docker image for Ducki-
etown, we can go one step further and write code that will run on the robot instead of
our laptop.
This part assumes that you have a Duckiebot up and running with hostname MY_RO-
BOT . Of course, you don’t need to change the hostname to MY_ROBOT , just replace
it with your robot name in the instructions below. You can make sure that your robot
is ready by executing the command

$ ping MY_ROBOT .local

If you can ping the robot, you are good to go.
Let us go back to our node file my_node.py and change the line:

message = "Hello World!"

to,

message = "Hello from %s" % os.environ['VEHICLE_NAME']

Since roscore is already running on the Duckiebot, we need to remove the following
lines from launch.sh :

roscore &
sleep 5

We can now slightly modify the instructions for building the image so that the image
gets built directly on the robot instead of your laptop or desktop machine. Run the
command:

$ dts devel build -f -H MY_ROBOT .local

As you can see, we added the argument -H MY_ROBOT .local , which tells Docker to
build the image on your MY_ROBOT instead of your laptop or desktop machine.
Once the image is built, we can run it on the robot by running the command:

DEVELOPMENT IN THE DUCKIETOWN INFRASTRUCTURE 89

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/02_devel_duckietown/00_devel_dt.md

✎

$ dts devel run -H MY_ROBOT .local

If everything worked as expected, you should see the following output,

The environment variable VEHICLE_NAME is not set. Using 'riplbot01'.
[INFO] [1569609192.728583]: [/my_node] Initializing...
[INFO] [1569609192.747558]: Publishing message: 'Hello from riplbot01'
[INFO] [1569609193.749251]: Publishing message: 'Hello from riplbot01'
[INFO] [1569609194.749195]: Publishing message: 'Hello from riplbot01'

CCONGRAONGRATULATULATIONS!TIONS! You just built and run your first Duckietown-compliant and
Duckiebot-compatible ROS publisher.

2.4.2.4. RROS Subscriber on DuckiebotOS Subscriber on Duckiebot
Now that we know how to create a simple publisher, let’s create a subscriber which
can receive these messages.
Let us go back to our src folder and create a file called my_subscriber_node.py with
the following content:

90 DEVELOPMENT IN THE DUCKIETOWN INFRASTRUCTURE

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/02_devel_duckietown/00_devel_dt.md

#!/usr/bin/env python3

import os
import rospy
from duckietown.dtros import DTROS, NodeType
from std_msgs.msg import String

class MySubscriberNode(DTROS):

def __init__(self, node_name):
initialize the DTROS parent class
super(MySubscriberNode, self).__init__(node_name=node_name,

node_type=NodeType.GENERIC)
construct publisher
self.sub = rospy.Subscriber('chatter', String, self.callback)

def callback(self, data):
rospy.loginfo("I heard %s", data.data)

if __name__ == '__main__':
create the node
node = MySubscriberNode(node_name='my_subscriber_node')
keep spinning
rospy.spin()

Once again, don’t forget to declare the file my_subscriber_node.py as an executable,
by running the command:

$ chmod +x ./packages/my_package/src/my_subscriber_node.py

Then add the following line in ./launchers/default.sh

dt-exec rosrun my_package my_subscriber_node.py

after

dt-exec rosrun my_package my_publisher_node.py

DEVELOPMENT IN THE DUCKIETOWN INFRASTRUCTURE 91

✎

Build the image on your Duckiebot again using

$ dts devel build -f -H MY_ROBOT .local

Once the image is built, we can run it on the robot by running the command

$ dts devel run -H MY_ROBOT .local

You should see the following output

[INFO] [1569750046.911664]: [/my_publisher_node] Initializing...
[INFO] [1569750046.914195]: [/my_subscriber_node] Initializing...
[INFO] [1569750046.924943]: Publishing message: 'Hello from riplbot01'
[INFO] [1569750047.926225]: Publishing message: 'Hello from riplbot01'
[INFO] [1569750047.928526]: I heard Hello from riplbot01
[INFO] [1569750048.926269]: Publishing message: 'Hello from riplbot01'

CCONGRAONGRATULATULATIONS!TIONS! You just built and run your first Duckietown-compliant and
Duckiebot-compatible ROS subscriber.
As a fun exercise, open a new terminal and run (without stopping the other process

$ dts start_gui_tools MY_ROBOT

and then inside it, run

$ rqt_graph

Have you seen a graph like this before?

2.5.2.5. Launch fLaunch filesiles
You edited the launch.sh file to remove

roscore & when it was already running. What if there was something which starts
a new rosmaster when it doesn’t exist?

92 DEVELOPMENT IN THE DUCKIETOWN INFRASTRUCTURE

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/02_devel_duckietown/00_devel_dt.md

You also added multiple rosrun commands to run the publisher and subscriber. Now
imagine writing similar shell scripts for programming multiple robot behaviors. Some
basic nodes such as a camera or a motor driver will be running in all operation scenar-
ios of your Duckiebot, but other nodes will be added/removed to run specific behav-
iors (e.g. lane following with or without obstacle avoidance). You can think of this as
an hierarchy where certain branches are activated optionally.
You can obviously write a “master” launch.sh which executes other shell scripts for
heirarchies. How do you pass parameters between these scripts? Where do you store
all of them? What if you want to use packages created by other people?
ROS again saves the day by providing us with a tool that handles all this! This tool is
called roslaunch.
In this section, you will see how to use a ROS launch file to start both the publisher
and subscriber together.
Create a folder called launch inside your package and then create a file inside the fold-
er called multiple_nodes.launch with the following content

<launch>

<node pkg="my_package" type="my_publisher_node.py" name="my_publish-
er_node" output="screen"/>

<node pkg="my_package" type="my_subscriber_node.py" name="my_sub-
scriber_node" output="screen"/>

</launch>

Then replace the following lines inside launch.sh file

rosrun my_package my_node.py &
rosrun my_package my_node_subscriber.py

with

roslaunch my_package multiple_nodes.launch

Build and run the image again like above. You should get the same result.
You can read more about how to interpret launch files here.

DEVELOPMENT IN THE DUCKIETOWN INFRASTRUCTURE 93

http://wiki.ros.org/roslaunch
http://wiki.ros.org/roslaunch/XML

✎2.6.2.6. NNamespaces and Ramespaces and Remappingemapping
If you went through the above link on launch files, you might have come across the
terms namespaces and remapping. Understanding namespaces and remapping is very
crucial to working with large ROS software stacks.
Consider you have two Duckiebots - donald and daisy . You want them to commu-
nicate with each other so you use one rosmaster for both the robots. You have two
copies of the same node running on each of them which grabs images from the cam-
era and publishes them on a topic called /image . Do you see a problem here? Would it
not be better if they were called /donald/image and /daisy/image ? Here donald and
daisy are ROS namespaces.
What if you were dealing with a robot which has two cameras? The names /daisy/
camera_left/image and /daisy/camera_right/image are definitely the way to go. You
should also be able to do this without writing a new Python file for the second camera.
Let’s see how we can do this. First of all, we need to make sure that all the topics used
by your Duckiebot are within its namespace.
Edit the ./packages/my_package/launch/multiple_nodes.launch to look like this:

<launch>

<group ns="$(arg veh)">

<node pkg="my_package" type="my_publisher_node.py" name="my_publish-
er_node" output="screen"/>

<node pkg="my_package" type="my_subscriber_node.py" name="my_sub-
scriber_node" output="screen"/>

</group>

</launch>

Then edit the roslaunch command in ./launch.sh as follows:

roslaunch my_package multiple_nodes.launch veh:=$VEHICLE_NAME

Build and run the image. Once again run rqt_graph like above. What changed?
As a next step, we need to ensure that we can launch multiple instances of the same
node with different names, and publishing topics corresponding to those names. For

94 DEVELOPMENT IN THE DUCKIETOWN INFRASTRUCTURE

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/02_devel_duckietown/00_devel_dt.md

example, running two camera nodes with names camera_left and camera_right
respectively, publishing topics /my_robot/camera_left/image and /my_robot/cam-
era_right/image .
Notice how the node tag in the launch file has a name attribute. You can have multiple
node tags with different names for the same python node file. The name provided here
will override the name you give inside the python file for the node.
Edit the ./packages/my_package/launch/multiple_nodes.launch file to have two
publishers and two subscribers as below:

<launch>

<group ns="$(arg veh)">

<node pkg="my_package" type="my_publisher_node.py" name="my_publish-
er_node_1" output="screen"/>

<node pkg="my_package" type="my_publisher_node.py" name="my_publish-
er_node_2" output="screen"/>

<node pkg="my_package" type="my_subscriber_node.py" name="my_sub-
scriber_node_1" output="screen"/>

<node pkg="my_package" type="my_subscriber_node.py" name="my_sub-
scriber_node_2" output="screen"/>

</group>

</launch>

Check rqt_graph . All communications are happening on one topic. You still cannot
differentiate between topics being published by multiple nodes. Turns out doing that
is very simple. Open the file ./packages/my_package/src/my_publisher_node.py and
edit the declaration of the publisher from

...
self.pub = rospy.Publisher('chatter', String, queue_size=10)

...

to

DEVELOPMENT IN THE DUCKIETOWN INFRASTRUCTURE 95

...
self.pub = rospy.Publisher('~chatter', String, queue_size=10)

...

