
✎DuckietDuckietown Devown Developereloper

AAuthor:uthor: Andrea F. Daniele
Maintainer: Andrea F. Daniele

This book is about how to become a developer in Duckietown. It will guide you through
the basics and tools needed for effective software development in Duckietown.

ContContentsents
Section 0.1 - What to look for throughout the book ..22

PPartart AA -- DevDeveloper Basicseloper Basics..44
◦ UnitUnit AA-1-1 - DevDeveloper Basics: ISO/IEeloper Basics: ISO/IEC 9126C 9126 ..55
◦ UnitUnit AA-2-2 - DevDeveloper Basics: Linuxeloper Basics: Linux..77
◦ UnitUnit AA-3-3 - DevDeveloper Basics: Giteloper Basics: Git..99
◦ UnitUnit AA-4-4 - DevDeveloper Basics: Dockeloper Basics: Dockerer..1515
◦ UnitUnit AA-5-5 - DevDeveloper Basics: Duckieteloper Basics: Duckietown Shellown Shell..2424
◦ UnitUnit AA-6-6 - DevDeveloper Basics: Reloper Basics: ROSOS..2626

PPartart BB -- ModulesModules ..2727
◦ UnitUnit BB-1-1 - IntrIntroductionoduction..2828
◦ UnitUnit BB-2-2 - Module TModule Typesypes ..3232
◦ UnitUnit BB-3-3 - TEMPLATEMPLATETE..3333

PPartart CC -- The DuckietThe Duckietown Codeown Code-Fu-Fu ..3434
◦ UnitUnit C-1C-1 - Structuring a DuckietStructuring a Duckietown rown repositepositoryory..3535
◦ UnitUnit C-2C-2 - Structuring RStructuring ROS POS Packagackageses..3636
◦ UnitUnit C-3C-3 - Structuring RStructuring ROS NOS Nodesodes..3737
◦ UnitUnit C-4C-4 - Documenting yDocumenting your codeour code..4646
◦ UnitUnit C-5C-5 - Building the documentation of yBuilding the documentation of your codeour code..5454

PPartart DD -- SoftwSoftwarare Diagnosticse Diagnostics..5555
◦ UnitUnit DD-1-1 - IntrIntroductionoduction ..5656
◦ UnitUnit DD-2-2 - Get StartGet Starteded..5858
◦ UnitUnit DD-3-3 - RRefereferenceence..6161

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/00_developer_book.md

✎

PPartart EE -- PrProjectsojects ..6363

PPartart FF -- BenchmarkingBenchmarking..6464
◦ Subsection 0.2.1 - Introduction
◦ Subsection 0.2.2 - General Architecture
◦ Subsection 0.2.3 - General Information
◦ Subsection 0.2.4 - Goal
◦ Subsection 0.2.5 - Future development
◦ UnitUnit FF-1-1 - Lane FLane Following Benchmark Introllowing Benchmark Introductionoduction ..6969
◦ UnitUnit FF-2-2 - Lane FLane Following - Prollowing - Proceduroceduree ..7474
◦ UnitUnit FF-3-3 - Benchmarks for other BehaBenchmarks for other Behavioursviours ..8888

PPartart GG -- HarHardwdwarare Benchmarkinge Benchmarking ..9090
◦ UnitUnit G-1G-1 - IntrIntroductionoduction ..9191
◦ UnitUnit G-2G-2 - PrProceduroceduree..9292
◦ UnitUnit G-3G-3 - DemoDemo..100100
◦ UnitUnit G-4G-4 - SoftwSoftwarare Are Architchitecturecturee..102102
◦ UnitUnit G-5G-5 - SetSettingstings..106106
◦ UnitUnit G-6G-6 - TTrroubleshootingoubleshooting..107107
◦ UnitUnit G-7G-7 - FuturFuture impre improvovementsements..108108

PPartart HH -- Continuous IntContinuous Integregrationation..110110
◦ UnitUnit H-1H-1 - CI InfrCI Infrastructurastructuree..111111
◦ UnitUnit H-2H-2 - CI Builder NCI Builder Nodesodes ..112112

0.1.0.1. What tWhat to look for thro look for throughout the bookoughout the book
At the end of every section of this book, you will find the subsections:
• Hands onHands on;
• Ask the communityAsk the community;
They will give you some exercises/activities to assess/improve your knowledge and/or
prepare your environment for the next section and information about how and where
to ask the community for help with that specific section.
RReady?eady? Let’s start!

2

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/00_developer_book.md

3

✎

PPARARTT AA

DevDeveloper Basicseloper Basics

AAuthor:uthor: Andrea F. Daniele
Maintainer: Andrea F. Daniele

This section of the book will introduce the basics of software development in Ducki-
etown. The arguments presented in this section are very general and should be clear to
any developer (not just in Duckietown).

ContContentsents
UnitUnit AA-1-1 - DevDeveloper Basics: ISO/IEeloper Basics: ISO/IEC 9126C 9126 ..55
UnitUnit AA-2-2 - DevDeveloper Basics: Linuxeloper Basics: Linux..77
UnitUnit AA-3-3 - DevDeveloper Basics: Giteloper Basics: Git ..99
UnitUnit AA-4-4 - DevDeveloper Basics: Dockeloper Basics: Dockerer ..1515
UnitUnit AA-5-5 - DevDeveloper Basics: Duckieteloper Basics: Duckietown Shellown Shell ..2424
UnitUnit AA-6-6 - DevDeveloper Basics: Reloper Basics: ROSOS ..2626

4

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/00_devel_basics.md

✎

UUNITNIT AA-1-1

DevDeveloper Basics: ISO/IEeloper Basics: ISO/IEC 9126C 9126

AAuthor:uthor: Andrea F. Daniele
Maintainer: Andrea F. Daniele

ContContentsents
Figure 1.1 - ISO/IEC 9126 Standard (source: Wikipedia)
Section 1.1 - Hands on..66
Section 1.2 - Ask the community ..66

ISO/IEC 9126 is a international standard for product quality in Software Engineering.
It was officially replaced by the new ISO/IEC 25010 in 2011 that introduces a few minor
changes.

Figure 1.1. ISO/IEC 9126 Standard (source: Wikipedia)

Software development, as any other activities carried out by human beings is subject to
human biases. The ISO/IEC 9126 standard’s objective is that of aknowledging the most
common biases and addressing them by definining clear guidelines about what proper-
ties a ggoodood software product should have.

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/05_iso_9126.md

✎

✎

In this section, we are not going to dive into this standard, but we strongly believe that
such standard (and its successor ISO/IEC 25010) should be the best friend of any devel-
oper.
Throughout this book, we will mention some of these qualities as we motivate some of
the decisions made while creating the Duckietown Development Workflow.

1.1.1.1. Hands onHands on
We suggest the reader to get familiar with such standard by using these resources:
• Wikipedia - ISO/IEC 9126
• Official ISO/IEC 9126 (by ISO.org)
• Official ISO/IEC 25010 (by ISO.org)

1.2.1.2. Ask the communityAsk the community
If you have any questions about good practices in software development, join the Slack
channel #info-developers.

6 DEVELOPER BASICS: ISO/IEC 9126

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/05_iso_9126.md
https://en.wikipedia.org/wiki/ISO/IEC_9126
https://www.iso.org/standard/22749.html
https://www.iso.org/standard/35733.html
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/05_iso_9126.md
https://duckietown.slack.com/archives/CMQLLDAF8

✎

✎

✎

✎

✎

UUNITNIT AA-2-2

DevDeveloper Basics: Linuxeloper Basics: Linux

AAuthor:uthor: Andrea F. Daniele
Maintainer: Andrea F. Daniele

This section of the book will introduce Linux distributions and specifically the Ubuntu
distribution. We will provide guides for installing Ubuntu in dual-boot mode or inside
a virtual machine.

ContContentsents
Section 2.1 - Linux ..77
Section 2.2 - Ubuntu ..77
Section 2.3 - Installation..77
Section 2.4 - Terminal..88
Section 2.5 - Hands on..88
Section 2.6 - Ask the community ..88

2.1.2.1. LinuxLinux
Linux is a group of free and open-source software operating systems built around the
Linux kernel first released in 1991. Typically, Linux is packaged in a form known as a
Linux distribution such as Fedora or Ubuntu.
Ubuntu is the Linux distribution officially supported by the Duckietown community.

2.2.2.2. UbuntuUbuntu
As of this writing, the most recent version of Ubuntu is 20.04 LTS (Long Term Service)
which will be supported until April 2025.

2.3.2.3. InstallationInstallation
It is highly recommended to install Ubuntu directly on your laptop or as a dual boot
operating system alongside your existing OS. However we also provide some guidance
on installing Ubuntu within a Virtual Environment on your laptop.

1)1) Dual BootDual Boot

• First you need to download a .iso image file which contains the version of Ubuntu
you want. Here is 20.04 LTS make sure to download the desktop image.
• Next, you need a free USB drive with at least 2GB of space. The drive will be com-
pletely written over.
• You need some software to write the .iso to the USB. If on Windows you can use Ru-

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/07_linux.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/07_linux.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/07_linux.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/07_linux.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/07_linux.md
http://releases.ubuntu.com/20.04/
https://rufus.ie/

✎

✎

✎

✎

fus
• Create the bootable USB drive, disconnect the USB then reconnect to your comput-
er.
• Restart your computer

◦ If your computer simply boots into the existing operating system you need to
change the boot order in your BIOS.
◦ Restart your computer again and press the button during startup which lets you
into the BIOS. It may say on your computer what this button is but you may need to
Google depending on your laptop model. For example Lenovo might be F1 or F2.
◦ Look for an option to change boot order and put priority on your USB drive.

• Your computer should now boot into Ubuntu installation and you can follow the in-
structions for dual boot.

2)2) Virtual MachineVirtual Machine

• First you need to download a .iso image file which contains the version of Ubuntu
you want. Here is 20.04 LTS make sure to download the desktop image.
• Download your desired Virtual Machine platform (popular choices are Virtual Box
and VMWare).

NNotote:e: Using a Virtual Machine might require some particular settings for you net-
working settings. The virtual machine should appear as a device on your local net-
work. For example, in VirtualBox, you need to set up a Bridged Network. This might
differ in other hypervisors.

2.4.2.4. TTerminalerminal
Some pointers:
• Open a terminal with Ctrl + Alt + T
• / is the top level root directoy which contains your
• ~ refers to your home folder located in /home/ username

2.5.2.5. Hands onHands on
We suggest that you install a Linux distribution on your computer and get familiar with
it before proceeding to the next sections.

2.6.2.6. Ask the communityAsk the community
If you have any questions about good practices in installing Ubuntu on your computer
or other questions about Ubuntu, join the Slack channel #help-laptop.

8 DEVELOPER BASICS: LINUX

https://rufus.ie/
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/07_linux.md
http://releases.ubuntu.com/20.04/
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/07_linux.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/07_linux.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/07_linux.md
https://duckietown.slack.com/archives/C6YS8UPRN

✎

✎

✎

✎

UUNITNIT AA-3-3

DevDeveloper Basics: Giteloper Basics: Git

AAuthor:uthor: Andrea F. Daniele
Maintainer: Andrea F. Daniele

ContContentsents
Section 3.1 - Monolithicity VS Modularity ..99
Section 3.2 - Git ..99
Section 3.3 - Hands on..1313
Section 3.4 - Ask the community ..1414

Every time there is a large project, with many contributors and the need for code ver-
sioning and history, developers rely on VCS (Version Control Systems) tools. Ducki-
etown uses Git as VCS and GitHub.com as a service provider for it. The Duckietown
organization page on GitHub is github.com/duckietown.

3.1.3.1. Monolithicity VS ModularityMonolithicity VS Modularity
Whether a software project should be monolithic or modular is one of the most debated
decisions that a group of developers faces at the beginning of a software project. Books
have been written about it. Duckietown started as a monolithic project, and some of us
still remember the infamous Software repository, and only later transitioned to a full
modular approach.
There are two levels of modularity in Duckietown. We distinguish between ModulesModules
and NNodesodes. Modules form our first and highest level of modularity, with each module
being a collection of nodes. Nodes constitute the smallest software entities, and each
node is usually responsible for a very specific task. Nodes are not allowed to exist out-
side modules. We will revisit these concepts later in the book, but in a nutshell, mod-
ules represent high level concepts, like autonomous driving capability for a vehicle,
while nodes within a module tackle more granular tasks, like traffic signs detection.
In Duckietown, code is separated so that each module has its own repository. All of-
ficial repositories are hosted under the same GitHub organization github.com/ducki-
etown. Be brave, (as of April 2020) we have more than 220 repositories there. You can
also have your own modules hosted as repositories on your own GitHub account.

3.2.3.2. GitGit
This section goes through the most common operations you can perform on a git pro-
ject and a git project hosted on GitHub.com.