All we did was add a tilde(~) sign in the beginning of the topic. Names that start with
a ~ in ROS are private names. They convert the node’s name into a namespace. Note
that since the nodes are already being launched inside the namespace of the robot,
the node’s namespace would be nested inside it. Read more about private namespaces
here
Do this for the subsciber node as well. Run the experiment and observe rqt_graph
again. This time, switch the graph type from Nodes only to Nodes/Topics (all) and
uncheck Hide: Dead sinks and Hide: Leaf topics . Play with these two “Hide” op-
tions to see what they mean.
All looks very well organized, except that no nodes are speaking to any other node.
This is where the magic of remapping begins.
Edit the ./packages/my_package/launch/multiple_nodes.launch file to contain the
following:

96 DEVELOPMENT IN THE DUCKIETOWN INFRASTRUCTURE

http://wiki.ros.org/Names

<launch>

<group ns="$(arg veh)">

<node pkg="my_package" type="my_publisher_node.py" name="my_publish-
er_node_1" output="screen"/>

<node pkg="my_package" type="my_publisher_node.py" name="my_publish-
er_node_2" output="screen"/>

<node pkg="my_package" type="my_subscriber_node.py" name="my_sub-
scriber_node_1" output="screen">

<remap from="~/chatter" to="/$(arg veh)/my_publisher_node_1/
chatter"/>

</node>

<node pkg="my_package" type="my_subscriber_node.py" name="my_sub-
scriber_node_2" output="screen">

<remap from="~/chatter" to="/$(arg veh)/my_publisher_node_2/
chatter"/>

</node>

</group>

</launch>

Check rqt_graph . Does it make sense?
Now, replace

<node pkg="my_package" type="my_subscriber_node.py" name="my_sub-
scriber_node_1" output="screen">

<remap from="~/chatter" to="/$(arg veh)/my_publisher_node_1/chat-
ter"/>
</node>

with

DEVELOPMENT IN THE DUCKIETOWN INFRASTRUCTURE 97

✎

<node pkg="my_package" type="my_subscriber_node.py" name="my_sub-
scriber_node_1" output="screen">

<remap from="~/chatter" to="my_publisher_node_1/chatter"/>
</node>

Does it still work? Why?
How about if you replace it with this:

<node pkg="my_package" type="my_subscriber_node.py" name="my_sub-
scriber_node_1" output="screen">

<remap from="~/chatter" to="/my_publisher_node_1/chatter"/>
</node>

How about this?

<remap from="my_subscriber_node_1/chatter" to="my_publisher_node_1/chat-
ter"/>
<node pkg="my_package" type="my_subscriber_node.py" name="my_sub-
scriber_node_1" output="screen"/>

Or this?

<remap from="~my_subscriber_node_1/chatter" to="~my_publisher_node_1/
chatter"/>
<node pkg="my_package" type="my_subscriber_node.py" name="my_sub-
scriber_node_1" output="screen"/>

Can you explain why some of them worked, while some did not?

2.7.2.7. Multi-agMulti-agent Communicationent Communication
In this subsection, you will learn how to communicate between your laptop and the
Duckiebot using ROS. Start by verifying that Portainer is running.
Next, ping your Duckiebot to find its IP address:

$ ping MY_ROBOT .local

98 DEVELOPMENT IN THE DUCKIETOWN INFRASTRUCTURE

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/02_devel_duckietown/00_devel_dt.md

Note down the address. Next, find the IP address of your computer. Note that you may
have multiple IP addresses depending on how many networks you are connected to. If
you have a Linux computer, you can find your IP using:

$ ifconfig

From the output, extract the IP address of the interface from which you are connected
to your Duckiebot. For example, if you and your Duckiebot are both connected
through WiFi, find your IP address from the WiFi connection.
Run the following command:

$ docker run -it --rm --net host duckietown/dt-ros-commons:daffy
/bin/bash

Right now, you are inside a ROS-enabled container which is connected to the rosmas-
ter running on your laptop. But you want to connect to the rosmaster on your duck-
iebot. To do this, inside the container, run:

$ export ROS_MASTER_URI=http:// MY_ROBOT_IP :11311/
$ export ROS_IP= MY_IP

Replace MY_ROBOT_IP and MY_IP with the IP addresses extracted above, in that
order. More information about these environment variables here.
Now, run:

$ rostopic list

You should see topics from your Duckiebot appearing here. Voilà! You have success-
fully established connection between your laptop and Duckiebot through ROS!
Are you confused about the 11311 above? You should not be. This is simply the default
port number that ROS uses for communication. You can change it for any other free
port.

DEVELOPMENT IN THE DUCKIETOWN INFRASTRUCTURE 99

http://wiki.ros.org/ROS/EnvironmentVariables

✎

UUNITNIT C-3C-3

WWorking with logsorking with logs

Robotics is innately married to hardware. However, when we develop and test our ro-
bots’ software, it is often the case that we don’t want to have to waste time to test on
hardware after every small change. With bigger and more powerful robots, it might be
the case that a software can result in a robot actuation that breaks it or even endanger
human life! But if one can evaluate how a robot or a piece of code would behave before
deploying on the actual platform then quite some headaches can be prevented. That
is why working in simulation and from logs is so important in robotics. In this section
you will learn how to work with logs in ROS.

Knowledge and activity graph

RRequirequires:es: Laptop setup (unknown r(unknown ref opmanual_duckiebot/laptef opmanual_duckiebot/laptopop-setup)-setup)

previous wwarningarning next (41 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/laptop-setup'.

Location not known more precisely.
Created by function n/a in module n/a.

RRequirequires:es: Docker poweruser skills
RRequirequires:es: Developer knowledge of ROS
RResults:esults: Reading and processing bag files

ContContentsents
Section 3.1 - Rosbag .. 101101
Section 3.2 - Rosbag: Recording .. 101101
Section 3.3 - Rosbag Python API: Reading .. 101101
Section 3.4 - Rosbag Python API: Writing .. 102102

100

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/03_logs/00_logs.md
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html

✎

✎

✎

Section 3.5 - Exercises .. 102102

3.1.3.1. RRosbagosbag
A bag is a file format in ROS for storing ROS message data. Bags, named so because of
their .bag extension, have an important role in ROS. Bags are typically created by a
tool like rosbag , which subscribes to one or more ROS topics, and stores the sequence
of messages in a file as it is received. These bag files can be played back in ROS ith the
same topics that were recorded, or even using remapping to new topics. When a bag
file is replayed the temporal order of the different messages is always kept.
Please go through this link for more information.

3.2.3.2. RRosbag: Rosbag: Recorecordingding
You can use the following command to record bag files

$ rosbag record TOPIC_1 TOPIC_2 TOPIC_3

or simply

$ rosbag record -a

to record all messages being published.

NNotote:e: Be careful on recording all the messages published in a ROS system. There
might be quite a lot of topics creating very by bag files very quickly, especially using
images.

3.3.3.3. RRosbag Python API: Rosbag Python API: Readingeading
The following code snippet is a basic usage of the rosbag API to read bag files:

WORKING WITH LOGS 101

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/03_logs/00_logs.md
http://wiki.ros.org/rosbag/Commandline
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/03_logs/00_logs.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/03_logs/00_logs.md

✎

✎

✎

import rosbag
bag = rosbag.Bag('test.bag')
for topic, msg, t in bag.read_messages(topics=['chatter', 'numbers']):

print msg
bag.close()

3.4.3.4. RRosbag Python API: Wosbag Python API: Writingriting
The following code snippet is a basic usage of the rosbag API to create bag files:

import rosbag
from std_msgs.msg import Int32, String

bag = rosbag.Bag('test.bag', 'w')

try:
s = String()
s.data = 'foo'

i = Int32()
i.data = 42

bag.write('chatter', s)
bag.write('numbers', i)

finally:
bag.close()

3.5.3.5. ExExerercisescises
All containers in the exercises below should be run on your laptop, i.e. without -H
MY_ROBOT .local .

ExExerercisecise 18.18. RRecorecord bag fd bag fileile..
Using the following concepts,
• Getting data in and out of your container
• Communication between laptop and Duckiebot
create a Docker container on your laptop with a folder mounted on the container.

102 WORKING WITH LOGS

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/03_logs/00_logs.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/03_logs/00_logs.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/03_logs/00_logs.md

✎

You can use the image duckietown/dt-ros-commons:daffy . This time, however, in-
stead of exporting the ROS_MASTER_URI and ROS_IP after entering the container, do
it directly with the docker run command specifying environment variables. You
already know how from here.
Run the lane following demo (unknown r(unknown ref opmanual_duckiebot/demoef opmanual_duckiebot/demo-lane-lane-following)-following)

previous wwarningarning next (42 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/demo-lane-following'.

Location not known more precisely.
Created by function n/a in module n/a.

. Once your Duckiebot starts moving, record the camera images and the wheel
commands from your Duckiebot using rosbag in the container you just created
(the one with the folder mounted). In order to save the bags once the container is
stopped you should record them in the mounted folder. To do that navigate to the
mounted folder using the cd command and then run

$ rosbag record / MY_ROBOT /camera_node/image/compressed
/ MY_ROBOT /wheels_driver_node/wheels_cmd

Record the bag file for 30 seconds and then stop the recording using Ctrl + C . Use
the rosbag info filename .bag command to get some information about the bag
file. If the bag does not have messages from both the topics, check if you ran the
container correctly(you can easily check that a topic is published using the ros-
topic echo functionality from within the container).
Stop the demo before proceeding.

ExExerercisecise 19.19. Analyze bag fAnalyze bag filesiles..
Download this bag file.
Start by creating a new repository from the template, like in section C-2. Inside, the
./packages folder, create a python file for this exercise. You do not need to create a
ros package for this, you can simply launch a python script as you did in RH2. This
is because reading a bag file does not actually require ROS, however, you can still
choose to do so if you want. Using the following concepts,

WORKING WITH LOGS 103

/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/03_logs/00_logs.md
https://www.dropbox.com/s/11t9p8efzjy1az9/example_rosbag_H3.bag?dl=1

✎

• Getting data in and out of your container
• Creating a basic Duckietown ROS enabled Docker image
create a Docker image which can analyze bag files and produce an output similar
to the one shown below. The min, max, average, and median values printed are sta-
tistics of the time difference between two consecutive messages. The NNN and N.NN
are just placeholders, eg. NNN could be 100 and N.NN could be 0.05.

/tesla/camera_node/camera_info:
num_messages: NNN
period:

min: N.NN
max: N.NN
average: N.NN
median: N.NN

/tesla/line_detector_node/segment_list:
num_messages: NNN
period:

min: N.NN
max: N.NN
average: N.NN
median: N.NN

/tesla/wheels_driver_node/wheels_cmd:
num_messages: NNN
period:

min: N.NN
max: N.NN
average: N.NN
median: N.NN

NNotote:e: Make sure to mount the folder containing the bag file to the Docker con-
tainer, instead of copying it.

Run the same analysis with the bag file you recorded in the previous exercise.

ExExerercisecise 20.20. PrProcessing bag focessing bag filesiles..
Use the bag file which you recorded earlier for this exercise. Using the following
concepts,

104 WORKING WITH LOGS

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/03_logs/00_logs.md

• Getting data in and out of your container
• Creating a basic Duckietown ROS enabled Docker image
• Converting between ROS Images and OpenCV Images
create a Docker image which can process a bag file. Essentially, you will extract
some data from a bag file, process it, and write the results to a new bag file. Once
again, create a new repository, and the necessary python file for this exercise inside
the ./packages folder. For the image message in the bag file, do the following:
• Extract the timestamp from the message
• Extract the image data from the message
• Draw the timestamp on top of the image
• Write the new image to the new bag file, with the same topic name, same time-
stamp, and the same message type as the original message
The new bag file should be generated in the mounted folder.
To verify your results, create a docker container exactly like you did in exercise 18.
Make sure you place your processed bag file in the folder being mounted. Run the
following command:

$ rosbag play processed_bag .bag --loop / MY_ROBOT /cam-
era_node/image/compressed:=/new_image/compressed

In a new terminal, use dts start_gui_tools to open a container connected to your
robot and run rqt_image_view inside it. Can you see /new_image/compressed ?
Stop the rosbag play using CTRL + C and now run the following command inside
the same container:

$ rosbag play processed_bag .bag --loop

Again, use start_gui_tools but this time check / MY_ROBOT /camera_node/im-
age/compressed . What’s going on? Why? What does the last part of the first com-
mand do?

WORKING WITH LOGS 105

http://wiki.ros.org/cv_bridge/Tutorials/ConvertingBetweenROSImagesAndOpenCVImagesPython
https://docs.opencv.org/2.4/modules/core/doc/drawing_functions.html#puttext
http://docs.ros.org/kinetic/api/sensor_msgs/html/msg/CompressedImage.html

✎

✎

UUNITNIT C-4C-4

RRobot behaobot behaviour with Rviour with ROSOS

In this section you will extend some concepts already touched in an earlier exercise to
work with ROS.

Knowledge and activity graph

RRequirequires:es: Laptop setup (unknown r(unknown ref opmanual_duckiebot/laptef opmanual_duckiebot/laptopop-setup)-setup)

previous wwarningarning next (43 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/laptop-setup'.

Location not known more precisely.
Created by function n/a in module n/a.

RRequirequires:es: Duckiebot initialization (unknown r(unknown ref opmanual_duckiebot/setupef opmanual_duckiebot/setup-duckiebot)-duckiebot)

previous wwarningarning next (44 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#op-
manual_duckiebot/setup-duckiebot'.

Location not known more precisely.
Created by function n/a in module n/a.

RRequirequires:es: Docker poweruser skills
RRequirequires:es: Developer knowledge of ROS
RResults:esults: Basic robot behavior with ROS

4.1.4.1. RROS based color detOS based color detectectoror

106

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/04_robot_behaviour/00_robot_behaviour.md
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/04_robot_behaviour/00_robot_behaviour.md

✎ExExerercisecise 21.21. ConConvverting the color deterting the color detectector tor to Ro ROS nodesOS nodes..
Using the following concepts:
• Creating a basic Duckietown ROS Publisher
• Creating a basic Duckietown ROS Subscriber
• Launch Files
• Namespaces and remapping
• Multi agent communication
• Recording bag files
Do the following:
• Create two repositories from the ROS template.
• Add all your python dependencies to the different ./dependencies-py.txt files
• In the first one, add the code to extract images using your specific camera hard-
ware(PiCamera or NVIDIA Jetson Nano camera) and publish it on a topic. This
node will run on your Duckiebot and the node should run using a launch file. Re-
member to turn off all container that are instances of duckiebot-interface image
and any other container which can use the camera.
• In the second one, add code to subscribe to that topic and extract color. Using
concepts from roslaunch, use your .launch file to launch two nodes instances us-
ing the same script. This means that you are not allowed to have different Python
files for each node. The first node detects the color red and the second detects yel-
low. You should use params within your node tag to let your detector know whether
it is supposed to detect red/yellow. These nodes will run on your laptop. Once again,
pass the required environment variables to connect the container on your laptop to
the rosmaster of your Duckiebot using docker run .
• You should publish some debug images from within the color detection node.
These debug images should have rectangles drawn in the region where the colors
are detected. Note that we are not looking for perfect color detectors, as long as they
produce reasonable output. You can draw multiple rectangles in the image if the
multiple regions in the image have the requred color.
• If you are using sensor_msgs/CompressedImage , make sure that your image top-
ic names end with /compressed . For example, instead of naming the topic /my_im-
age , name it /my_image/compressed

• Record a bag file containing the original and debug images.
A sample debug image stream for the yellow color detector is shown here:

ROBOT BEHAVIOUR WITH ROS 107

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/03_ros_development/04_robot_behaviour/00_robot_behaviour.md
http://wiki.ros.org/roslaunch/XML/param

Figure 4.1. Sample Yellow Color Detector

108 ROBOT BEHAVIOUR WITH ROS

https://vimeo.com/364266236
https://vimeo.com/364266236

✎

PPARARTT DD

[RH4] Implementing Basic R[RH4] Implementing Basic Robot Behaobot Behaviorsviors

You are already a master of Docker and ROS and you can make small ROS programs
that run on your robot. This is pretty nice but does it mean that you need to write
everything from scratch if you want to change or improve an existing demo or func-
tionality? Not the least bit!
Adding functionality to your Duckiebot while reusing the ROS nodes that are already
implemented is incredibly easy and intuitive. That is where ROS and Docker really
come in handy. In this module, we will do exactly that. We will use the already existing
ROS nodes that control the camera, wheels, and LEDs of your robot and will imple-
ment a Braitenberg vehicle controller on top of them. But first, we will take a look at
how Duckietown’s code is organized.

ContContentsents
UnitUnit DD-1-1 - DuckietDuckietown code structurown code structuree .. 110110
UnitUnit DD-2-2 - DevDeveloping new Duckiebot functionalityeloping new Duckiebot functionality .. 117117

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/00_title.md
https://en.wikipedia.org/wiki/Braitenberg_vehicle

✎

✎

UUNITNIT DD-1-1

DuckietDuckietown code structurown code structuree

In order to develop new functionality within the Duckietown eco-system you need to
know how the existing code is structured. This module will introduce you to the top-
level structure and the references that can help you to find out more.
While on the outside Duckietown seems to be all about a simple toy car with some
duckies on top, once you dive deeper you will find out that it is much bigger on the
inside (just like a TARDIS). It’s not only about cars, but also boats and drones. And
you can run the same code on a real Duckiebot, in simulation, or in a competitive AI
Driving Olympics environment. You can also use some of the dozens of projects done
before. As we clearly cannot cover everything in a concise way, this module will in-
stead focus only on the code that runs on a Duckiebot during the standard demos, e.g.
Lane Following and Indefinite Navigation.