1)1) TTerminologyerminology

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/10_git.md
https://github.com/
http://github.com/duckietown
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/10_git.md
http://github.com/duckietown/Software
http://github.com/duckietown
http://github.com/duckietown
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/10_git.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/10_git.md

✎

✎

✎

✎

✎

A non-exhaustive list of terms commonly used in git follow.
RRepositepositoryory:
A repo (short for repository), or git project, encompasses the entire collection of files
and folders associated with a project, along with each file’s revision history.
BrBranchanch:
Branches constitute threads of changes within a repository. Though we call them
branches, do not try to force an analogy with tree branches, they are similar in spirit
but quite different in how they work.
A repository is not allowed to exist without a branch, and every operation inside a
repository only makes sense in the context of a branch (the active branch). Inside a
repository, you can have as many branches as you want, but you always work on one
branch at a time. Every git project has at least one main branch, usually called the mas-
ter branch.
Use the command git branch to see the list of branches present in your repository and
which branch you are currently working on.
Though, branches are used in different scenarios, they simply allow groups of develop-
pers to work on their own task without having their work affect or be affected by other
groups’ work. For example, after a project is released with version 1.0.0 , one team is
tasked to develop a new feature for the version 1.1.0 milestone while another team is
asked to fix a bug that a user reported and whose patch will be released in the version
1.0.1 .
Branch operations are performed through the command git branch .
CommitCommit:
A commit is an atomic change in a repository. A commit is a set of changes to one or
more files within your repository. Each commit is uniquely identified within a reposi-
tory by the hash (SHA-1) of the changes it contains (“plus” a header).
When you create/delete/edit one or more files in a git repository and you are confident
enough about those changes, you can commit them using the command git commit .

NNotote:e: A commit is not a snapshot (or a copy) of the entire repository at a given point
in time. Each commit contains only the incremental difference from the previous
commit, called delta in git.

A chain of commits in which all the ancestors are included makes a branch. Since every
commit is linked to its parent, a branch is simply a pointer to a commit (the full chain of
commits can always be reconstructed from the commit). In other words, you can think
of branches as human friendly labels for commits. Every time you create a new com-
mit, the pointer of the current branch advances to the newly created commit.
TTagag:
A tag is a human friendly name for a commit but unlike branches, tags are read-only.
Once created, they cannot be modified to point to a different commit.
Tags are commonly used for labeling commits that constitute milestones in the project
development timeline, for example a release.
FForkork:

10 DEVELOPER BASICS: GIT

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/10_git.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/10_git.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/10_git.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/10_git.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/10_git.md

✎

✎

✎

✎

✎

✎

A fork is basically a copy of someone else’s repository. Usually, you cannot create
branches or change code in other people’s repositories, that’s why you create your own
copy of it. This is called forking .
RRemotemotee:
A git remote is a copy of your repository hosted by a git service provider, e.g. GitHub.
Remotes allow you to share your commits and branches so that other developers can
fetch them. Technically speaking, remotes are exactly the same as local repositories, but
unlike your local repository, they are reachable over the internet.
You can use the commands git fetch and git push to bring your local copy of the
repository in sync with a remote, by downloading commits or uploading new commits
respectively.
Merging brMerging branchesanches:
Merging is the dual operation of creating a new branch. Imaigne you have branched
out a new branch (e.g. new-feature) from the some branch (e.g. master), made some
improvements and tested them out. Now you want to incorporate these changes in the
master branch which hosts your main code. The mergmergee operation does exactly that. It
takes the changes done in new-feature and applies them to master.
Often git will manage to apply these changes by itself. However, sometimes if both new-
feature and master changed the same part of the code, git cannot determine by itself
which of the two changes should be kept. Such a case is called merge conflict and you
will have to manually select what should be kept after the merge.
Pull RPull Requestsequests:
If you are working on a secondary branch or if you forked a repository and want to
submit your changes for integration into the mainstream branch or repository, you can
open a so-called Pull Request (in short PRPR).
A pull request can be seen as a three-step merge operation between two branches
where the changes are first proposed, then discussed and adapted (if requested), and
finally merged.

2)2) Common operCommon operationsations

FFork a rork a repositepository on GitHubory on GitHub:
To fork (creating a copy of a repository, that does not belong to you), you simply have
to go to the repository’s webpage and click fork on the upper right corner.
Clone a rClone a repositepositoryory:
Cloning a repository is the act of creating a local copy of a remote repository. A repo is
cloned only at the very beginning, when you still don’t have a local copy of it.
To clone a repository, either copy the HTTPS or SSH link given on the repository’s web-
page. Use the following command to create a local copy of the remote git repository
identified by the given URL.

$ git clone REPOSITORY-URL

This will create a directory in the current working path with the same name of the

DEVELOPER BASICS: GIT 11

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/10_git.md
https://github.com/
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/10_git.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/10_git.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/10_git.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/10_git.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/10_git.md

✎

✎

✎

✎

repository and the entire history of commits will be downloaded onto your computer.
CrCreateate a new bre a new branchanch:
The command for creating a new branch is a little bit counter-intuitive, but you will get
use to it. Use the following command to create a new branch:

$ git checkout -b NEW-BRANCH-NAME

This creates a new branch pointing at the same commit your currently active branch
is pointing at. In other words, you will end up with two branches pointing at the same
commit. Note that after you issue this command, the newly created branch becomes
your active branch.
WWorking trorking treeee:
In git, we use the term working tree to indicate all the changes that are not committed
yet. You can think of it as your workspace. When you create a new commit, the hash for
the current working tree is computed and assigned to the new commit together with
the changes since the last commit. The working tree clears as you commit changes.

RRemark:emark: You cannot create commits from a clean working tree.
Use the command git status to inspect the status of your working tree.
CrCreateate a new commite a new commit:
Unlike many git operations, a commit is not created by a single git command. There
are two steps to follow. First, we mark all the changes that we want to be part of our
new commit, second, we create the commit. From your working tree, mark changes to
include in the new commit using the command:

$ git add FILE

The command git status will always show you which changes are marked to be used
for a new commit and which changes are not. Use the command

$ git commit -m " COMMIT-MESSAGE "

to create a new commit. Replace COMMIT-MESSAGE with your notes about what
changes this commit includes.

NNotote:e: Do not underestimate the value of good commit messages, the moment you will
go back to your history of commits looking for a change of interest, having good com-
mit messages will be a game changer.

Push changPush changeses:
Use the following command to push your local changes to the remote repository so that
the two repositories can get in sync.

$ git push origin BRANCH-NAME

12 DEVELOPER BASICS: GIT

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/10_git.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/10_git.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/10_git.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/10_git.md

✎

✎

✎

✎

✎

3)3) FFetetch changch changeses

If you suspect that new changes might be available on the remote repository, you can
use the command

$ git fetch origin BRANCH-NAME

to download the new commits available on the remote (if any). These new changes will
be appended to the branch called origin/ BRANCH-NAME in your local repository. If
you want to apply them to your current branch, use the command

$ git merge origin/ BRANCH-NAME

Use the command git pull origin/ BRANCH-NAME to perform fetch and then
merge.
DeletDelete bre branchesanches:
Unlike the vast majority of git commands, git delete does not work on the current
branch. You can delete other branches by running the command

$ git branch -d BRANCH-NAME

If you want to delete your current branch, you will need to checkout another branch
first. This prevents ending up with a repository with no branches.
To propagate the deletion of a branch to the remote repository, run the command:

$ git push origin --delete BRANCH-NAME

Open a GitHub IssueOpen a GitHub Issue:
If you are experiencing issues with any code or content of a repository (such as this op-
erating manual you are reading right now), you can submit issues. For doing so go to
the dashboard of the corresponding repository and press the Issues tab where you can
open a new request.
For example you encounter a bug or a mistake in this operating manual, please visit
this repository’s Issues page to report an issue.
GitHub Issues are a crucial part of the life cycle of a software product, as they constitute
a feedback loop that goes directly from the end-user to the product developers. You
don’t have to be a developer or an expert in software engineering to open an Issue.

3.3.3.3. Hands onHands on

1)1) GitGit

It is strongly suggested to all git beginners to follow the awesome tutorial Learn Git
Branching.

DEVELOPER BASICS: GIT 13

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/10_git.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/10_git.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/10_git.md
https://github.com/duckietown/docs-opmanual_developer/issues
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/10_git.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/10_git.md
https://learngitbranching.js.org/
https://learngitbranching.js.org/

✎

✎

Further reading material can be found at the following links:
• Git Handbook
• Basic Branching and Merging

2)2) GitHubGitHub

You can gain access to GitHub by creating an account on github.com (if you don’t have
one already).
A short GitHub tutorial is available at this link.
It is higly suggested that you setup an SSH key for secure passwordless access to GitHub
by following these steps:
1. Generate a new SSH key
2. Add SSH key to your GitHub account.

3.4.3.4. Ask the communityAsk the community
If you have any questions about how to use of Git in Duckietown, join the Slack chan-
nel #help-git.

14 DEVELOPER BASICS: GIT

https://guides.github.com/introduction/git-handbook/
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/10_git.md
https://github.com/join
https://guides.github.com/activities/hello-world/
https://help.github.com/en/github/authenticating-to-github/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://help.github.com/en/github/authenticating-to-github/adding-a-new-ssh-key-to-your-github-account
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/10_git.md
https://duckietown.slack.com/archives/C6YS9B3G8

✎

✎

✎

UUNITNIT AA-4-4

DevDeveloper Basics: Dockeloper Basics: Dockerer

AAuthor:uthor: Andrea F. Daniele
Maintainer: Andrea F. Daniele

This section will introduce Docker and the features of Docker that the Duckietown
community employs. For a more general introduction to Docker, we suggest reading
the official Docker overview page.

ContContentsents
Section 4.1 - What is Docker? ..1515
Section 4.2 - Containers VS. Virtual Machine ..1515
Section 4.3 - How does Docker work? ..1616
Section 4.4 - Different CPU architectures..1717
Section 4.5 - Working with images..1717
Section 4.6 - Working with containers..1818
Section 4.7 - Running images ..2020
Section 4.8 - Other useful commands ..2222
Section 4.9 - Hands on..2222
Section 4.10 - Ask the community ..2323

4.1.4.1. What is DockWhat is Docker?er?
Docker is used to perform operating-system-level virtualization, something often re-
ferred to as “containerization”. While Docker is not the only software that does this, it
is by far the most popular one.
Containerization refers to an operating system paradigm in which the kernel allows the
existence of multiple isolated user space instances called containers. These containers
may look like real computers from the point of view of programs running in them.
A computer program running on an ordinary operating system can see all resources
available to the system, e.g. network devices, CPU, RAM; However, programs running
inside of a container can only see the container’s resources. Resources assigned to the
container become thus available to all processes that live inside that container.

4.2.4.2. Containers VS. Virtual MachineContainers VS. Virtual Machine
Containers are often compared to virtual machines (VMs). The main difference is that
VMs require a host operating system (OS) with a hypervisor and a number of guest OSs,
each with their own libraries and application code. This can result in a significant over-
head.
Imagine running a simple Ubuntu server in a VM on Ubuntu: you will have most of

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/20_docker.md
https://docs.docker.com/get-started/overview/
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/20_docker.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/20_docker.md

✎

the kernel libraries and binaries twice and a lot of the processes will be duplicated on
the host and on the guest OS. Containerization, on the other hand, leverages the exist-
ing kernel and OS and adds only the additional binaries, libraries and code necessary
to run a given application. See the illustration bellow.

Figure 4.1. Differences between Virtual Machines and Containers (source: Weaveworks)

Because containers don’t need a separate OS to run they are much more lightweight
than VMs. This makes them perfect to use in cases where one needs to deploy a lot
of independent services on the same hardware or to deploy on not-especially powerful
platforms, such as Raspberry Pi - the platform the Duckietown community uses.
Containers allow for reuse of resources and code, but are also very easy to work with
in the context of version control. If one uses a VM, they would need to get into the VM
and update all the code they are using there. With a Docker container, the same process
is as easy as pulling the container image again.

4.3.4.3. How does DockHow does Docker wer work?ork?
You can think that Docker containers are build from Docker images which in turn are
build up of Docker layers. So what are these?
Docker images are build-time artifacts while Docker containers are run-time con-
structs. That means that a Docker image is static, like a .zip or .iso file. A container
is like a running VM instance: it starts from a static image but as you use it, files and
configurations might change.
Docker images are build up from layers. The initial layer is the base layer, typically an
official stripped-down version of an OS. For example, a lot of the Docker images we run
in Duckietown have ubuntu:18.04 as a base.
Each layer on top of the base layer constitutes a change to the layers below. The Docker
internal mechanisms translate this sequence of changes to a file system that the con-
tainer can then use. If one makes a small change to a file, then typically only a single
layer will be changed and when Docker attempts to pull the new version, it will need to
download and store only the changed layer, saving space, time and bandwidth.
In the Docker world, images get organized by their repository name, image name and
tags. As with Git and GitHub, Docker images are stored in image registers. The most

16 DEVELOPER BASICS: DOCKER

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/20_docker.md

✎

✎

popular Docker register is called DockerHub and it is what we use in Duckietown.
An image stored on DockerHub has a name of the form:

[repository/]image[:tag]

The parts repository and tag are optional and they default to library (indicating
Docker official images) and latest (special tag always pointing to the latest version of
an image). For example, the Duckietown Docker image

duckietown/dt-core:daffy-arm32v7

has the repository name duckietown , the image name dt-core , and the tag daffy-
arm32v7 , which carries both the name of the Duckietown software distribution that the
image contains, i.e., daffy , and the CPU architecture that this image is targeting, i.e.,
arm32v7 . We will talk about different CPU architectures and why they need to be part
of the Docker image tag in the section Section 4.4 - Different CPU architectures.
All Duckietown-related images are in the duckietown repository. Though images can
be very different from each other and for various applications.

4.4.4.4. DifferDifferent CPU arent CPU architchitecturectureses
Since Docker images contain binaries, they are not portable across different CPU ar-
chitectures. In particular, binaries are executable files that are compiled to the level of
CPU instructions. Different CPU architectures present different instructions sets.
Many modern computers use the amd64 architecture, used by almost all modern Intel
and AMD processors. This means that it is very likely that you can find a Docker image
online and run it on your computer without having to worry about CPU architectures.
In Duckietown, we use low-end computers like the Raspberry Pi (officially used on any
Duckietown device) and Nvidia Jetson. These low-cost computers employ Arm proces-
sors that are based on the arm32v7 instructions set.