Knowledge and activity graph

RRequirequires:es: Docker basics
RRequirequires:es: ROS basics
RResults:esults: Knowledge of the software architecture on a Duckiebot

ContContentsents
Section 1.1 - Main images and repositories .. 110110
Section 1.2 - Various configurations of the Duckietown codebase 113113

1.1.1.1. Main imagMain images and res and repositepositoriesories
You probably noticed three container and image names popping up when you were
running the demos, calibrating your Duckiebot, or developing some of the previous
exercises: dt-duckiebot-interface , dt-car-interface , and dt-core . You probably
wonder why there are three of these and what each one of them does?
Let’s first look at the bigger picture: The container hierarchy in Duckietown.

110

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/01_duckietown_code_structure.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/01_duckietown_code_structure.md

Figure 1.1. Docker image hierarchy

As you can see in the above image, all three of the containers actually inherit the same
container. Recall that ‘inheritance’ in a Docker images means that the ‘child’ image
has a FROM statement with the ‘parent’ image in its Dockerfile. We typically say that
the ‘child’ is based on ‘the parent’.
The image on which everything is based is ubuntu . It is simply the official Ubuntu im-
age, with no added perks. Ubuntu 20.04 (Focal) is used for the daffy version of the
Duckietown stack. Of course, as you can imagine, it is missing many key features that
we would need. Also, it needs to be properly configured in order to work correctly with
our software.
The duckietown/dt-base-environment adds many of the core libraries and configura-
tions that we need. It installs development tools such as vim , git , nano and libraries
for handling i2c devices, processing images, and efficiently doing linear algebra. It
adds compilers, linkers, and libraries necessary for the compiling/building of software
from source. Furthermore, we add pip and a bunch of handy python3 libraries, such
as numpy , scipy , matplotlib , and smbus (used to communicate with motors, LEDs,
etc). Finally, duckietown/dt-base-environment also provides the core ROS libraries,
including rospy : ROS’s Python bindings. The version of ROS used for the daffy ver-
sion of the Duckietown stack is ROS Noetic Ninjemys.
Then, duckietown/dt-commons builds on top of duckietown/dt-base-environment .
We provide a number of Duckietown libraries here that deal with files handling, infra-

DUCKIETOWN CODE STRUCTURE 111

http://wiki.ros.org/noetic

structure communication, and everything else that makes our development tools run
smoothly. This image configures the environment so that the hostname resolution is
correctly performed also, and ensures that the environment variables pertaining to the
type of the robot, its hardware, and its configuration are all properly set. It also makes
sure that all Python libraries are discoverable, and that ROS is setup correctly.
Building on top of it we have duckietown/dt-ros-commons , which has everything you
need in order to start developing code that directly works on your Duckiebot. How-
ever, as there are a few components that all Duckietown ROS nodes share, it is con-
venient to package them in an image. These are duckietown-utils (a library with a
number of useful functions), duckietown_msgs (a ROS package that contains all the
ROS message types used in Duckietown), and DTROS . DTROS is a ‘mother’ node for all
other nodes in Duckietown. You have already seen it while working with publishers
and subscribers in RH3, but we will look at it in more detail soon.
The duckietown/dt-ros-commons is also the place where we keep protocols that are
key for the communication between nodes found in different repositories. By placing
them here, we ensure that all repositories work with the exact same protocol, and
hence we prevent communication issues. Currently, the only protocol there is
LED_protocol , which is used by the led_emitter_node in dt-duckiebot-interface ,
which emits LED-encoded messages, and by the led_detector_node in dt-core ,
which interprets the messages encoded in the LED flashing of other robots.
Finally, duckietown/dt-ros-commons packs another handy node: the
ros_http_api_node . It exposes the ROS environment as an HTTP API. The ROS
HTTP API runs by default on any Duckietown device and allows access to ROS topics,
parameters, services, nodes, etc, over HTTP, which is an extremely portable interface.
This is the technology behind our web-based interfaces that communicate with ROS,
such as the Duckietown Dashboard.
We finally can focus on dt-duckiebot-interface , dt-car-interface , and dt-core .
The first, dt-duckiebot-interface , contains all the hardware drivers you need to op-
erate your Duckiebot. In particular these are the drivers for the camera (in the cam-
era_driver package), the ones for the motors (wheels_driver), and the LED drivers
(led_emitter). Thanks to these nodes, you don’t need to interact with low level code
to control your Duckiebot. Instead, you can simply use the convenient ROS topics and
services provided by these nodes.
The dt-car-interface image provides additional basic functionality that is not on
hardware level. It is all you need to be able to drive your Duckiebot around, in partic-
ular the parts that handle the commands sent by a (virtual) joystick (the joy_mapper
package) and the forward and inverse kinematics that convert the desired robot move-

112 DUCKIETOWN CODE STRUCTURE

✎

✎

ment to wheel commands (dagu_car package). It might not be immediately clear at
first why these are not part of dt-duckiebot-interface or dt-core . In some use cas-
es, e.g. for the demos or controlling a robot via a joystick, it is beneficial to have these
two packages. For others, e.g. when deploying a completely different pipeline, e.g. end-
to-end reinforcement learning, one would prefer to interact directly with the drivers.
We will see more examples of use cases shortly.
The dt-core image provides all the high level robot behavior that you observe when
running a demo. The image processing pipeline, decision-making modules, lane and
intersection contollers, and many others reside there.
If you are curious to see all the ROS packages available in each of these images, you
can check out the corresponding GitHub repositories:

NNotote:e: Make sure to look at the daffy branches of these repositories!
• dt-base-environment

• dt-commons

• dt-ros-commons

• dt-duckiebot-interface

• dt-car-interface

• dt-core

As you will see in the nodes, there’s a lot of inline documentation provided. You can
also access in the ‘Code documentation’ section here in a more readable form.

NNotote:e: Unfortunately, for the moment only dt-ros-commons , dt-duckiebot-inter-
face , and dt-car-interface are documented. We are working on providing similar
level of documentation for dt-core as well.

1.2.1.2. VVarious confarious configurigurations of the Duckietations of the Duckietown codebaseown codebase
As we already mentioned, the Duckietown codebase can be used in various configura-
tions: on a physical robot, in simulation, as an AI Driving Olympics submission, etc.
Depending on how you want to deploy or use your code, you will be using different
Docker images. Here we will take a look at a some of the most common use cases.

1)1) Driving with a (virtual) joystickDriving with a (virtual) joystick

If you only want to drive your Duckiebot around, you need the joy_mapper node that

DUCKIETOWN CODE STRUCTURE 113

https://github.com/duckietown/dt-base-environment/tree/daffy
https://github.com/duckietown/dt-base-environment/tree/daffy
https://github.com/duckietown/dt-commons/tree/daffy
https://github.com/duckietown/dt-commons/tree/daffy
https://github.com/duckietown/dt-ros-commons/tree/daffy
https://github.com/duckietown/dt-ros-commons/tree/daffy
https://github.com/duckietown/dt-duckiebot-interface/tree/daffy
https://github.com/duckietown/dt-duckiebot-interface/tree/daffy
https://github.com/duckietown/dt-car-interface/tree/daffy
https://github.com/duckietown/dt-car-interface/tree/daffy
https://github.com/duckietown/dt-core/tree/daffy
https://github.com/duckietown/dt-core/tree/daffy
https://docs.duckietown.org/daffy/
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/01_duckietown_code_structure.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/01_duckietown_code_structure.md

✎

✎

translates the joystick Joy messages to car command messages, the kinematics node
that in turn converts these to wheel command messages, and the wheels_driver node
that controls the motors. So the dt-duckiebot-interface and dt-car-interface im-
ages are enough.

Figure 1.2. Driving with a (virtual) joystick

2)2) Driving thrDriving through the Dashboarough the Dashboardd

As you have already seen, the Dashboard and the Compose interface also provide
manual driving functionality. For this, one needs the same images as before, of course
together with the Dashboard image itself:

Figure 1.3. Driving through the Dashboard

3)3) RRunning a demo on a Duckiebotunning a demo on a Duckiebot

Running a demo requires to drive around together with the high-level processing and
logic that reside in the dt-core image:

Figure 1.4. Running a demo on a Duckiebot

114 DUCKIETOWN CODE STRUCTURE

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/01_duckietown_code_structure.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/01_duckietown_code_structure.md

✎

✎

✎

4)4) RRunning a demo in simulationunning a demo in simulation

A demo can also be executed in simulation. In this case, instead of using the hardware
drivers dt-duckiebot-interface provides, we substitute them with the simulator in-
terface:

Figure 1.5. Running a demo in simulation

5)5) EEvvaluating AIDO submissions in simulationaluating AIDO submissions in simulation

An AI Driving Olympics submission is essentially a container that receives image data
and outputs wheel commands. Therefore, it can replace the dt-car-interface and
dt-core images and still use the same simulator framework. This can also be done in
the cloud, and that is exactly how AIDO submissions get evaluated in simulation on
the challenges server.