NNotote:e: Full disclosure, while all devices officially supported in Duckietown are based
on 64-bit capable Arm processors, thus using the arm64v8 instructions set, the Rasp-
bian OS only supports 32-bit, which is the reason why we use arm32v7 images.

4.5.4.5. WWorking with imagorking with imageses
If you want to get a new image from a Docker registry (e.g. DockerHub), you have to
pull it. For example, you can get an Ubuntu image by running the command:

$ docker pull ubuntu

According to Section 4.3 - How does Docker work?, this will pull the image with full
name library/ubuntu:latest which, as of May 2020, corresponds to Ubuntu 20.04.

DEVELOPER BASICS: DOCKER 17

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/20_docker.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/20_docker.md

✎

You will now be able to see the new image pulled by running:

$ docker image list

If you don’t need it anymore or you are running out of storage space, you can remove
an image with,

$ docker image rm ubuntu

You can also remove images by their IMAGE ID as printed by the list command above.
A shortcut for docker image rm is docker rmi .
Sometimes you might have a lot of images you are not using anymore. You can easily
remove them all with:

$ docker image prune

This will remove all images that are not supporting any container. In fact, you cannot
remove images that are being used by one or more containers. To do so, you will have
to remove those containers first.
If you want to look into the heart and soul of your images, you can use the commands
docker image history and docker image inspect to get a detailed view.

4.6.4.6. WWorking with containersorking with containers
Containers are the run-time equivalent of images. When you want to start a container,
Docker picks up the image you specify, creates a file system from its layers, attaches all
devices and directories you want, “boots” it up, sets up the environment up and starts
a pre-determined process in this container. All that magic happens with you running
a single command: docker run . You don’t even need to have pulled the image before-
hand, if Docker can’t find it locally, it will look for it on DockerHub.
Here’s a simple example:

$ docker run ubuntu

This will take the ubuntu image with latest tag and will start a container from it.
The above won’t do much. In fact, the container will immediately exit as it has nothing
to execute. When the main process of a container exits, the container exits as well. By
default the ubuntu image runs bash and as you don’t pass any commands to it, it exits
immediately. This is no fun, though.
Let’s try to keep this container alive for some time by using the -it flags. This tells
Docker to create an interactive session.

$ docker run -it ubuntu

18 DEVELOPER BASICS: DOCKER

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/20_docker.md

Now you should see something like:

root@73335ebd3355:/#

Keep in mind that the part after @ will be different — that is your container ID.
In this manual, we will use the following icon to show that the command should be
run in the container:

$ command to be run inside the container

You are now in your new ubuntu container! Try to play around, you can try to use some
basic bash commands like ls , cd , cat to make sure that you are not in your host ma-
chine.
You can check which containers you are running using the docker ps command —
analogous to the ps command. Open a new terminal window (don’t close the other one
yet) and type:

$ docker ps

An alternative (more explicit) syntax is

$ docker container list

These commands list all running containers.
Now you can go back to your ubuntu container and type exit . This will bring you back
to you host shell and will stop the container. If you again run the docker ps command
you will see nothing running. So does this mean that this container and all changes you
might have made in it are gone? Not at all, docker ps and docker container list
only list the currently running containers.
You can see all containers, including the stopped ones with:

$ docker container list -a

Here -a stands for all. You will see you have two ubuntu containers here. There are
two containers because every time you use docker run , a new container is created.
Note that their names seem strangely random. We could have added custom, more de-
scriptive names—more on this later.
We don’t really need these containers, so let’s get rid of them:

$ docker container rm container name 1 container name 2

You need to put your container names after rm . Using the containr IDs instead is also
possible. Note that if the container you are trying to remove is still running you will be

DEVELOPER BASICS: DOCKER 19

✎

asked to stop it first.
You might need to do some other operations with containers. For example, sometimes
you want to start or stop an existing container. You can simply do that with:

$ docker container start container name
$ docker container stop container name
$ docker container restart container name

Imagine you are running a container in the background. The main process is running
but you have no shell attached. How can you interact with the container? You can open
a terminal in the container with:

$ docker attach container name

4.7.4.7. RRunning imagunning imageses
Often we will ask you to run containers with more sophisticated options than what we
saw before. Look at the following example: (don’t try to run this, it will not do much).

$ docker -H hostname.local run -dit --privileged --name joystick --
network=host -v /data:/data duckietown/rpi-duckiebot-joystick-de-
mo:master18

Table 4.1 shows a summary of the options we use most often in Duckietown. Below, we
give some examples

20 DEVELOPER BASICS: DOCKER

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/20_docker.md

✎

Table 4.1. DOCKER RUN options

ShortShort
commandcommand

Full commandFull command ExplanationExplanation

-i --interactive Keep STDIN open even if not attached, typically
used together with -t.

-t --tty Allocate a pseudo-TTY, gives you terminal access
to the container, typically used together with -i.

-d --detach Run container in background and print container
ID.

--name Sets a name for the container. If you don’t specify
one, a random name will be generated.

-v --volume Bind mount a volume, exposes a folder on your
host as a folder in your container. Be very careful

when using this.
-p --publish Publish a container’s port(s) to the host, necessary

when you need a port to communicate with a pro-
gram in your container.

-d --device Similar to -v but for devices. This grants the con-
tainer access to a device you specify. Be very careful

when using this.
--privileged Give extended privileges to this container. That in-

cludes access to allall devices. Be eextrxtremelyemely careful
when using this.

--rm Automatically remove the container when it exits.
-H --hostname Specifies remote host name, for example when you

want to execute the command on your Duckiebot,
not on your computer.

--help Prints information about these and other options.

ExamplesExamples

Set the container name to joystick :

--name joystick

Mount the host’s path /home/myuser/data to /data inside the container:

-v /home/myuser/data:/data

Publish port 8080 in the container as 8082 on the host:

-p 8082:8080

Allow the container to use the device /dev/mmcblk0 :

DEVELOPER BASICS: DOCKER 21

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/20_docker.md

✎

✎

✎

✎

-d /dev/mmcblk0

Run a container on the Duckiebot:

-H duckiebot.local

4.8.4.8. Other useful commandsOther useful commands

1)1) Pruning imagPruning imageses

Sometimes your docker system will be clogged with images, containers, networks, etc.
You can use docker system prune to clean it up.

$ docker system prune

Keep in mind that this command will delete allall containers that are not currently run-
ning and allall images not used by running containers. So be extremely careful when us-
ing it.

2)2) PPortainerortainer

Often, for simple operations and basic commands, one can use Portainer.
Portainer is itself a Docker container that allows you to control the Docker daemon
through your web browser. You can install it by running:

$ docker volume create portainer_data
$ docker run -d -p 9000:9000 --name portainer --restart always -v
/var/run/docker.sock:/var/run/docker.sock -v portainer_data:/data
portainer/portainer

Note that Portainer comes pre-installed on your Duckiebot, so you don’t need to run
the above command to access the images and containers on your robot. You still might
want to set it up for your computer.

4.9.4.9. Hands onHands on
Before you can do any software development in Duckietown, you need to get comfort-
able with Docker and its tools.
Complete the following steps before proceeding to the next section:
1. Install Docker
2. Orientation and Setup
3. Build and run your image
4. Share images on Docker Hub

22 DEVELOPER BASICS: DOCKER

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/20_docker.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/20_docker.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/20_docker.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/20_docker.md
https://docs.docker.com/get-docker/
https://docs.docker.com/get-started/
https://docs.docker.com/get-started/part2/
https://docs.docker.com/get-started/part3/

✎

If you still feel like there is something that you are missing about Docker, you might
want to spend some time going through this guide as well.

4.10.4.10. Ask the communityAsk the community
If you need help with Docker basics or the use of Docker in Duckietown, join the Slack
channel #help-docker.

DEVELOPER BASICS: DOCKER 23

https://docker-curriculum.com/
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/20_docker.md
https://duckietown.slack.com/archives/C89SNCY4Q

✎

✎

✎

UUNITNIT AA-5-5

DevDeveloper Basics: Duckieteloper Basics: Duckietown Shellown Shell

AAuthor:uthor: Andrea F. Daniele
Maintainer: Andrea F. Daniele

This section of the book will introduce the Duckietown Shell (dts in short) and the
reason behind its creation. In this book, we will use dts commands quite often, make
sure you don’t miss this section.

ContContentsents
Section 5.1 - Brief History ..2424
Section 5.2 - Get Started ..2424
Section 5.3 - Installable commands ..2525
Section 5.4 - Hands on..2525
Section 5.5 - Ask the community ..2525

5.1.5.1. Brief HistBrief Historyory
The Duckietown Shell is indeed a shell. It was created in July 2018 to help Duckietown
users launch Duckietown demos on a Duckiebot. It became clear pretty soon that hav-
ing a dedicated shell for Duckietown was a game changer for the whole community. In
fact, since the very beginning, the shell had a built-in system for auto-update, which
allowed developers to develop new commands or improve old ones and deploy the
changes in no time.
Duckietown has a history of using Makefiles as a way to simplify complex and oper-
ations involving many (usually very long) bash commands. Other developers, instead,
preferred bash scripts over Makefiles. And finally, our CI system (based on Jenkins),
used Jenkinsfiles to define automated jobs.
The Duckietown Shell came to the rescue and unified everything, while Makefiles,
bash scripts and Jenkinsfiles slowly started disappearing from our repositories. Today,
Docker images to run on Duckiebots, Python libraries published on PyPi and even the
book you are reading right now are built through dts.

5.2.5.2. Get StartGet Starteded
The Duckietown Shell is released as a Python3 package through the PyPi package store.
You can install the Duckietown Shell on your computer by running,

$ pip3 install duckietown-shell

This will install the dts command. The Duckietown Shell is distribution independent,

24

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/30_duckietown_shell.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/30_duckietown_shell.md
https://www.jenkins.io/
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/30_duckietown_shell.md

✎

✎

✎

so the first time you launch it you have to specify the distribution of Duckietown soft-
ware you are working on. You can do so by running the command,

$ dts --set-version DISTRO

where DISTRO can be any of the official distributions of Duckietown software, e.g.,
master19 , daffy . This will download the commands for the given distribution before
the command prompt is shown.
Use the command,

$ (Cmd) commands

to list all the commands available to the chosen distribution.
You don’t really need to run the shell before you can type in your command, for exam-
ple, you can achieve the same result as above by running,

$ dts commands

Check beforCheck before ye you continueou continue
The nice thing about opening the shell before typing your command is that then
you can use the Tab key to auto-complete.

5.3.5.3. Installable commandsInstallable commands
Some commands come notnot pre-installed. These are usually commands that are either
very specific to an application, thus not useful to the majority of Duckietown users, or
commands that can only be used during a short time window, like commands that let
you participate to competitions periodically organized at international AI and Robotics
conferences, e.g. AIDO.

5.4.5.4. Hands onHands on
Install the Duckietown Shell as instructed in Section 5.2 - Get Started. Make sure every-
thing works as expected by running the command dts update successfully.

5.5.5.5. Ask the communityAsk the community
If you have any questions about the Duckietown Shell, join the Slack channel #help-dt-
shell.

DEVELOPER BASICS: DUCKIETOWN SHELL 25

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/30_duckietown_shell.md
https://aido.duckietown.org/
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/30_duckietown_shell.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/30_duckietown_shell.md
https://duckietown.slack.com/archives/CDEABHQQ7
https://duckietown.slack.com/archives/CDEABHQQ7

✎

✎

✎

UUNITNIT AA-6-6

DevDeveloper Basics: Reloper Basics: ROSOS

AAuthor:uthor: Andrea F. Daniele
Maintainer: Andrea F. Daniele

In this section, we will introduce the ROS (Robot Operating System) ecosystem.

ContContentsents
Section 6.1 - Hands on..2626
Section 6.2 - Ask the community ..2626

6.1.6.1. Hands onHands on

6.2.6.2. Ask the communityAsk the community

26

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/40_ros.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/40_ros.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/10_basics/40_ros.md

✎

PPARARTT BB

ModulesModules

AAuthor:uthor: Andrea F. Daniele
Maintainer: Andrea F. Daniele

This section of the book focuses on the concept of software module in Duckietown.
Devices in Duckietown (e.g., Duckiebots, Watchtowers, etc) are not configured to ac-
cept code directly. The Operating System running on the on-board computers is config-
ured to accept only code running inside Docker containers. Modules are an easy, robust
and effective way of wrapping code into executable Docker images.
Remember, you are not allowed to run any code on any of these devices outside a prop-
er Duckietown module. So, if you have code to run, you need to put it in a module first.

ContContentsents
UnitUnit BB-1-1 - IntrIntroductionoduction ..2828
UnitUnit BB-2-2 - Module TModule Typesypes ..3232
UnitUnit BB-3-3 - TEMPLATEMPLATETE ..3333

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/20_modules/00_main.md

✎

✎

UUNITNIT BB-1-1

IntrIntroductionoduction

AAuthor:uthor: Andrea F. Daniele
Maintainer: Andrea F. Daniele

A software module in Duckietown implements a high level behavior, for example, au-
tonomous driving in Duckietown. A software module is broken into a set of smaller
pieces, called nodes. This allows us to tackle a complex problem by leveraging solutions
to smaller problems. This approach is very common in software development and is in-
spired by a military strategy called “divide and conquer” (latin: divide et impera) com-
monly used by the Roman Empire.
Breaking a module into nodes is not trivial, and where you draw the lines between
nodes can make a huge difference in the final outcome. Some qualities of the final soft-
ware product directly affected by this decision are usabilityusability, mantainabilitymantainability, and porta-porta-
bilitybility.

NNotote:e: Read the ISO/IEC 9126 standard to learn more about product quality in soft-
ware engineering. If you want to become a developer, you might want to bookmark
that URL, you will need it, a lota lot.

ContContentsents
Section 1.1 - What is a module ..2828
Section 1.2 - Module Templates..2929
Section 1.3 - Create your own module..2929
Section 1.4 - Build a module ..3030
Section 1.5 - Run a module ..3131
Section 1.6 - Hands on..3131
Section 1.7 - Ask the community ..3131

1.1.1.1. What is a moduleWhat is a module
A module in Duckietown is a Docker image that complies with a module tmodule templatemplatee
(more about templates in the next section). Remember the ISO/IEC 9126 standard?
well, modules are designed to be highly portableportable and usableusable.
Modules have a pre-defined file system structure with fixed locations for source code
and configuration files. File system structure and default locations are template-depen-
dent, check the section TBDTBD to understand the different module templates available in
Duckietown.
Understanding the pros and cons of using Docker to isolate modules right now is cru-
cial.
Bad news first! The biggest negative effect of using Docker to isolate modules is that by

28

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/20_modules/10_intro.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/20_modules/10_intro.md

✎

✎

doing so, we are wrapping our source code inside a Docker image. This makes it harder
for us to do development, since our code will not be easily accessible through our local
file system. This is what scares/frustrates people away from Docker the most. Keep it
in mind, if it happens to you, you are not the only one. The Duckietown development
workflow explained in this book aims, among other things, at reducing the effect of this
code isolation. We will get back to this topic later in the book.
As for the good news, i.e., why using Docker to isolate modules makes sense and our
life easier, we could write a book about it, but they will become clear as we proceed.
Duckietown defines a set of module types that you can choose from. The list of module
types and their differences will be the topic of the section TBDTBD. What is important to
know for now, is that a module type defines the environment your code will run in. For
each module type, a template repository is provided.

1.2.1.2. Module TModule Templatemplateses
A module template is a repository, hosted on GitHub space of the Duckietown organi-
zation, that lets you build a new module of that type.
Templated repositories on GitHub are special repositories that you can use to initialize
an empty repository. Templated repository will provide an initial structure to your emp-
ty repository.
Although different template repositories have different files and structures, they all
contain: a Dockerfile , used to compile the entire repository into a Docker image; one
or more requirements files, in which you can list the dependencies of your code; a .dt-
project file that makes it compatible with the duckietown shell. You will find other
files as well, but these are the most important ones.
The simplest module template is called basic and its template repository is duck-
ietown/template-basic. Since understanding the differences between different tem-
plates is outside the scope of this section, we can use any template for the remainder of
this section, we suggest using the one above.

1.3.1.3. CrCreateate ye your own moduleour own module
In order to be able to create a Duckietown module, you need to gain access to the mod-
ule template repositories on GitHub. There are two way to achieve this: you are an
official Duckietown developer, thus you are part of the Duckietown organization on
GitHub; or, you create a copy (fork) of the template you need on your GitHub account.
If you are not a member of the Duckietown organization on GitHub, you can fork a
template on your GitHub account by visiting the module template page on GitHub
(e.g., duckietown/template-basic) and click on the Fork button at the top-right corner
of the page.

Figure 1.1. Fork button on GitHub

INTRODUCTION 29

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/20_modules/10_intro.md
https://github.com/duckietown/template-basic
https://github.com/duckietown/template-basic
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/20_modules/10_intro.md
https://github.com/duckietown/template-basic

✎

Once you gained access to the template (either by joining the Duckietown developers
team or forking the template repository), you are able to create a new repository that
will store your module based on the template repository. To do so, go to GitHub, click
on the [+] button on the header at the top-right corner and then choose NNew rew reposi-eposi-
ttoryory. In the New repository page, choose the template (e.g., duckietown/template-ba-
sic) and enter the name of your new module (e.g., my_module) as shown in the image
below.

Figure 1.2. New repository with template on GitHub

Click on CrCreateate re repositepositoryory to create the module repository.

1.4.1.4. Build a moduleBuild a module
Building a module is very simple. To start, open a terminal and clone a module reposi-
tory (we created one in section TTODOODO).
Templates leave placeholders that you will need to replace with the proper information
about your module before you can build it.
Open the file Dockerfile using any text editor and look for the following lines at the top
of the file:
TTODOODO
Replace the placeholders strings with, respectively, - the name of the repository (i.e.,
my_module); - a brief description of the functionalities of the module - your name and
email address to claim the role of maintainer;
Save and return to the terminal. Now run the following command to build the module.

dts devel build -f

The flag -f (short for --force) is needed in order to allow dts to build a module out
of a non-clean repository. A repository is not clean when there are changes that are not
committed (and in fact our change to Dockerfile is not). This check is in place to pre-
vent developers from forgetting to push local changes. If the build is successful, you
will see something like the following.

30 INTRODUCTION

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/20_modules/10_intro.md

✎

✎

✎

Figure 1.3. Result of command

Congrats! You just built your first Duckietown-compatible software module.

1.5.1.5. RRun a moduleun a module
As stated above, building a module produces a Docker image. This image is the com-
piled version of your source project. You can find the name of the resulting image at
the end of the output of the dts devel build command. In the example above, look
for the line

Final image name: duckietown/my_module:v1-amd64

1.6.1.6. Hands onHands on

1.7.1.7. Ask the communityAsk the community

INTRODUCTION 31

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/20_modules/10_intro.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/20_modules/10_intro.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/20_modules/10_intro.md

✎

✎

✎

✎

UUNITNIT BB-2-2

Module TModule Typesypes

AAuthor:uthor: Andrea F. Daniele
Maintainer: Andrea F. Daniele

In Duckietown, there are three main module types. For each module type we provide a
repository template. The module types are:
• basicbasic (template: duckietown/template-basic)
• rrosos (template: duckietown/template-ros)
• corcoree (template: duckietown/template-core)
We will go through each one of them in details in the next sections.

2.1.2.1. Module TModule Type: Basicype: Basic
The module type basicbasic is the one

2.2.2.2. Hands onHands on

2.3.2.3. Ask the communityAsk the community

32

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/20_modules/20_module_types.md
https://github.com/duckietown/template-basic
https://github.com/duckietown/template-ros
https://github.com/duckietown/template-core
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/20_modules/20_module_types.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/20_modules/20_module_types.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/20_modules/20_module_types.md

✎

✎

✎

UUNITNIT BB-3-3

TEMPLATEMPLATETE

AAuthor:uthor: Andrea F. Daniele
Maintainer: Andrea F. Daniele

This section of the book focuses on TEMPLATE.

ContContentsents
Section 3.1 - Hands on..3333
Section 3.2 - Ask the community ..3333

3.1.3.1. Hands onHands on

3.2.3.2. Ask the communityAsk the community

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/20_modules/99_template.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/20_modules/99_template.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/20_modules/99_template.md

✎

PPARARTT CC

The DuckietThe Duckietown Codeown Code-Fu-Fu

AAuthor:uthor: Aleksandar Petrov
Maintainer: Aleksandar Petrov

This section of the book will discuss a variety of topics pertaining to the style and design
choices for the code that runs on the Duckietown robots. If you wish for your code to
be merged in our official repositories, read this section extremely carefully and make
sure to follow all the guidelines provided here.

ContContentsents
UnitUnit C-1C-1 - Structuring a DuckietStructuring a Duckietown rown repositepositoryory ..3535
UnitUnit C-2C-2 - Structuring RStructuring ROS POS Packagackageses ..3636
UnitUnit C-3C-3 - Structuring RStructuring ROS NOS Nodesodes ..3737
UnitUnit C-4C-4 - Documenting yDocumenting your codeour code..4646
UnitUnit C-5C-5 - Building the documentation of yBuilding the documentation of your codeour code..5454

34

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/00_duckietown_ways.md

✎

✎

UUNITNIT C-1C-1

Structuring a DuckietStructuring a Duckietown rown repositepositoryory

AAuthor:uthor: Aleksandar Petrov
Maintainer: Aleksandar Petrov

ContContentsents
Section 1.1 - Ask the community ..3535

This section deals with how you should structure your repository and what should go
where in it.

1.1.1.1. Ask the communityAsk the community
If you have any questions about good practices in software development, join the Slack
channel #info-developers.

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/03_repository.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/03_repository.md
https://duckietown.slack.com/archives/CMQLLDAF8

✎

✎

UUNITNIT C-2C-2

Structuring RStructuring ROS POS Packagackageses

AAuthor:uthor: Aleksandar Petrov
Maintainer: Aleksandar Petrov

ContContentsents
Section 2.1 - Ask the community ..3636

This section deals with how you should structure your packages and what should go
where in them.

2.1.2.1. Ask the communityAsk the community
If you have any questions about good practices in software development, join the Slack
channel #info-developers.

36

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/03_ros_packages.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/03_ros_packages.md
https://duckietown.slack.com/archives/CMQLLDAF8

✎

✎

UUNITNIT C-3C-3

Structuring RStructuring ROS NOS Nodesodes

AAuthor:uthor: Aleksandar Petrov
Maintainer: Aleksandar Petrov

ContContentsents
Section 3.1 - General structure ..3737
Section 3.2 - Node initialization ..3939
Section 3.3 - Naming of variables and functions ..4242
Section 3.4 - Switching nodes on and off ..4242
Section 3.5 - Custom behavior on shutdown ..4343
Section 3.6 - Handling debug topics..4343
Section 3.7 - Timed sections ..4343
Section 3.8 - Config files..4444
Section 3.9 - Launch files ..4444
Section 3.10 - Ask the community ..4545

This section deals with how you should write the code in a ROS node. In particular,
how to structure it. Writing the code of a node goes hand-in-hand with documenting it
but this will be discussed in more detail in Unit C-4 - Documenting your code.

3.1.3.1. GenerGeneral structural structuree
All ROS nodes should be in the src directory of the respective package. If the node
is called some_name , then the file that has its implementation should be called
some_name_node.py . This file should always be executable. Furthermore, all the logic
of the node should be implemented in a Python class called SomeNameNode .
The structure of the some_name_node.py should generally look like the following ex-
ample (without the comments):

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/05_ros_node.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/05_ros_node.md

#!/usr/bin/env python

import external libraries
import rospy

import libraries which are part of the package (i.e. in the include
dir)
import library

import DTROS-related classes
from duckietown.dtros import \

DTROS, \
NodeType, \
TopicType, \
DTReminder,\
DTParam, \
ParamType

import messages and services
from std_msgs.msg import Float32
from duckietown_msgs.msg import \

SegmentList, \
Segment, \
BoolStamped

class SomeNameNode(DTROS):
def __init__(self, node_name):

class implementation

if __name__ == '__main__':
some_name_node = SomeNameNode(node_name='same_name_node')
rospy.spin()

Observe that all nodes in Duckietown should inherit from the super class DTROS . This
is a hard requirement. DTROS provides a lot of functionalities on top of the standard
ROS nodes which make writing and debugging your node easier, and also sometimes
comes with performance improvements.
In Python code, never ever do universal imports like from somepackage import * . This
is an extremely bad practice. Instead, specify exactly what you are importing, i.e. from
somepackage import somefunction . It is fine if you do it in __init__.py files but even
there try to avoid it if possible.
When using a package that has a common practice alias, use it, e.g. import numpy as
np , import matplotlib.pyplot as plt , etc. However, refrain from defining your own
aliases.
The code in this node definition should be restricted as much as possible to ROS-related
functionalities. If your node is performing some complex computation or has any logic
that can be separated from the node itself, implement it as a separate library and put it
in the include directory of the package.

38 STRUCTURING ROS NODES

✎3.2.3.2. NNode initializationode initialization
There are a lot of the details regarding the initalization of the node so let’s take a look
at an example structure of the __init__ method of our sample node.

STRUCTURING ROS NODES 39

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/05_ros_node.md

class SomeNameNode(DTROS):
def __init__(self, node_name):

super(SomeNameNode, self).__init__(
node_name=node_name,
node_type=NodeType.PERCEPTION

)

Setting up parameters
self.detection_freq = DTParam(

'~detection_freq',
param_type=ParamType.INT,
min_value=-1,
max_value=30

)
...

Generic attributes
self.something_happened = None
self.arbitrary_counter = 0
...

Subscribers
self.sub_img = rospy.Subscriber(

'image_rect',
Image,
self.cb_img

)
self.sub_cinfo = rospy.Subscriber(

'camera_info',
CameraInfo,
self.cb_cinfo

)
...

Publishers
self.pub_img = rospy.Publisher(

'tag_detections_image/compressed',
CompressedImage,
queue_size=1,
dt_topic_type=TopicType.VISUALIZATION

)
self.pub_tag = rospy.Publisher(

'tag_detections',
AprilTagDetectionArray,
queue_size=1,
dt_topic_type=TopicType.PERCEPTION

)
...

Now, let’s take a look at it section by section.