Figure 1.6. Evaluating AIDO submission in simulation

6)6) EEvvaluating AIDO submissions on a Duckiebotaluating AIDO submissions on a Duckiebot

The same submission image, with not a single change, can be also tested on a real
Duckiebot! Simply substitute the simulator with the dt-duckiebot-interface . As the
containers don’t need to run on the same device, we can also use much powerful com-
puters (also state-of-the-art GPUs) when testing submissions. This is the way that AI-
DO submissions get evaluated in Autolabs. In this way, even if you don’t have a Duck-
iebot, you can develop your submission in simulation, then submit it to be evaluated
in simulations on the challenges server, and if it performs well, you can request remote

DUCKIETOWN CODE STRUCTURE 115

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/01_duckietown_code_structure.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/01_duckietown_code_structure.md
https://challenges.duckietown.org/
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/01_duckietown_code_structure.md

evaluation on a real Duckiebot in a Duckietown Autolab!

Figure 1.7. Evaluating AIDO submission on a Duckiebot

116 DUCKIETOWN CODE STRUCTURE

✎

✎

✎

UUNITNIT DD-2-2

DevDeveloping new Duckiebot functionalityeloping new Duckiebot functionality

You will now learn how to add your own code to already existing Duckietown code-
base. In particular you will learn how to interface your nodes with the provided ones
such that you don’t have to rewrite already existing modules. Then, you will be able to
master these skills by developing Braitenberg vehicle behavior on Duckiebots.

Knowledge and activity graph

RRequirequires:es: Docker basics
RRequirequires:es: ROS basics
RRequirequires:es: Knowledge of the software architecture on a Duckiebot
RResults:esults: Skills on how to develop new code as part of the Duckietown framework

ContContentsents
Section 2.1 - Exploring DTROS .. 117117
Section 2.2 - Basic Braitenberg vehicle behavior .. 118118

2.1.2.1. Exploring DExploring DTRTROSOS
The DTROS class is often referred to as the ‘mother node’ in Duckietown. It provides
some very useful functionalities that the other nodes inherit. It has modified ROS Sub-
scribers and Publishers which can be switched on and off. It also provides an interface
to the ROS parameters of the node using it which allows dynamical changes while the
node is running. For this reason we strongly suggest you to always base your nodes on
DTROS . For some guidelines on how to structure a node in the Duckietown infrastruc-
ture, take a look at the dedicated chapter in the Developer Book. Instead of explaining
all the details of DTROS , we instead invite you to investigate them yourself.

ExExerercisecise 22.22. Exploring how DExploring how DTRTROS wOS worksorks..
First, take a look at the documentation of DTROS here. Find out how its function-
alities are implemented by looking at their implementation in the dt-ros-commons
repository here. In particular, make sure you can answer the following list of ques-

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/02_braitenberg.md
https://en.wikipedia.org/wiki/Braitenberg_vehicle
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/02_braitenberg.md
https://docs.duckietown.org/daffy/opmanual_developer/out/dt_way_nodes.html#sec:dt_way_nodes
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/02_braitenberg.md
https://docs.duckietown.org/daffy/dt-ros-commons/out/packages/duckietown.html#module-duckietown.dtros
https://github.com/duckietown/dt-ros-commons/tree/daffy/packages/duckietown/include/duckietown

✎

tions. To do that, it might be helpful to see how DTROS is being used in some of the
other nodes. Take a look at camera_node, the kinematics_node, and the other nodes
in dt-duckiebot-interface and dt-car-interface .
• How do you initialize the DTROS parent class? How do you start your node?
What does rospy.spin() do? (Hint: look at the nodes in dt_duckiebot_interface)
• When should you redefine the on_shutdown method? Why do you still need
to call the on_shutdown method of DTROS ? (Hint: look at the nodes in dt_duck-
iebot_interface and at the official ROS documentation)
• What is the difference between the DTROS log method and the native ROS log-
ging? (Hint: look at the DTROS implementation in dt-ros-commons)
• How are the parameters dynamically updated? Should you ever use
rospy.get_param() in your node? If not, how should you access a ROS parameter?
How do you initialize the parameters of your node? (Hint: look at the nodes in
dt_duckiebot_interface and at the official ROS documentation)
• What does the ~switch service do? How can you use it? What is the benefit of
using it?
• What is the difference between the native ROS Subscriber and Publisher and
DTPublisher and DTSubscriber ?

2.2.2.2. Basic BrBasic Braitaitenberg venberg vehicle behaehicle behaviorvior
Through a series of exercises you will implement a very basic brightness- and color-
based controller for your Duckiebot that can result in a surprisingly advanced robot
behavior. In his book Vehicles: Experiments in Synthetic Psychology, Valentino Brait-
enberg describes some extremely basic vehicle designs that are capable of demonstrat-
ing complex behaviors. By using only a pair of ‘sensors’ that can only detect brightness,
two motors, and direct links between the sensors and the motors, these vehicles can
exhibit love, aggression, fear, foresight and many other complex traits.

118 DEVELOPING NEW DUCKIEBOT FUNCTIONALITY

https://github.com/duckietown/dt-duckiebot-interface/blob/daffy/packages/camera_driver/src/camera_node.py
https://github.com/duckietown/dt-car-interface/blob/daffy/packages/dagu_car/src/kinematics_node.py
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/02_braitenberg.md

✎

Figure 2.1. Avoiding and attracting Braitenberg behavior (illustration from [Thomas
Schoch](https://commons.wikimedia.org/wiki/File:Braitenberg_Vehicle_2ab.png))

In the image above, the light intensity detected by a sensor is used proportionally to
control a motor. Depending on whether each sensor is connected to the motor on the
same or the opposite side, respectively avoiding or attracting behavior can be observed.
These behaviors can further be combined if the robot also detects the color of the light.
Here’s an example video of how this Braitenberg behavior would look like on Duck-
iebots. When the light a Duckiebot sees is green, it has attracting behavior. Otherwise,
it will be avoiding. By the end of this series of exercises you will be able to create sim-
ilar Duckiebot controllers. Note that while this is recorded in a dark room, with a few
smart tricks you can also make your robots work in well-lit spaces.

Figure 2.2

ExExerercisecise 23.23. AAvvoiding Broiding Braitaitenberg venberg vechiclesechicles..
Using everything you have learnt so far, create a ROS node that implements the
avoiding Braitenberg behavior. You should run this ROS node in a container run-

DEVELOPING NEW DUCKIEBOT FUNCTIONALITY 119

https://vimeo.com/365020910
https://vimeo.com/365020910
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/02_braitenberg.md

ning on your Duckiebot. Here are some details and suggestions you might want to
take into account:
• Use the dt-duckiebot-interface and all the drivers it provides. In particular,
you will need to subscribe to the images that the camera_node publishes and to pub-
lish wheel commands to wheel_driver_node . To do that simply make sure that the
dt-duckiebot-interface container is running. Then, whenever you start the con-
tainer with your code and --net host (why?), they will share their ROS Master, so
that your subscribers and publishers can find each other.
• Use the nodes in dt-duckiebot-interface as a reference for code and docu-
mentation style. You will find a number of useful code snippets there. Also, it may
be useful to visit the development book’s chapter about structuring ROS nodes.
• Use the ROS template and create your package and node there. Don’t forget to
add the package.xml and CMakeLists.txt files, and to make your Python code ex-
ecutable, as explained before.
• Your controller needs to run in real time with a frequency of at least 10-12 Hz.
Therefore, processing the input image at its full resolution might not be possible
and you should consider reducing it. A neat way to do this is to change the con-
figuration parameters of the camera_node running in dt-duckiebot-interface . In
the template node code below that is already done for the exposure mode. Consult
the ROS API docs and the code for the CameraNode class if you are not sure about
which parameters you can change.
• For now ignore the color that your bot observes, focus only on the brightness of
the image on its left and right side. If you still want to change the color of the LEDs,
use the set_pattern service provided by the led_emitter_node . Its use is also doc-
umented on the ROS API docs. You do not need to call this service from inside your
Python file. You would need to create a Docker container on your Duckiebot us-
ing duckietown/dt-duckiebot-interface:daffy as the image (why?) to run the re-
quired command. What other arguments should you use while creating this con-
tainer?
• If your Duckiebot keeps on moving even after you stop your node, you will have
to edit the provided on_shutdown method. Make sure that the last commands your
node publishes to wheel_driver_node are zero.
• You will need to publish WheelsCmdStamped messages to wheel_driver_node .
You can see the message structure here.
• The template loads the kinematics calibration on your Duckiebot so you don’t
need to worry about trimming your Braitenberg controller. Simply use the provided