40 STRUCTURING ROS NODES

✎

✎

✎

1)1) NNode Crode Creationeation

In classic ROS nodes, you would initialize a ROS node with the function
rospy.init_node(...) . DTROS does that for you, you simply need to pass the node
name that you want to the super constructor as shown above.
DTROS supports node categorization, this is useful when you want to visualize the ROS
network as a graph, where graph nodes represent ROS nodes and graph edges repre-
sent ROS topics. In such a graph, you mught want to group all the nodes working on
the PERCEPTION problem together, say, to clear the clutter and make the graph easier to
read. Use the parameter node_type in the super constructor of your node to do so. Use
the values from the NodeType enumeration. Possible node types are the following,

GENERIC
DRIVER
PERCEPTION
CONTROL
PLANNING
LOCALIZATION
MAPPING
SWARM
BEHAVIOR
VISUALIZATION
INFRASTRUCTURE
COMMUNICATION
DIAGNOSTICS
DEBUG

2)2) NNode Pode Pararametametersers

All parameters should have names relative to the namespace of the node, i.e. they
should start with ~ . Also, all parameters should be in the scope of the instance, not the
method, so they should always be declared inside the constructor and start with self. .
The parameters should never have default values set in the code. All default values
should be in the configuration file! This makes sure that we don’t end up in a situation
where there are two different default values in two different files related to the node.
In classic ROS, you get the value of a parameter with rospy.get_param(...) . One of
the issues of the ROS implementation of parameters is that a node cannot request to
be notified when a parameter’s value changes at runtime. Common solutions to this
problem employ a polling strategy (which consists of querying the parameter server for
changes in value at regular intervals). This is highly inefficient and does not scale. The
dtros library provides a solution to this. Alternatively to using rospy.get_param(...)
which simply returns you the current value of a paramter, you can create a DTParam
object that automatically updates when a new value is set. Use self.my_param = DT-
Param("~my_param") to create a DTParam object and self.my_param.value to read its
value.

3)3) Generic atGeneric attributtributeses

STRUCTURING ROS NODES 41

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/05_ros_node.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/05_ros_node.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/05_ros_node.md

✎

✎

✎

Then we initialize all the non-ROS attributes that we will need for this class. Note that
this is done before initializing the Publishers and Subscribers. The reason is that if a
subscriber’s callback depends on one of these attributes, we need to define it before we
use it. Here’s an example that might fail:
✖

class CoolNode(DTROS):
def __init__(...):

self.sub_a = rospy.Subscriber(..., callback=cb_sth, ...)
self.important_variable = 3.1415

def cb_sth(self):
self.important_variable *= 1.0

And something that is better:
✔

class CoolNode(DTROS):
def __init__(...):

self.important_variable = 3.1415
sub_a = rospy.Subscriber(..., callback=cb_sth, ...)

def cb_sth(self):
self.important_variable *= 1.0

4)4) Publishers and SubscribersPublishers and Subscribers

Finally, we initialize all the Subscribers and Publishers as shown above. The dtros li-
brary automatically decorates the methods rospy.Publisher and rospy.Subscriber .
By doing so, new parameters are added. All the parameters added by dtros have the
prefix dt_ (e.g., dt_topic_type). Use the values from the TopicType enumeration.
Possible types list is identical to the node types list above.

NNotote:e: Only declare a topic type in a rospy.Publisher call.

3.3.3.3. NNaming of vaming of variables and functionsariables and functions
All functions, methods, and variables in Duckietown code should be named using
snake_case . In other words, only lowercase letters with spaces replaced by under-
scored. Do notnot use CamelCase . This is to be used onlyonly for class names.
The names of all subscribers should start with sub_ as in the example above. Similarly,
names of publishers should start with pub_ and names of callback functions should
start with cb_ .
Initalizing publishers and subscribers should again always be in the scope of the in-
stance, hence starting with self. .

3.4.3.4. SSwitwitching nodes on and offching nodes on and off

42 STRUCTURING ROS NODES

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/05_ros_node.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/05_ros_node.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/05_ros_node.md

✎

✎

✎

3.5.3.5. CustCustom behaom behavior on shutvior on shutdowndown
If you need to take care of something before when ROS tries to shutdown the node but
before it actually shuts it down, you can implement the on_shutdown method. This is
useful if you are running threads in the background, there are some files that you need
to close, resources to release, or to put the robot into a safe state (e.g. to stop the wheels).

3.6.3.6. Handling debug tHandling debug topicsopics
Often we want to publish some information which helps us analyze the behavior and
performance of the node but which does not contribute to the behavior itself. For ex-
ample, in order to check how well the lane filter works, you might want to plot all the
detected segments on a map of the road. However, this can be quite computationally
expensive and is needed only on the rare occasion that someone wants to take a look at
it.
A frequent (but bad designbut bad design) way of handling that is to have a topic, to which one can
publish a message, which when received will induce the node to start building a pub-
lishing the debug message. A much better way, and the one that should be used inshould be used in
DuckietDuckietownown is to create and publish the debug message only if someone has subscribed
to the debug topic. This is very easy to achieve with the help of dtros . Publishers creat-
ed within a DTROS node exports the utility function anybody_listening() . Here’s an
example:

if self.pub_debug_img.anybody_listening():
debug_img = self.very_expensive_function()
debug_image_msg = self.bridge.cv2_to_compressed_imgmsg(debug_img)
self.pub_debug_img.publish(debug_image_msg)

Note also that all debug topics should be in the debug namespace of the node, i.e. ~de-
bug/debug_topic_name .
Similarly, a Subscribers created within a DTROS node exports the utility function any-
body_publishing() that checks whether there are nodes that are currently publishing
messages.

3.7.3.7. Timed sectionsTimed sections
If you have operations that might take non-trivial amount of computational time, you
can profile them in order to be able to analyze the performance of your node. DTROS has
a special context for that which uses the same mechanism as the debug topics. Hence, if
you do not subscribe to the topic with the timing information, there would be no over-
head to your performance. Therefore, be generous with the use of timed sections.
The syntax looks like that:

STRUCTURING ROS NODES 43

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/05_ros_node.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/05_ros_node.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/05_ros_node.md

✎

✎

with self.time_phase("Step 1"):
run_step_1()

...

with self.time_phase("Step 2"):
run_step_2()

Then, if you subscribe to ~debug/phase_times you will be able to see for each separate
section detailed information about the frequency of executing it, the average time it
takes, and also the exact lines of code and the file in which this section appears.

3.8.3.8. ConfConfig fig filesiles
If your node has at least one parameter, then it should have a configuration file. If there
is a single configuration (as is the case with most nodes) this file should be called de-
fault.yaml . Assuming that our node is called some_node , the configuration files for
the node should be in the config/some_node/ directory.
Every parameter used in the implementation of the node should have a default value in
the configuration file. Furthermore, there should be no default values in the code. The
only place where they should be defined is the configuration file.

3.9.3.9. Launch fLaunch filesiles
Assuming that our node is called some_node then in the launch directory of the pack-
age there should be an atomic launch file with the name some_node.launch which
launches the node in the correct namespace and loads its configuration parameters.
The launch file content of most node will be identical to the following, with only the
node name and package name being changed.

<launch>
<arg name="veh"/>
<arg name="pkg_name" value="some_package"/>
<arg name="node_name" default="some_node"/>
<arg name="param_file_name" default="default" doc="Specify a param

file"/>

<group ns="$(arg veh)">
<node name="$(arg node_name)" pkg="$(arg pkg_name)" type="$(arg

node_name).py" output="screen">
<rosparam command="load" file="$(find some_package)/config/$(arg

node_name)/$(arg param_file_name).yaml"/>
</node>

</group>

</launch>

44 STRUCTURING ROS NODES

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/05_ros_node.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/05_ros_node.md

✎3.10.3.10. Ask the communityAsk the community
If you have any questions about good practices in software development, join the Slack
channel #info-developers.

STRUCTURING ROS NODES 45

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/05_ros_node.md
https://duckietown.slack.com/archives/CMQLLDAF8

✎

✎

UUNITNIT C-4C-4

Documenting yDocumenting your codeour code

AAuthor:uthor: Aleksandar Petrov
Maintainer: Aleksandar Petrov

ContContentsents
Section 4.1 - Basics about inline code documentation ..4646
Section 4.2 - What should be documented and where? ..4747
Section 4.3 - Style guide..5151
Section 4.4 - Ask the community ..5353

This section provides a comprehensive guide to writing inline documentation to your
ROS nodes and libraries. We will discuss both what should be documented and how it
should be documented. Head to Unit C-5 - Building the documentation of your code
for the details about how to then create a human-friendly webpage showing the docu-
mentation.

4.1.4.1. Basics about inline code documentationBasics about inline code documentation
Documentation is a must-do in any software project. As harsh as it sounds, you can
write an aboslutely revolutionary and beautiful software package that can save anyone
who uses it years of their time while simultaneously solving all of humanity’s gratest
problems. But if people do not know that your code exists, have no idea how to use it, or
understanding its intricacies takes too much effort, then you will neither save anyone
any time, nor solve any problem. In fact, as far as the world beyond you is concerned,
all your work is as good as if never done. Therefore, if you wish your code to be ever
used, documentdocument it as extensively as possible!
Inline documentation is a pretty handy way of helping people use your software. On
one hand, it is right in the place where it is needed: next to the classes and methods that
you are documenting. On the hand, it is also much easier to update when you change
something in the code: the documentation of your function is typically no more than
20 lines above your change. On the third hand (should you have one) documentation
written in this way inherits the structure of your software project, which is a very nat-
ural way of organizing it. On the fourth hand (you can borrow someone else’s), there
are some really nice packages that take your documentation and make it into a beauti-
ful webpage.

NNotote:e: When we refer to code documentation we mean things like this. The documen-
tation that you are currently reading is called a book and exists independent of any
code repository.

In Duckietown we use Sphinx for building our code documentation. Sphinx is the most

46

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/20_documenting_code.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/20_documenting_code.md
https://docs.duckietown.org/daffy/autodocs/

✎

popular way of creating code documentation for Python projects. You can find out more
on their webpage and there are a lot of interesting things to read there. Documenting
your code is as simple as writing docstrings and the occasional comment. Then, Sphinx
takes care of parsing all your docstrings and making a nice webpage for it. However, in
order for all this to work nicely, you need to formal your documentation in a particular
way. We will discuss this later in this page.

4.2.4.2. What should be documentWhat should be documented and whered and where?e?
The short answer to this question is “everything and in the right place”. The long an-
swer is the same.
Every ROS node should be documented, meaning a general description of what it is for,
what it does, and how it does it. Additionally, all its parameters, publishers, subscribers,
and services need to be described. The default values for the parameters should be also
added in the documentation. Every method that you node’s class has should also be
documented, including the arguments to the method and the returned object (if there
is such), as well as their types.
Every library in your include directory should also be documented. That again means,
every class, every method, every function. Additionally, the library itself, and its mod-
ules should have a short description too.
Finally, your whole repository, and every single package should also be documented.
Let’s start from a node. Here is a sample for the camera node:

DOCUMENTING YOUR CODE 47

https://www.sphinx-doc.org/
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/20_documenting_code.md

class CameraNode(DTROS):
"""

The node handles the image stream, initializing it, publishing
frames

according to the required frequency and stops it at shutdown.
`Picamera <https://picamera.readthedocs.io/>`_ is used for handling
the image stream.

Note that only one :obj:`PiCamera` object should be used at a time.
If another node tries to start an instance while this node is run-

ning,
it will likely fail with an `Out of resource` exception.

Args:
node_name (:obj:`str`): a unique, descriptive name for the node

that ROS will use

Configuration:
~framerate (:obj:`float`): The camera image acquisition framer-

ate, default is 30.0 fps
~res_w (:obj:`int`): The desired width of the acquired image,

default is 640px
~res_h (:obj:`int`): The desired height of the acquired image,

default is 480px
~exposure_mode (:obj:`str`): PiCamera exposure mode

Publisher:
~image/compressed (:obj:`CompressedImage`): The acquired camera

images

Service:
~set_camera_info:

Saves a provided camera info to `/data/config/calibrations/
camera_intrinsic/HOSTNAME.yaml`.

input:
camera_info (obj:`CameraInfo`): The camera information

to save

outputs:
success (:obj:`bool`): `True` if the call succeeded
status_message (:obj:`str`): Used to give details about

success

"""

def __init__(self, node_name):

Initialize the DTROS parent class
super(CameraNode, self).__init__(node_name=node_name,

node_type=NodeType.PERCEPTION)

[...]

48 DOCUMENTING YOUR CODE

The documentation of the node itself should always be as a docstring after the class de-
finition. Do not put it, or anything else as a docstring for the __init__ method. This
will not be rendered in the final output.
The documentation of the node should start with a general description about the node,
its purpose, where it fits in the bigger picture of the package and repository, etc. Feel
generous with the description here. Then there is a section with the arguments need-
ed for initializing the node (the arguments of the __init__ method) which will almost
always be exactly the same as shown. After that there is a configuration section where
you should put all the parameters for the node, their type, a short description, and their
default value, as shown.
This is then followed by Subscribers, Publishers and Services, in this order. If the node
has no Subscribers, for example as the camera node, then you don’t need to add this
section. Note the specific way of structuring the documentation of the service!
Then, every method should be documented as a docstring immediately after the func-
tion definition (as the save_camera_info example). Again, add a short description of
the method, as well as the arguments it expects and the return value (should such ex-
ist).
Libraries should be documented in a similar way. However, when documenting li-
braries, it is important to actually invoke the Sphinx commands for documenting par-
ticular objects in the __init__.py file. Furthermore, this file should contain a de-
scription of the package itself. Here’s an example from the line_detector library’s
__init__.py file:

DOCUMENTING YOUR CODE 49

"""

line_detector

The ``line_detector`` library packages classes and tools for han-
dling line section extraction from images. The

main functionality is in the :py:class:`LineDetector` class.
:py:class:`Detections` is the output data class for

the results of a call to :py:class:`LineDetector`, and
:py:class:`ColorRange` is used to specify the colour ranges

in which :py:class:`LineDetector` is looking for line segments.