120 DEVELOPING NEW DUCKIEBOT FUNCTIONALITY

https://docs.duckietown.org/daffy/opmanual_developer/out/dt_way_nodes.html
https://github.com/duckietown/template-ros
http://rosapi.duckietown.p-petrov.com/repositories/dt-duckiebot-interface/docs/source/packages/camera_driver.html#cameranode
https://github.com/duckietown/dt-duckiebot-interface/blob/daffy/packages/camera_driver/src/camera_node.py
http://rosapi.duckietown.p-petrov.com/repositories/dt-duckiebot-interface/docs/source/packages/led_emitter.html#ledemitternode
https://github.com/duckietown/dt-ros-commons/blob/daffy/packages/duckietown_msgs/msg/WheelsCmdStamped.msg

speedToCmd method apply gain, trim, and the motor constant to your wheel com-
mands. However, in order for that to happen you need to make sure to mount the
/data folder of your Duckiebot, where all calibrations are stored, to your container.
To do that, just add -v /data:/data to your Docker run.
• Once you have finished this exercise, you should have a Duckiebot which goes
towards the left if your program senses that the right side has more brightness, and
vice versa.
TTemplatemplate:e:

DEVELOPING NEW DUCKIEBOT FUNCTIONALITY 121

#!/usr/bin/env python3

import cv2
import numpy as np
import os
import rospy
import yaml

from duckietown.dtros import DTROS, NodeType, TopicType, DTParam,
ParamType
from sensor_msgs.msg import CompressedImage
from duckietown_msgs.msg import WheelsCmdStamped

class BraitenbergNode(DTROS):
"""Braitenberg Behaviour

This node implements Braitenberg vehicle behavior on a Duckiebot.

Args:
node_name (:obj:`str`): a unique, descriptive name for the

node
that ROS will use

Configuration:
~gain (:obj:`float`): scaling factor applied to the desired

velocity, taken from the robot-specific kinematics
calibration

~trim (:obj:`float`): trimming factor that is typically used
to offset differences in the behaviour of the left and
right motors, it is recommended to use a value that re-

sults
in the robot moving in a straight line when forward com-

mand
is given, taken from the robot-specific kinematics cali-

bration
~baseline (:obj:`float`): the distance between the two wheels

of the robot, taken from the robot-specific kinematics
calibration

~radius (:obj:`float`): radius of the wheel, taken from the
robot-specific kinematics calibration

~k (:obj:`float`): motor constant, assumed equal for both
motors, taken from the robot-specific kinematics calibra-

tion

122 DEVELOPING NEW DUCKIEBOT FUNCTIONALITY

✎

✎

ExExerercisecise 24.24. AAtttrtracting Bracting Braitaitenberg venberg vechiclesechicles..
You should be able to change the avoiding behavior of your robot into an attracting
one by editing just a few lines of code. Give it a try! Once you have finished this ex-
ercise, you should have a Duckiebot which goes towards the right if your program
senses that the right side has more brightness, and vice versa.

ExExerercisecise 25.25. Combined behaCombined behavior Brvior Braitaitenberg venberg vechiclesechicles..
Add a color detector to your Braitenberg controller node. If your Duckiebot sees
green light (perhaps of a different Duckiebot) it should be attracted to it, otherwise
it should be repelled by it.
If you have more than one robot, try to run your controller on a few of them. Set
some to have green LEDs, and some red. Do you see complex behavior emerging?
Changing the color of the LEDs can be done with the set_pattern service provid-
ed by the led_emitter_node in dt-duckiebot-interface . It is documented on the
ROS API docs.
Can you devise even more complex behavior and interactions?

DEVELOPING NEW DUCKIEBOT FUNCTIONALITY 123

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/02_braitenberg.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/04_basic_robot_behaviors/02_braitenberg.md
http://rosapi.duckietown.p-petrov.com/repositories/dt-duckiebot-interface/docs/source/packages/led_emitter.html#ledemitternode

✎

PPARARTT EE

[RH5] Simulating and Modeling the Duckiebot[RH5] Simulating and Modeling the Duckiebot

At this point you are familiar with implementing basic functionality for autonomous
driving and know how to deploy this functionality to the Duckiebot. While this is a
great foundation for implementing more complex behavior, it will not suffice for dri-
ving autonomously (and safely!) around Duckietown.
To be able to accomplish this, we will need more fine-tuned and robust control than
what was implemented in the Braitenberg vehicle controller. As we will see, this will
require us to be able to represent the state of the robot in some way, to model the dy-
namics of this state and to identify the parameters of this model. We will also need
a way of testing complex behavior in a safe manner without having to risk the life of
Duckies or without needing a physical Duckietown or Duckiebot. This is where a sim-
ulator will really come in handy.
In addition, understanding the intrinsic model representation of the differential drive
robot will lead to better use of the Duckiebot. We will work on how to use the motor
encoder data to derive a calibration procedure for the odometry.

ContContentsents
UnitUnit E-1E-1 - Simulation in DuckietSimulation in Duckietownown.. 125125
UnitUnit E-2E-2 - Modeling the DuckiebotModeling the Duckiebot.. 130130
UnitUnit E-3E-3 - Odometry with Wheel EncodersOdometry with Wheel Encoders .. 132132

124

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/05_simulating_modeling_controlling/00_title.md
https://en.wikipedia.org/wiki/Braitenberg_vehicle

✎

✎

UUNITNIT E-1E-1

Simulation in DuckietSimulation in Duckietownown

Knowledge and activity graph

RRequirequires:es: Implementing Basic Robot Behaviors
RResults:esults: Experience with running and testing on the Duckietown simulator

ContContentsents
Section 1.1 - Why simulation? .. 125125
Section 1.2 - The Duckietown Simulator.. 126126

1.1.1.1. WhWhy simulation?y simulation?
Daphne is an avid Duckietowner who loves Duckies. In her mission to “save the Duck-
ies” from bugs in her code she used to spend a large portion of her time writing unit
tests for her algorithms and ROS nodes. Some of these tests would check that the accu-
racy of her object detection pipeline was above a certain threshold, that the estimated
offset of the Duckiebot from the lane given several input images was correct or that
the output of the controller given several offsets gave sensible results. She noticed that
this way of testing would fall short in several aspects:
• The number of hand-crafted edge cases was not representative of the number of sit-
uations the Duckiebot would encounter in a single drive
• Issues at the interface of these algorithms would not be caught
• To increase code coverage and maintain it, a lot of time would need to go into writ-
ing tests, mock ups, gathering and labelling test data, etc
• Quantifying controller performance was hard without having access to a model of
the vehicle used to propagate the state forward in time
Daphne also found that having to charge her robot’s battery, setting up her Ducki-
etown loop, placing her Duckiebot on the loop, connecting to it, and running the part
of the pipeline that had to be tested everytime she or someone in her team wanted to
merge new changes into the codebase was extremely time consuming.
More over, Daphne and her real Duckiebot only have access to a small Duckietown
loop. But she wants to ensure that her algorithms work in the most complicated and

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/05_simulating_modeling_controlling/01_simulation_duckietown.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/05_simulating_modeling_controlling/01_simulation_duckietown.md

✎

✎

busy environments of Duckietown.
All of the above were compelling reasons for Daphne to start looking at full-stack sim-
ulators that would allow her to simultaneously address the shortcomings of unit test-
ing, the inconvenience of manual testing and the ability to test scenarios that are not
possible or too risky in real life.
Luckily, she found just the right thing at the Duckietown gym.
Daphne’s story is the story of every autonomous driving company, whose mission
is instead to “save the humans” and which cannot afford to make mistakes on the
real roads, and which require automated integration testing tools that can be run
faster-than-real-time under challenging conditions. As an example, Waymo has driven
around 20 million miles on real roads, but around 15 billion miles in simulation!

1.2.1.2. The DuckietThe Duckietown Simulatown Simulatoror
In this part of the exercise, you will become familiar with the Duckietown simulator
by reading the setup instructions here: (unknown r(unknown ref AIDO/dtef AIDO/dt-simulat-simulator)or)

previous wwarningarning (45 of 45) index
warning

I will ignore this because it is an external link.

> I do not know what is indicated by the link '#AIDO/
dt-simulator'.

Location not known more precisely.
Created by function n/a in module n/a.

and driving a robot around a virtual city. Of course, you are welcome to try the other
many features of this simulator.
To demystify the simulator, here are a few tips to get started.