There are two plotting utilities also included: :py:func:`plotMaps`
and :py:func:`plotSegments`

.. autoclass:: line_detector.Detections

.. autoclass:: line_detector.ColorRange

.. autoclass:: line_detector.LineDetector

.. autofunction:: line_detector.plotMaps

.. autofunction:: line_detector.plotSegments

"""

You can see that it describes the library and its elements, and then uses the Sphinx com-
mands which will parse these classes and functions and will add their documentation
to this page. You can find more details about these functions in Section 4.3 - Style guide.
In a similar way, every ROS package needs a documentation file. This should go in the
docs/packages directory of your repository and should be named package_name.rst .
It should describe the package and then should invoke the Sphinx commands for build-
ing the documentation for the individual nodes and libraries. See the following exam-
ple:

50 DOCUMENTING YOUR CODE

✎

✎

ROS Package: ground_projection
===============================

.. contents::

The ``ground_projection`` package provides the tools for projecting
line segments from an image reference frame to the ground reference
frame, as well as a ROS node that implements this functionality. It has
been designed to be a part of the lane localization pipeline. Consists
of the ROS node :py:class:`nodes.GroundProjectionNode` and the
:py:mod:`ground_projection` library.

GroundProjectionNode

.. autoclass:: nodes.GroundProjectionNode

Included libraries

.. automodule:: ground_projection

4.3.4.3. Style guideStyle guide
You probably noticed the plethora of funky commands in the above examples. These
are called directives and we’ll now take a closer look at them. The basic style of the doc-
umentation comes from reStructuredText, which is the default plaintext markup lan-
guage used by Sphinx. The rest are Sphinx directives which Sphinx then replaces with
markup which it creates from your docstrings.

1)1) Basic stylesBasic styles

• You can use *text* to italize the text.
• You can use **text** to make it in boldface.
• Values, names of variables, errors, messages, etc, should be in grave accent quotes:

``like that``

• Section are created by underlying section title with a punctuation character, at least
as long as the text:

DOCUMENTING YOUR CODE 51

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/20_documenting_code.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/20_documenting_code.md

✎

What a cool heading
===================

Nice subsection

A neat subsubsection
^^^^^^^^^^^^^^^^^^^^

• External links can be added like this:

For this, we use `Picamera <https://picamera.readthedocs.io/>`_
which is an external library.

• When describing standard types (like int , float , etc.) use

:obj:`int`

• If the type is an object of one of the libraries in the repository, then use the refer-
encing directives from the next section in order to create hyperlinks. If it is a message,
use the message type. If a list, a dictionary, or a tuple, you can use expressions like
:obj:`list` of :obj:`float`

• Attributes of a class can also be documented. We recommend that you do that for
all important attributes and for constants. Here are examples of the various ways you
can document attributes:

class Foo:
"""Docstring for class Foo."""

#: Doc comment for class attribute Foo.bar.
#: It can have multiple lines.
bar = 1

flox = 1.5 #: Doc comment for Foo.flox. One line only.

baz = 2
"""Docstring for class attribute Foo.baz."""

def __init__(self):
#: Doc comment for instance attribute qux.
self.qux = 3

self.spam = 4
"""Docstring for instance attribute spam."""

You can find more examples with reStructuredText here and here, and detailed specifi-
cation here.

2)2) RRefereferencing other objectsencing other objects

52 DOCUMENTING YOUR CODE

https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
https://docutils.sourceforge.io/docs/user/rst/quickref.html
https://docutils.sourceforge.io/docs/ref/rst/restructuredtext.html
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/20_documenting_code.md

✎

✎

✎

You can add a link to a different package, node, method, or object like that:

:py:mod:`duckietown`
:py:class:`duckietown.DTROS`
:py:meth:`duckietown.DTROS.publisher`
:py:attr:`duckietown.DTROS.switch`

All of these refer to the duckietown Python package. When dealing will nodes, things
are a bit trickier, because they are not a part of a package. However, in order to make
Sphinx work nicely with ROS nodes, we create a fake package that has them all as class-
es. Hence, if you want to refer to the CameraNode, you can do it like that:

:py:class:`nodes.CameraNode`

NNotote:e: We are considering replacing nodes with the repository name, so keep in mind
this might change soon.

3)3) CustCustom sectionsom sections

When documenting a node, you can (and you should) make use of the following ROS-
specific sections: Examples , Raises , Configuration , Subscribers , Subscriber , Pub-
lishers , Publisher , Services , Service , Fields , inputs , input , outputs , output .
If you need other custom sections you can add them in the docs/config.yaml file in
your repository.

4)4) Using autUsing autodocodoc

We use the autodoc extension of Sphinx in order to automatically create the markup
from the docstrings in our Python code. In particular, you can use the following direc-
tives:

.. automodule:: ground_projection

.. autoclass:: line_detector.ColorRange

.. autofunction:: line_detector.plotMaps

.. automethod:: nodes.CameraNode.save_camera_info

You can find more details here.

4.4.4.4. Ask the communityAsk the community
If you have any questions about good practices in software development, join the Slack
channel #info-developers.

DOCUMENTING YOUR CODE 53

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/20_documenting_code.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/20_documenting_code.md
https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html
https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/20_documenting_code.md
https://duckietown.slack.com/archives/CMQLLDAF8

✎

✎

UUNITNIT C-5C-5

Building the documentation of yBuilding the documentation of your codeour code

AAuthor:uthor: Aleksandar Petrov
Maintainer: Aleksandar Petrov

ContContentsents
Section 5.1 - Ask the community ..5454

This section explains the build process for the Sphinx documentation.

5.1.5.1. Ask the communityAsk the community
If you have any questions about good practices in software development, join the Slack
channel #info-developers.

54

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/21_building_the_documentation.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/25_duckietown_way/21_building_the_documentation.md
https://duckietown.slack.com/archives/CMQLLDAF8

✎

PPARARTT DD

SoftwSoftwarare Diagnosticse Diagnostics

One of the strenghts of Duckietown is that of allowing complex (sometimes state-of-
the-art) algorithms to run on low-end computing devices like the Raspberry Pi. Unfor-
tunately, low-end devices are not famous for their computational power, so we devel-
opers have to be smart about the way we use the resources available.
The Duckietown Diagnostics tool provides a simple way of recording the status of a sys-
tem during an experiment. The easiest way to think about it is that of an observer tak-
ing snapshots of the status of our system at regular temporal intervals.

ContContentsents
UnitUnit DD-1-1 - IntrIntroductionoduction..5656
UnitUnit DD-2-2 - Get StartGet Starteded..5858
UnitUnit DD-3-3 - RRefereferenceence..6161

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/40_sw_diagnostics/00_main.md

✎

✎

✎

✎

UUNITNIT DD-1-1

IntrIntroductionoduction

ContContentsents
Section 1.1 - Running example ..5656
Section 1.2 - When do I need it? ..5656
Section 1.3 - When do I run it? ..5656

1.1.1.1. RRunning eunning examplexample
Throughout this section we will refer to the toy example of a robot with a single camera
(just like our Duckiebots) in which camera drivers produce image frames at a frequen-
cy of 20Hz and we are interested in pushing the camera to its limit, i.e., 30Hz .

1.2.1.2. When do I need it?When do I need it?
You need to run the diagnostics tool every time you have made changes to a piece of
code and you want to test how these changes affect the footprint of your code on the
system resources and the system as a whole.
Considering our toy example above, we expect that changing the drivers frequency will
likely result in higher usage of resources in order to cope with the increase in images
that need to be processed. Sometimes these changes have a direct and expected effect
on the system’s resources, e.g., CPU cycles, RAM, etc. Others, they have effects that are
legitimate from a theoretical point of view but hard to exhaustively enumerate a priori,
e.g., increase in CPU temperature due to higher clock frequencies, increase in network
traffic if the images are transferred over the network.
The diagnostics tool provides a standard way of analyzing the response of a system to a
change.

1.3.1.3. When do I run it?When do I run it?
The diagnostics tool is commonly used for two use cases:
• analysis of steady states (long-term effects) of a system;
• analysis of transient states (short-term effects) of a system;
The steady state analysis consists of measuring the activity of a system in the long run
and in the absense of anomaly or changes. For example, if we want to check for mem-
ory leaks in a system, we would run a steady state analysis and look at the RAM usage
in a long period of time. In this case, we would run the diagnostics tool only after the
system reached a stable (steady) state and we don’t expect significant events to happen.
The transient state analysis consists of measuring how a system reacts to a change in
the short run. For example, you have a process that receives point clouds from a sensor
and stores them in memory to perform ICP alignment on them every T seconds. In this

56

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/40_sw_diagnostics/10_intro.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/40_sw_diagnostics/10_intro.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/40_sw_diagnostics/10_intro.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/40_sw_diagnostics/10_intro.md

case, we expect that this process will be fairly inactive in terms of CPU usage for most of
the time with periodical spikes every T seconds. Clearly, small values of T mean fewer
point clouds to align every time ICP fires but more frequent alignments while large val-
ues of T mean longer queues of point clouds to align every time ICP fires. We might be
interested in tuning the value of T so that those spikes do not starve other processes of
resources while still maximizing T . In this case, we would monitor the system around
those ICP events for different values of T . In this case, we would run the diagnostics
tool at any point in time for a duration of t > T seconds so that at least one event of
interest (e.g., ICP event) is captured.

INTRODUCTION 57

✎

✎

UUNITNIT DD-2-2

Get StartGet Starteded

In this section, we will see how to perform a diagnostics experiment.

NNotote:e: At the end of each diagnostics test, the resulting log is automatically transferred
to a remote server. If the diagnostics tool fails to transfer the log to the server, the tests
data will be lost and the test need to be run again.

ContContentsents
Section 2.1 - Run a (single test) diagnostics experiment..5858
Section 2.2 - Visualize the results..5959
Section 2.3 - One experiment, many tests ..5959

2.1.2.1. RRun a (single tun a (single test) diagnostics eest) diagnostics experimentxperiment
You can run a diagnostics test for 60 seconds on the target device ROBOT with the
command

dts diagnostics run -H ROBOT -G my_experiment -d 60

Let the diagnostics tool run until it finishes. A successful experiment concludes with a
log similar to the following:

. . .
[system-monitor 00h:00m:55s] [healthy] [8/8 jobs] [13 queued] [0
failed] ...
[system-monitor 00h:00m:58s] [healthy] [8/8 jobs] [13 queued] [0
failed] ...
INFO:system-monitor:The monitor timed out. Clearing jobs...
INFO:system-monitor:Jobs cleared
INFO:system-monitor:Collecting logged data
INFO:system-monitor:Pushing data to the cloud
INFO:system-monitor:Pushing to the server [trial 1/3]...
INFO:system-monitor:The server says: [200] OK
INFO:system-monitor:Data transferred successfully!
INFO:system-monitor:Stopping workers...
INFO:system-monitor:Workers stopped!
INFO:system-monitor:Done!

The most important thing to look for is the line

INFO:system-monitor:The server says: [200] OK

58

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/40_sw_diagnostics/20_get_started.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/40_sw_diagnostics/20_get_started.md

✎

✎

which indicates that the diagnostics log was successfully transferred to the remote di-
agnostics server.

2.2.2.2. Visualize the rVisualize the resultsesults
The diagnostics server collects diagnostics logs and organizes them according to the
given group, subgroup and hostname of the target machine of each test.
To check the outcome of a diagnostics test, open your browser and navigate to
https://dashboard.duckietown.org/diagnostics. Tests will be available on this page a
few seconds after the upload is complete.
Use the dropdowns Group and Subgroup to find your experiment and test. Remember,
when the subgroup is not explicitly specified with the argument -S/--subgroup , de-
fault is used.

Figure 2.1. Selecting diagnostics test on dashboard.duckietown.org

Use the tabs System , Resources , etc. to see the content of the diagnostics log.

2.3.2.3. One eOne experiment, manxperiment, many ty testsests
In many cases, your experiment is that of comparing two or more configurations or im-
plementations of part of your system. In these cases, you need to run multiple tests as
part of a single experiment. The diagnostics tool allows you to declare a group (-G/--
group) and a subgroup (-S/--subgroup) when you run a test. Use the group argument
to name your experiment and the subgroup to name the single tests.
Let us recall the example of Section 1.1 - Running example. We want to measure the
effects of changing the drivers frequency on the system, so we run (and monitor) the
system twice, a first time with the frequency tuned at 20Hz , and a second time with
the frequency at 30Hz . We call the overall eexperimentxperiment camera_frequency and the two
ttestsests, 20hz and 30hz respectively. We can use the following commands to run the two
tests described above, one before and the other after applying the change to the camera
drivers code.

dts diagnostics run -H ROBOT -G camera_frequency -S 20hz -d 60
dts diagnostics run -H ROBOT -G camera_frequency -S 30hz -d 60

We can now use the Diagnostics page available at https://dashboard.duckietown.org/
diagnostics. to visualize both tests side by side. Similarly to what we have done in Sec-
tion 2.2 - Visualize the results, we will use the dropdown buttons to select our tests and
add them to the list. Once we have both on the list, we can move to the other tabs to see

GET STARTED 59

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/40_sw_diagnostics/20_get_started.md
https://dashboard.duckietown.org/diagnostics
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/40_sw_diagnostics/20_get_started.md
https://dashboard.duckietown.org/diagnostics
https://dashboard.duckietown.org/diagnostics

how the results of the two tests compare.

60 GET STARTED

✎

✎

✎

UUNITNIT DD-3-3

RRefereferenceence

In this section, we will describe the various arguments that the diagnostics tool accepts.
Use them to configure the diagnostics tool to fit your needs.

ContContentsents
Section 3.1 - Usage ..6161
Section 3.2 - Options..6161

3.1.3.1. UsagUsagee
You can run a diagnostics test using the command:

dts diagnostics run -H/--machine ROBOT -G/--group EXPERIMENT -d/--dura-
tion SECONDS [OPTIONS]

3.2.3.2. OptionsOptions
The following table describes the optionsoptions available to the diagnostics tool.

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/40_sw_diagnostics/30_reference.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/40_sw_diagnostics/30_reference.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/40_sw_diagnostics/30_reference.md

Table 3.1. Options available to the command
ArgumentArgument TTypeype DescriptionDescription

-H
--machine

Machine where the diagnostics tool will run. This can
be any machine with a network connection to the tar-

get machine.
-T

--target
localhost Machine target of the diagnostics. This is the machine

about which the log is created.
--type auto Specify a device type (e.g., duckiebot, watchtower). Use

--help to see the list of allowed values.
--app-id ID of the API App used to authenticate the push to the

server. Must have access to the 'data/set' API endpoint
--app-se-

cret
Secret of the API App used to authenticate the push to

the server
-D

--data-
base

Name of the logging database. Must be an existing
database.

-G
--group

Name of the experiment (e.g., new_fan)

-S
--sub-
group

"default" Name of the test within the experiment (e.g., fan_mod-
el_X)

-D
--dura-
tion

Length of the analysis in seconds, (-1: indefinite)

-F
--filter

"*" Specify regexes used to filter the monitored containers

-m
--notes

"empty" Custom notes to attach to the log

--no-pull False Whether we do not try to pull the diagnostics image be-
fore running the experiment

--debug False Run in debug mode
--vv

--verbose
False Run in debug mode

62 REFERENCE

✎

PPARARTT EE

PrProjectsojects

AAuthor:uthor: Andrea F. Daniele
Maintainer: Andrea F. Daniele

This section of the book focuses on the projects that are made in Duckietown.

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/50_projects/00_projects.md

✎

✎

✎

PPARARTT FF

BenchmarkingBenchmarking

AAuthor:uthor: Linus Lingg
Maintainer: Linus Lingg

1)1) IntrIntroductionoduction

This section of the book focuses on the concept of behaviour benchmarking in Ducki-
etown. There will be first a brief general introduction to introduce the general architec-
ture of the Behaviour Benchmarking. The most important parts are explained as well
as some general information is given. The presentation as well as the repository corre-
sponding to the Behaviour Benchmarking are also available.

ContContentsents
Subsection 0.2.1 - Introduction
Subsection 0.2.2 - General Architecture
Subsection 0.2.3 - General Information
Subsection 0.2.4 - Goal
Subsection 0.2.5 - Future development
UnitUnit FF-1-1 - Lane FLane Following Benchmark Introllowing Benchmark Introductionoduction..6969
UnitUnit FF-2-2 - Lane FLane Following - Prollowing - Proceduroceduree ..7474
UnitUnit FF-3-3 - Benchmarks for other BehaBenchmarks for other Behavioursviours..8888

2)2) GenerGeneral Aral Architchitecturecturee

Below you can see the general architecture that was set up for the Behaviour Bench-
marking. The Nodes that are marked in green as well as the general architecture form
are the same for no mather what behaviour that is benchmarked. The other nodes
might vary slightly from behaviour to behaviour.

64

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/00_benchmarking.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/00_benchmarking.md
https://drive.google.com/file/d/17NK93umYwn4AWNISMRx_h7t9KTEcVVa4/view?usp=sharing
https://github.com/llingg/behaviour-benchmarking
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/00_benchmarking.md

So first of all, the Behaviour defines the experiment definition as well as the environ-
ment definition. Based on that the hardware set up is explained and can be done. After
this there will be a Hardware check which assures that everything is ready to compute
results that can then be compared fairly with other Benchmarks of the same behaviour.
Furthermore, the software set up will be explained and can be prepared. With all that
done, it is all ready to run the actual experiments in which all the needed data is record-
ed. It is necessary to run at least two experiments to be able to check if the data received
is reliable. Reliable means, that the there was no falsified measurement by the local-
ization system for example, and that “lucky” runs can be excluded for sure. Therefore,
the user is asked in the beginning to run at least two experiments, out of those mea-
surements it will then later, based on the repetition criteria, be concluded if this data is
reliable or if the user needs to run another experiment. Collecting all the needed data

BENCHMARKING 65

https://github.com/llingg/behaviour-benchmarking/tree/v1/packages/hw_check

means that on one hand the diagnostic toolbox is running to record all kind of informa-
tion about the overall CPU usage, memory usage etc as well as the CPU usage etc from
all the different containers running and even of each node. On the other hand a bag is
recorded directly on the Duckiebot which records all kind of necessary data published
directly by the Duckiebot which are information about its estimations, the latency, up-
date frequency of all the different topics etc. And last but not least, a bag is recorded
that records everything from the localization system (same procedure as offline local-
ization) which is taken as the Ground Truth . The localization system measures the po-
sition of the center of the April Tag placed on top of the localization standoff on the
Duckiebot. So each time the position of the Duckiebot or the speed (for example time
needed per tile etc) of the Duckiebot is mentioned it is always referred to the center of
the AprilTag on top of the Duckiebot. This means that these results require that this
April Tag has been mounted very precisely.
The recorded bags are then processed: The one recorded on the Duckiebot is processed
by the container analyze_rosbag which extracts the Information about latency, update
frequency of the nodes as well as the needed information published by the Duckiebot
and saves it into json files. The one from the localization system is processed as ex-
plained in the classical offline localization system to extract the ground truth informa-
tion about the whereabouts of the Duckiebot. The original post-processor just process-
es the apriltags and odometry from the bag and writes it in a processed bag. However,
there exists a modified version which extract the relative pose estimation of the Duck-
iebot and write it directly in a .yaml file (More details are given below). The graph-op-
timizer then will extract the ground truth trajectories of all the Duckiebots that were in
sight and store it in a yaml file. The data collected by the diagnostic toolbox does not
need any processing and only needs to be downloaded from this link.
The processed data is then analyzed in the following notebooks: 1. 95-Trajectory-sta-
tistics.ipynb: This extracts all the information measured by the localization system
and calculates all the things related to the poses of the Duckiebots. 2. 97-com-
pare_calc_mean_benchmarks.ipynb: In this notebook it is analyzed if the measure-
ments are stable enough such they can be actually compared to other results. There the
repetition criteria is checked and if the standard deviation is too high the user is told to
run another experiment to collect more data. As soon as the standard deviation is low
enough the mean of all the measurements is calculated and then stored into yaml file
that then can be compared to other results. 3. 96-compare_2_benchmarks.ipynb: This
notebook serves to do the actual comparison between two Benchmark results or to do
an analysis of your Benchmark (if there is no other one to compare to). It analyzes the
performance based on many different properties and scores the performance. In the
very end a final report can be extracted which summarizes the entire Benchmark.
So let me specify a couple of things:
• The environment definition includes the map design, the number of Duckiebots
needed to run this Benchmark, as well as the light condition.
• The experiment definition includes information about how to run the experiment
in which all the data is collected. So where to place the Duckiebots involved, what to
do, when the Benchmark is terminated etc. is defined there. Also, the metrics used to
actually score the behaviour as well as the actual scoring definition are defined.
• Repetition criteria defines which data we look at to check if the results are kind of

66 BENCHMARKING

https://docs.duckietown.org/daffy/opmanual_autolab/out/localization_demo.html
https://dashboard.duckietown.org/
https://github.com/llingg/behaviour-benchmarking/blob/v1/notebooks/95-Trajectory-statistics.ipynb
https://github.com/llingg/behaviour-benchmarking/blob/v1/notebooks/95-Trajectory-statistics.ipynb
https://github.com/llingg/behaviour-benchmarking/blob/v1/notebooks/97-compare_calc_mean_benchmarks.ipynb
https://github.com/llingg/behaviour-benchmarking/blob/v1/notebooks/97-compare_calc_mean_benchmarks.ipynb
https://github.com/llingg/behaviour-benchmarking/blob/v1/notebooks/96-compare_2_benchmarks.ipynb

✎

stable and therefor reliable. This is to sort out lucky runs for example. The reliability of
the data is judged based on the Coefficient of Variation.
• The Software preparation: As this Behaviour Benchmarking is there to actually test
the software , most of this is depending on which SW the user wants to test. However,
it also includes the preparation of the localization system etc. Moreover, to test a spe-
cific component/packages of dt-core, there is a prepared repository to simply add your
modified package and build/run it within a specific version of dt-core. This works for
all kind of contributions to dt-core that can be used in lane_following and/or indefinite
navigation. Also in this package, one can lighten the launch file a bit in case the contri-
bution is not very stable.
• The Hardware Check: is a docker container based on a simple python script that
runs the user through a couple of questions and verifies that all is done in a correct
fashion and all is prepared to be later fairly compared to other results.
Please note that the analysis is also possible if not all the data is collected, for example
if the user does not record a bag on the Duckiebot or if the Diagnostic Toolbox was not
running. At the moment the data recorded from the localization system is necessary to
get an actual scoring in the end, however this can easily be adapted.

3)3) GenerGeneral Informational Information

All the packages created for the Behvaiour Benchmarkin can be found here. This repos-
itory includes the following new contributions:
1. Packages:

◦ 08-post-processing: Slightly modified version of the original post-processor which
in addition to processing the bag also creates a yaml file including the relative lane
pose estimations made by the Duckiebot.
◦ analyze_rosbag: Package to process the bag recorded directly on the Duckiebot
and creates several .json file including the needed information about: updated fre-
quency of the nodes that are recorded, latency up to and including the detector node,
global constants that were set, number of segments detected at each time and the
pose (offset and heading) estimation of the Duckiebot.
◦ hw_check: Package that guides the user through a checklist to make sure all the
hardware is set up properly and to collect the information about the Duckiebot hard-
ware used for the benchmarking.
◦ light_lf: This package is in the end the same as the dt-core, however it allows the
user to easily add his contribution and to lighten the launch file for lane following
and indefinite navigation.

2. Notebooks:
◦ 95-Trajectory-statistics: Analyzes the yaml file created by the graph-optimizer
and the one created by the modified post-processor and extracts all kind of informa-
tion related to the actual location of the Duckiebot.
◦ 97-compare_calc_mean_benchmarks: Analyzes the yaml file created by the note-
book 95, the json file downloaded from the dashboard, as well as all the json files
created by the analyze_rosbag package. It checks the reliability and computes a mea-
surement summary that can be compared to others in the notebook 97

BENCHMARKING 67

https://en.wikipedia.org/wiki/Coefficient_of_variation
https://github.com/llingg/behaviour-benchmarking/tree/v1/packages/light_lf
https://github.com/llingg/behaviour-benchmarking/tree/v1/packages/hw_check
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/00_benchmarking.md
https://github.com/llingg/behaviour-benchmarking

✎

✎

◦ 96-compare_2_benchmarks: Analyzed the yaml files created by the notebook 97
of two different benchmarks of the same behaviour, or just analysis the performance
of one of them if only one is available. It will result in a nice overview of the general
performance.

Please note, that for each notebook there exists an example notebook that shows the
results computed when the notebook is run with actual data.

4)4) GoalGoal

The goal of this Behaviour Benchmarking is that for each behaviour and each major
version (Ex: Master19, Daffy, Ente etc) there is a huge data set out of which the mean of
all the measurements is calculated to build a stable and very reliable reference Bench-
mark. The developer can then compare its contribution to the results achieved by the
global Duckietown performance.
At the moment the user is asked to upload its recorded bags to this link. However, this
link should be changed as soon as possible as the storage is limited. The data storage
should be automated anyways.

5)5) FuturFuture deve developmentelopment

To design a Behaviour Benchmark in the future, all the needed packages and notebooks
can be found in this repository, simply (fork and) clone it and then add your contribu-
tion. The readme file found in the repository corresponds to the set up and preparation
of the lane following benchmark. Just copy it and adapt the sections that need to be
changed. The most important sections that need to be adapted are the actual environ-
ment and experiment set up and the topics one has to subscribe to for the bag recorded
on the Duckiebot.
• If needed adapt the the modified post-processor package by adding your code here,
such that other things are extracted out of the bag then just the pose estimation of the
Duckiebot for example.
• The Hardware check should remain the same.
• Adapt analyze_rosbag such that the additional information needed for your specific
benchmark is extracted out of the bag recorded on the Duckiebot, by editing this file.
• Adapt the notebooks such that they analyze the things needed for your specific
benchmark, however, it is strongly recommended to keep the same structure of first an-
alyzing the measurements of the localization system, then check the consistency of the
data and summarize it in one yaml file which then can be compared to other Bench-
marks.

68 BENCHMARKING

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/00_benchmarking.md
https://drive.google.com/drive/folders/1pkjvPl8VyOj8K6jeUHXSE0XNPyVqgQDg?usp=sharing
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/00_benchmarking.md
https://github.com/llingg/behaviour-benchmarking
https://github.com/llingg/behaviour-benchmarking/blob/v1/packages/08-post-processing/ros/src/processing_node/post_processor_node.py
https://github.com/llingg/behaviour-benchmarking/blob/v1/packages/analyze_rosbag/packages/analyze_rosbag/src/ros.py

✎

✎

✎

✎

UUNITNIT FF-1-1

Lane FLane Following Benchmark Introllowing Benchmark Introductionoduction

1.1.1.1. EnEnvirvironment Defonment Definitioninition
• 1 Duckiebot
• No natural light, just be white light coming from the ceiling
• Map: ‘linus_loop’

1.2.1.2. Experiment DefExperiment Definitioninition
• Run lane following for 50 seconds
• Termination criteria:

◦ Out of sight: 5 sec
◦ Crash / Too slow: 15 sec per tile

• Repetition criteria:
◦ Consistency in data

• Metrics:
◦ Behaviour
◦ Engineering data

Type of experiment is pretty obvious and is simply running lane following for 50 sec-
onds. The termination criteria’s, next to just when the bag recording is done, are out of
sight of the Duckiebot and crashes. This means that the Benchmark is stopped/short-
ened to the time where the Duckiebot was last seen if the Duckiebot was out of sight
of all the Watchtowers for more than 3 seconds or if the Duckiebot took more than 15
seconds to cross an entire Tile. This is only the case if the Duckiebot crashes or if Lane
Following really screws up. In the case of a crash the user is allowed to stop lane follow-
ing to prevent any damages but he is not allowed to actually move the Duckiebot until
the bag has finished its recording.