1)1) Minimal demoMinimal demo

To run a minimal demo of the simulator, you simply need a (virtual) environment with
the gym_duckietown pip3 package installed.
To setup such an environment, the safest way is to run the following (you could also
skip the virtual environment but you may have clashing packages installed):

126 SIMULATION IN DUCKIETOWN

https://github.com/duckietown/gym-duckietown
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/05_simulating_modeling_controlling/01_simulation_duckietown.md
/tmp/mcdp_tmp_dir-root/prince_renderjet34gc3/warnings.html
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/05_simulating_modeling_controlling/01_simulation_duckietown.md

✎

$ cd ~ && virtualenv dt-sim

$ source dt-sim/bin/activate

$ pip3 install duckietown-gym-daffy

Now you need to create a simple python script with uses the gym-duckietown api to
connect to the simulator, the API is very simple as you will see.
Create and run the following file, from within the environment you have setup above:

#!/usr/bin/env python3
import gym_duckietown
from gym_duckietown.simulator import Simulator
env = Simulator(

seed=123, # random seed
map_name="loop_empty",
max_steps=500001, # we don't want the gym to reset itself
domain_rand=0,
camera_width=640,
camera_height=480,
accept_start_angle_deg=4, # start close to straight
full_transparency=True,
distortion=True,

)
while True:

action = [0.1,0.1]
observation, reward, done, misc = env.step(action)
env.render()
if done:

env.reset()

What do you observe? Does this make sense? Why is it driving straight? Can you make
it drive backwards or turn? When is done = True ? What is observation ?

2)2) Driving arDriving around in the simulatound in the simulatoror

If you want to drive the robot around in simulation you might have read about the
utility script manual_control.py . This is located in the root of the gym_duckietown
repository and can be run after making sure that all the dependencies are met. Clone

SIMULATION IN DUCKIETOWN 127

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/05_simulating_modeling_controlling/01_simulation_duckietown.md
https://github.com/duckietown/gym-duckietown

✎

the repository and in the root of it run:

$./manual_control.py --env-name Duckietown-udem1-v0

You should be able to drive around with the arrow keys. If you are experiencing large
delays and low frame rate, please replace the lines

pyglet.clock.schedule_interval(update, 1.0 / 30)

Enter main event loop
pyglet.app.run()

by

import time

...

dt = 0.01
while True:

update(dt)
time.sleep(dt)

ExExerercisecise 26.26. CrCreating a simulateating a simulator Ror ROS WOS Wrrapperapper..
How would we be able to exploit the powerhouse of dt-core in this simulator? By
creating a ROS interface to the simulator! This will allow us to run the same code
that we run on the duckiebot on the simulator.
In this exercise, you will create a ROS wrapper that maps wheel commands to ac-
tions and observations to camera images on a ROS topic.
To do so, you will leverage the skills you have obtained in the previous exercises
where you used a ROS package template and created your own publisher and sub-
scriber. This time, we encourage you to again use the ROS package template and to
create a node which can both publish and subscribe to topics.
This link contains some important files that will be required to properly test your
ROS wrapper. The docker-compose.yaml file spins up several containers at once
through the simple command docker-compose up from the directory where the file
resides. If you take a peek at the file you will see that these containers have familiar

128 SIMULATION IN DUCKIETOWN

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/05_simulating_modeling_controlling/01_simulation_duckietown.md
https://drive.google.com/file/d/1BU17Gkl5wEjvxv0OtZ2bv5EbcyyH09ZN/view

✎

names. They are used to provide functionality to your Duckiebot, and in this sce-
nario they are still needed to allow you to run demos in the simulator, to use the
virtual joystick, etc. Inside docker-compose.yaml there are some lines which you
will have to modify. You have to make sure that the data folder that you have down-
loaded from the link above is mounted on the containers so that the simulator is
able to use your calibration and other configuration files.
Since now we are running our code on a fake robot (which is really our local ma-
chine) we need to modify a few things. In your /etc/hosts file, you will have to
add the line 127.0.0.1 fakebot.local . At the end of the Dockerfile in your ROS
project (based on the Duckietown template) add the line: ENV VEHICLE_NAME fake-
bot .
Some apt packages you will need are: freeglut3-dev , xvfb
You will also need the duckietown-gym-daffy pip3 package
Finally, to ensure your publishers and subscribers parse the same ROS messages
as the rest of the Duckietown pipeline, you might want to make use of ducki-
etown_msgs (which is just a ROS package defined in dt-ros-commons).
Since your containers don’t have a display, you will want to run these lines of bash
code inside your container before running the wrapper.

dt-exec Xvfb :1 -screen 0 1024x768x24 -ac +extension GLX +render
-noreset
export DISPLAY=:1

3)3) TTrroubleshootingoubleshooting

SSymptymptom:om: Despite following the above instructions, when I run my container I get
an error like pyglet.canvas.xlib.NoSuchDisplayException: Cannot connect to
"None"

RResolution:esolution: It could be that display :1 is in use or cannot be used by the docker con-
tainer. Try to change the display number to a higher number (e.g. :33). Check out
this post for more details.

SIMULATION IN DUCKIETOWN 129

https://github.com/duckietown/dt-ros-commons/tree/daffy/packages/duckietown_msgs
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/05_simulating_modeling_controlling/01_simulation_duckietown.md
https://stackoverflow.com/c/duckietown/questions/103

✎

✎

✎

UUNITNIT E-2E-2

Modeling the DuckiebotModeling the Duckiebot

Knowledge and activity graph

RRequirequires:es: Terminal basics
RResults:esults: A good understanding of state representations and dynamic models for
the Duckiebot

2.1.2.1. RReprepresentationsesentations
The following instructions are meant to let you test your understanding of represen-
tations from what you have learned in class through interactive Jupyter Notebook
demos:

$ dts exercises init

Warning: a repository will be cloned inside the directory you are running the above
command in.

$ cd mooc-exercises/representations

$ dts exercises notebooks

On your browser open the .ipynb file and start playing around!

2.2.2.2. Modelling of a differModelling of a differential drivential drive ve vehicleehicle
The following instructions are meant to let you test your understanding of modeling
of a differential drive vehicle from what you have learned in class through interactive
Jupyter Notebook demos:

$ cd mooc-exercises/kinematics

$ dts exercises notebooks

130

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/05_simulating_modeling_controlling/02_modeling.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/05_simulating_modeling_controlling/02_modeling.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/05_simulating_modeling_controlling/02_modeling.md

On your browser open the .ipynb file and start playing around!

MODELING THE DUCKIEBOT 131

✎

✎

✎

UUNITNIT E-3E-3

Odometry with Wheel EncodersOdometry with Wheel Encoders

Knowledge and activity graph

RRequirequires:es: Understanding the DT insfrastructure
RRequirequires:es: Working with ROS logs
RResults:esults: Being able to work with the wheel encoder data from the Duckiebots

3.1.3.1. Wheel EncodersWheel Encoders
Encoders are sensors that are able to convert analog angular position or motion of a
shaft into a digital signal. In Duckietown we use Hall Effect Encoders, which are able
to extract the incremental change in angular position of the wheels. This is very use-
ful, since it can be used to accurately map the position of the Duckiebot while it moves
in the Duckietown.

RRemark:emark: our encoders produce 135 ticks per revolution.

1)1) Encoders in DuckietEncoders in Duckietownown

The first task is to get familiar with how encoders work within the Duckietown
pipeline. For this you will need a good understanding on how to build your own ROS-
compliant Duckietown code. You will be required to create your own subscriber/pub-
lisher nodes, get the encoder information, and use it for the following tasks.
Similarly as with the Braitenberg Vehicles, we will be developing new Duckietown
functionality. For this we will need the following:
• Creating a basic Duckietown ROS Publisher
• Creating a basic Duckietown ROS Subscriber
• Launch Files
• Namespaces and remapping
The data from each wheel encoders can be used to determined the distance travelled
by each wheel:

•

132

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/05_simulating_modeling_controlling/03_encoder_01_basics.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/05_simulating_modeling_controlling/03_encoder_01_basics.md
https://en.wikipedia.org/wiki/Hall-effect_sensor
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/05_simulating_modeling_controlling/03_encoder_01_basics.md

is the distance travelled by each wheel;
•

is the number of ticks measured from each wheel;
•

is the number of ticks in one full revolution (in our case that’s 135).
Below you can see the WheelEncoderStamped.msg from the Duckietown messages
package:

Enum: encoder type
uint8 ENCODER_TYPE_ABSOLUTE = 0
uint8 ENCODER_TYPE_INCREMENTAL = 1

Header header
uint32 data
uint16 resolution
uint8 type

Now you are ready to get started with the Duckietown encoders! Here’s a useful (but
definitely incomplete!) template that will help you get going. Note, this is not the on-
ly solution. Any solution which implements the required functionality will be consid-
ered correct.
TTemplatemplate:e:

ODOMETRY WITH WHEEL ENCODERS 133

#!/usr/bin/env python3
import numpy as np
import os
import rospy
from duckietown.dtros import DTROS, NodeType, TopicType, DTParam,
ParamType
from duckietown_msgs.msg import Twist2DStamped, WheelEncoderStamped,
WheelsCmdStamped
from std_msgs.msg import Header, Float32

class OdometryNode(DTROS):

def __init__(self, node_name):
"""Wheel Encoder Node
This implements basic functionality with the wheel encoders.
"""

Initialize the DTROS parent class
super(EncoderNode, self).__init__(node_name=node_name,

node_type=NodeType.PERCEPTION)
self.veh_name = rospy.get_namespace().strip("/")

Get static parameters
self._radius = rospy.get_param(f'/{self.veh_name}/kinemat-

ics_node/radius', 100)

Subscribing to the wheel encoders
self.sub_encoder_ticks_left = rospy.Subscriber(...)
self.sub_encoder_ticks_right = rospy.Subscriber(...)
self.sub_executed_commands = rospy.Subscriber(...)

Publishers
self.pub_integrated_distance_left = rospy.Publisher(...)
self.pub_integrated_distance_right = rospy.Publisher(...)

self.log("Initialized")

def cb_encoder_data(self, wheel, msg):
""" Update encoder distance information from ticks.
"""

def cb_executed_commands(self, msg):
""" Use the executed commands to determine the direction of

travel of each wheel.

134 ODOMETRY WITH WHEEL ENCODERS

✎

✎

✎

ExExerercisecise 27.27. Get Wheel Encoder DataGet Wheel Encoder Data..
Do the following:
• Create a copy of the Duckietown ROS template.
• Create a subscriber node that is able to obtain the encoder information from
both encoders.
• Run your node and the Keyboard Control node.
• Manually drive your Duckiebot around for ~10 seconds, and record a rosbag
with the following parameters: encoder ticks (left and right), wheel commands.

NNotote:e: You could record the data from the topics directly with a rosbag (if Keyboard
Control is running), but creating the subscriber node is necessary for the next
step.

ExExerercisecise 28.28. ConConvverting Wheel Encoder Information interting Wheel Encoder Information into Distanceo Distance..
Do the following:
• Modify your previous code to also output the distance travelled by each wheel
of the Duckiebot. Tip: this can be done by integrating the distance traveled by each
wheel, but you need to take care of the direction of rotation of the wheels.
• Publish the distance travelled per wheel to a new topic.
• Manually drive your Duckiebot for ~10 seconds, and record a rosbag with the
following values: wheel commands (left, right), encoder ticks (left, right), distance
traveled per wheel (left, right).

3.2.3.2. ExtrExtracting Model Pacting Model Pararametametersers
Now that we know how to work with the information from the wheel encoders, it is
time to make something useful out of them. The task for now will be to implement
some calibration functions with the encoders.
In Duckietown, Duckiebots are modeled using a differential drive model, which de-
pends on several parameters such as the baseline (or distance between the two wheels
of the robot), and the wheel radius. To simplify our lives, we assume these are constant
values, the same across all Duckiebots. Nevertheless, in the real world this is often not
the case, as you have already seen. To overcome this modeling limitation we usual-
ly perform wheel calibration, where we manually update some parameters from our
configuration files (such as the trim value). While this helps to solve individual motor

ODOMETRY WITH WHEEL ENCODERS 135

https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/05_simulating_modeling_controlling/03_encoder_01_basics.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/05_simulating_modeling_controlling/03_encoder_01_basics.md
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/05_simulating_modeling_controlling/03_encoder_02_extracting_radius.md
https://docs.duckietown.org/DT19/learning_materials/out/duckiebot_modeling.html

✎

differences, it can still be improved by using the wheel encoders.
We can use the wheel encoders to obtain an accurate model, which extracts the pa-
rameters for your own Duckiebot! We will be updating the baseline and radius
parameters used by the kinematics_node.py. Note that all these parameters can be
modified using the rosparam set commands. However, to make the change perma-
nent by writing it to the corresponding configuration file, you would need to use the
save_calibration ros service call.

ExExerercisecise 29.29. Updating model parUpdating model parametameters - Radiusers - Radius..
Do the following:
• Create a copy of the Duckietown ROS template or use your template from the
previous exercise.
• Run Keyboard control and manually control your Duckiebot.
• Run your Duckiebot on a straight line for a fixed length (e.g. 1m, or 1 tile) and
extract the value of the wheel radius. You might get slightly different values for each
wheel, so take the average.
• Use rosparam set commands to update the radius parameter in your kinemat-
ics configuration file.
• After updating the parameters, make the change permanent by calling the
save_calibration service to save the file: rosservice call /DUCKIEBOT_NAME/
kinematics_node/save_calibration .

RRemark:emark: the wheel radius can be found directly from the following formula.

Deliverable: new radius value obtained. Can also be found in /data/config/cali-
brations/kinematics/HOSTNAME.yaml , after you called the save_calibration ser-
vice.

136 ODOMETRY WITH WHEEL ENCODERS

https://github.com/duckietown/dt-car-interface/blob/daffy/packages/dagu_car/src/kinematics_node.py
https://github.com/duckietown/course-RH/edit/daffy/book/duckietown-robotics-development/05_simulating_modeling_controlling/03_encoder_02_extracting_radius.md

	Hands-on Robotics Development using Duckietown
	[RH1] Connecting and operating a Duckiebot
	Assembly duckumentation
	Assembling the Duckiebot
	Duckiebot assembly

	Assembling your Duckietown

	Terminal basics
	Using a terminal
	Using the Duckietown Shell

	Duckiebot Setup
	Initialization
	Make your Duckiebot move
	See what your Duckiebot sees
	Calibration
	Camera calibration
	Calibration

	Wheel calibration

	Networking basics
	Why do we care about networking in the first place?
	How do computer networks work?
	Network utilities
	Ping
	NMap

	Connecting to your Duckiebot
	SSH
	SSH keys

	Docker basics
	What’s so special about containerization?
	What is it in a Docker container?
	Working with Docker images
	Working with containers

	Basic Duckiebot operation
	Remote connection with a browser and an interface
	Using the Dashboard
	Using Portainer

	Starting a demo using the DT shell
	Try out the lane-following demo

	[RH2] Basic Development
	Git and GitHub
	Learning git
	Git tutorial

	What is github
	Being a good git citizen
	Commits
	Branches, forks, pull request and peer review

	Python programs and environments
	Define a basic project structure
	Run a basic program on your Laptop
	Run a basic program on your Duckiebot
	Install dependencies using package managers (e.g., apt, pip)
	Basic NumPy program

	Become a Docker Power-User
	Getting data in and out of your container
	Docker volume mounting

	Docker and networking
	Handling devices
	Other fancy option
	Examples

	AIDO submissions
	Getting started
	Setup your account and software

	Make a simple submission
	Make a simple submission

	Customize a solution

	Creating Docker containers
	Where do Docker containers come from?
	Environment variables and Docker containers
	Environment variables in Docker

	Guide to the Dockerfile keywords
	Creating your first functional Docker image
	Creating a color detector in Docker

	Pushing to DockerHub

	My First Duckietown Python Library
	Get the Duckietown library template
	Features of the library template
	Anatomy of the library template
	Meta-files
	Python packaging
	Python code
	Docker testing
	Sphinx
	Coverage
	Notebooks

	Creating your Library
	Other set up (for admins)

	How to use the utilities in the library template
	Test the code
	Development
	Adding tests
	Notes on using the notebooks
	Releasing a new version
	Updating the version
	Releasing the package

	[RH3] Advanced Software Development
	Introduction to ROS
	Why ROS?
	Basics of ROS
	Installation (Optional)
	ROS Tutorials
	Additional Reading

	Development in the Duckietown infrastructure
	Basic Project Structure
	ROS Publisher on Laptop
	ROS Publisher on Duckiebot
	ROS Subscriber on Duckiebot
	Launch files
	Namespaces and Remapping
	Multi-agent Communication

	Working with logs
	Rosbag
	Rosbag: Recording
	Rosbag Python API: Reading
	Rosbag Python API: Writing
	Exercises
	Record bag file
	Analyze bag files
	Processing bag files

	Robot behaviour with ROS
	ROS based color detector
	Converting the color detector to ROS nodes

	[RH4] Implementing Basic Robot Behaviors
	Duckietown code structure
	Main images and repositories
	Various configurations of the Duckietown codebase
	Driving with a (virtual) joystick
	Driving through the Dashboard
	Running a demo on a Duckiebot
	Running a demo in simulation
	Evaluating AIDO submissions in simulation
	Evaluating AIDO submissions on a Duckiebot

	Developing new Duckiebot functionality
	Exploring DTROS
	Exploring how DTROS works

	Basic Braitenberg vehicle behavior
	Avoiding Braitenberg vechicles
	Attracting Braitenberg vechicles
	Combined behavior Braitenberg vechicles

	[RH5] Simulating and Modeling the Duckiebot
	Simulation in Duckietown
	Why simulation?
	The Duckietown Simulator
	Minimal demo
	Driving around in the simulator
	Creating a simulator ROS Wrapper

	Troubleshooting

	Modeling the Duckiebot
	Representations
	Modelling of a differential drive vehicle

	Odometry with Wheel Encoders
	Wheel Encoders
	Encoders in Duckietown
	Get Wheel Encoder Data
	Converting Wheel Encoder Information into Distance

	Extracting Model Parameters
	Updating model parameters - Radius