1.3.1.3. Mathematical Metrics DefMathematical Metrics Definitionsinitions
Below you can see the formulas applied to actually calculate the results.
Arithmetic mean:

Standard deviation (std):

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/10_LF/05_intro.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/10_LF/05_intro.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/10_LF/05_intro.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/10_LF/05_intro.md

✎

✎

Coefficient of variation (CV):

1.4.1.4. RRepetition Critepetition Criteriaeria
To be able to do a proper analysis of the performance, one has to be sure that the data is
reliable. The different data measured was analyzed over a bunch of experiments, and it
was concluded that the only data that needs be verified that it is stable is the one com-
ing from the localization system. As you can see here, the data measured on the Duck-
iebot concerning the update frequency the lag etc. do not change significantly between
different experiments of the same code. The same applies for the data measured on the
diagnostic toolbox (CPU usage or memory usage etc). Of course the stability of the data
is increased the more data there is, but one can clearly see that one gets a good idea
of the performance computational wise from one measurement. On the other hand as
one can see on the very last slide of the link above, the measurement coming from the
localization system can show some weird behaviour. This means, that it can happen,
that the trajectory measured by the localization system does not at all correspond to the
actual performance of the Duckiebot. To avoid that such falsified data influences the
scoring of the actual performance the standard deviation of the measurements of the
localization system is checked to assure stable and reliable measurements.
A CV in the range of 20% normally stands for an acceptable standard deviation, this
means that the std deviation compared to the mean does not very too much However
in this Benchmarking, the purpose of looking at the CV factor is only to be sure that
the experiment recorded was not a lucky or unlucky run, therefore, a CV below 100% is
already acceptable.
Therefore, the repetition criteria of the lane following Benchmark is, that all the CV of
the measurements that are based on the localization system are below 1.0 (=100 %).
To be more precise this means the following: For measurements like the mean of the
absolute lane offset (distance and angle to center line) calculated of the localization sys-
tem is not allowed to vary too much over the different experiment runs. Also properties
like Speed, number of tiles covered etc should not have a too large standard deviation
over all the experiment runs.
If one of these properties vary too significantly the user is tolled to run another experi-
ment to stabilize the measurements and verify them. Also the user is asked to check for
weird trajectory localization done by the localization system and sort this data out.
Like this it is avoided that the results are falsified by measurements that do not at all
correspond to the actual performance of the users software.

1.5.1.5. TTermination Critermination Criteriaeria
The Benchmark is officially terminated after the 50 seconds are up. However when the
Duckiebot is out of sight for more then 3 seconds or if the Duckiebot takes more then 30
seconds to get across 1 tile the Benchmark will be terminated early. This will be taken
into account into the final Benchmark score. An early termination will not be consid-
ered as a failure but will just lead to a lower score.

70 LANE FOLLOWING BENCHMARK INTRODUCTION

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/10_LF/05_intro.md
https://docs.google.com/presentation/d/1dcxJplfdvVpvFbF09yYH5Q-3zDIEU238BIdIZWKq5P8/edit?usp=sharing
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/10_LF/05_intro.md

✎1.6.1.6. ScoringScoring
In the Benchmark we consider on one hand the actual performance of the code, which
means the actual behaving, and on the other hand we consider the engineering data
performance. The engineering data that was recorded during the Benchmark gives you
an insight on the CPU usage, update frequency of the different nodes, the latency etc.
The metrics used here to generate a score are the following (please not that in brackets
the priorities are noted, H = High priority, M = Medium priority and L = low priority):
1. Behaviour performance

◦ Mean absolute distance of the Duckiebot to the center of the lane [m] (H)
◦ Mean absolute heading offset of the Duckiebot compared to the reference head-
ing [deg] (H)
◦ Mean absolute difference between the calculated/estimated offset by the Duck-
iebot and the actual offset calculated/measured by the Watchtowers [m] (M)
◦ Mean absolute difference between the calculated heading error by the Duckiebot
and the actual heading error calculated by the Watchtowers. [deg] (M)
◦ Number of crashes (number of early stops due to slow driving or crashes devided
by the number of experiments ran) (H)
◦ Mean time until termination [seconds] (L)
◦ Mean time needed per tile [seconds/tile] (L)

2. Engineering data performance:
◦ Mean latency (lag up to and including the detector node) [ms] (H)
◦ Mean of the update frequency of the different nodes [Hz] (H)
◦ Mean of the CPU usage of the different nodes in the dt-core container [%] (H)
◦ Mean of the Memory usage of the different nodes in the dt-core container [%] (L)
◦ Mean of the nr of Threads of the different nodes in the dt-core container (L)
◦ Overall CPU usage [%] (H)
◦ Overall Memory usage [%] (M)
◦ Overall SWAP usage [%] (M)

The score then is calculated separately for the Behaviour performance and the En-
ginieering data performane, where the score is increased by +5 if the property has high
priority, +3 if the property has medium priority and +1 if the property has low priori-
ty. The overall score is then simply the sum of the behaviour score and the engineering
data score.
Please note that the localization of the Duckiebot that is measured by the watchtowers
is with respect to the center of the April Tag that is placed on your Duckiebot. This
means that all kind of measurements and results that talk about the position of the
Duckiebot are refering to the center of the April Tag on top of the Duckiebot. This
means that if this Apriltag is not placed very accurately, your results will be false.
Also note that during the final report produced at the very end you will see many dif-
ferent kind of results, also some of it which is not taken into account for the actual
scoring. You can easily add a property to the scoring condition or change the priority
of the property if you want to focus your score on something specific. This is simply

LANE FOLLOWING BENCHMARK INTRODUCTION 71

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/10_LF/05_intro.md

✎

done by changing the lists called: high_prio_beh, low_prio_beh, medium_prio_beh,
high_prio_eng, low_prio_eng respectively medium_prio_eng.

1.7.1.7. GenerGeneral informational information
The Benchmarking is set up in a way such that up to to point 6 the procedure stays
the same no matter what you are Benchmarking. Starting at point 6 there will be slight
changes in the processing and analysis of the data depending on the Benchmark. How-
ever these changes are very small and the main changes are within the metrics etc. The
goal of every Benchmark is to produce a final report that reports the results and com-
pares them to another Benchmark of your choice. Ideally this benchmark it is com-
pared to is the mean of all the Benchmarks ran all over the world of this type ran with
the standard Duckietown software (for example the stable daffy commit of the contain-
ers dt-core , dt-car-interface , dt-duckiebot-interface , dt-ros-commons). How-
ever to be able to compare your Software with another one in any type of Benchmark,
you first need to run at least 2 experiments. For each experiment there will be some
recorded bags etc which then will be processed, analyzed and evaluated. The result-
ing evaluations of each experiment you run will then be again analyzed and for all the
meaningful measurements, the means, medians and standard deviations are calculat-
ed. For each meaningful measurement the coefficient of variation is calculated and if
this value is below 1 you get a green light to compute the final Benchmarking report.
This means that you have to run at least to experiments and then start running the
notebook that calculates the variation of your computed results after each new experi-
ment. So the amount of experiments that need to be run depend on the stability of your
results. As soon as you get a green light of all the important results, compute the mean
of all the results over all the experiments you ran (at least two). With this .yaml file
including all the means, you are finally ready to run the comparison/analysis of your
results. This will then generate a nice report that analysis your solution as well as com-
pares it to the results of another Benchmark you selected(can be any Benchmark ran
of the same type). Based on the final report file you get at the end you can easily tell
if your Software solution did improve the overall Performance or not and where your
solution is better and where it is worse.

NNotote:e: The procedure explained below runs the diagnostic toolbox, records a bag from
the localization system, records a bag directly on the Duckiebot and at the same time
the acquisition bridge. Running for example lane_following or indefinite_navigation
whilst collecting all that data might not work well as there is not enough CPU. This
is because the localization system is at the moment not very efficient. However, this
will change in the near future and this issue will be solved.

Nevertheless, at the moment if your Duckiebot does whatever it wants when all is run-
ning and you are sure it is not because of your code, try to reduce the data recording
to the essential. This means, first just don’t run the diagnostic toolbox as this informa-
tion is not the most crucial. If this still does not help, just record the bag from the local-
ization system as this will give you at least some information about the actual perfor-
mance of the behaving. In the case where you cannot record all the data, just ignore the
according steps in the data analysis and complete the ones based on the bags you actu-
ally have. Experiment have shown that the data collected of the diagnostic toolbox do

72 LANE FOLLOWING BENCHMARK INTRODUCTION

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/10_LF/05_intro.md
https://www.researchgate.net/post/What_do_you_consider_a_good_standard_deviation

not really change from experiment to experiment, you can also run one experiment just
running the diagnostic toolbox and then run this analysis on the data collected there.
The same can be done with the bag that is collected on the Duckiebot.
So a possible procedure as long as the localization system is not very efficient to first
run some experiments recording just a bag from the localization system, run one exper-
iment running the diagnostic toolbox next to it and then one experiments recording the
bag directly on the Duckiebot. The Notebooks analyzing the data can handle all kind
of different data recording configurations. However, it is important to say that the more
experiments that were run with your code the more reliable the data and therefore, the
more accurate the performance scoring.
For each Notebook there is an Example notebook that shows the results/outputs
achieved by the notebooks when running them with actual data.
Please note that if you don’t have a localization system available, just ignore everything
related to the localization system. Then within the notebooks, just upload the Duck-
iebot relative pose estimation .json file called BAGNAME_duckiebot_lane_pose.json cre-
ated by the analyze_rosbag package and take these measurements as ground truth of
the relative Duckiebot pose. In this case all the measurements about the speed, tiles
covered per second etc won’t be calculated. However you can still get a nice idea about
your performance based on the estimations and the engineering data recorded.

LANE FOLLOWING BENCHMARK INTRODUCTION 73

✎

✎

✎

✎

UUNITNIT FF-2-2

Lane FLane Following - Prollowing - Proceduroceduree

2.1.2.1. RRequirequireses
• Requires: Duckiebot (correctly assembled, initialized and calibrated) in the version
you want to Benchmark daffy, Master19 etc.)
• Requires: Localization standoff
• Requires: Autobot
• Requires: 2 straight and 4 curved tiles
• Requires: At least 4 Watchtowers in WT19B configuration
• Requires: X Ground April tags
• Results: Lane Following Benchmarking

2.2.2.2. Duckiebot HarDuckiebot Hardwdwarare set upe set up
Below a few things you have to be careful with:
• Be careful with placing the April Tag in the very center of the DB as the localization
system that measures the Ground Truth expects the April Tag to be exactly in the cen-
ter! Future work potential!
• Make sure that standoff has an April Tag with a different name as your Duckiebot!
So if you use the Autobot18 April Tag for example, make sure your duckiebot is named
differently!
• Set the Gain of your Duckiebot to 1.0 by following the instructions found here

2.3.2.3. Loop Assembly and map makingLoop Assembly and map making
Pleas note that the loop used for these benchmarks does NOT respect the Duckietown
specifications and rules as it is not allowed to have two lanes next to each other without
any visual barrier. However as all the experiments worked out fine and as the space was
limited, the Benchmarks were done on this loop anyways. In the future it is strongly
recommended to change the settings to a 3x3 loop that does respect the Duckietown
specifications. This can be done without having to change anything else, as the result
computed etc will work on any kind of loop.
First assemble the tiles to a 2x3 closed loop as seen below.

74

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/10_LF/10_procedure.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/10_LF/10_procedure.md
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/building_duckiebot_c0.html
https://docs.duckietown.org/DT19/opmanual_duckiebot/out/building_duckiebot_c0.html
https://docs.duckietown.org/daffy/opmanual_autolab/out/autolab_autobot_specs.html
https://docs.duckietown.org/daffy/opmanual_autolab/out/autolab_autobot_specs.html
https://docs.duckietown.org/daffy/opmanual_duckietown/out/dt_ops_appearance_specifications.html
https://docs.duckietown.org/daffy/opmanual_autolab/out/watchtower_hardware.html
https://github.com/duckietown/docs-resources_autolab/blob/daffy/AprilTags/AprilTags_localization_ID300-399.pdf
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/10_LF/10_procedure.md
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/wheel_calibration.html
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/10_LF/10_procedure.md
https://docs.duckietown.org/daffy/opmanual_duckietown/out/dt_ops_appearance_specifications.html
https://docs.duckietown.org/daffy/opmanual_duckietown/out/dt_ops_appearance_specifications.html

✎

✎

Further place the Watchtowers around the loop such that each part of it is seen by at
least one Watchtower. To get really accurate results it is recommended to place them as
seen below.

Please note that it is recommended to check what the watchtowers actually just see the
loop. Therefor place them in a way such that they see as little from the outside of the
loop as possible.
Fork and clone the Duckietown-world repository and follow the instructions found
here to create your own map. Or simply add the linus_loop folder into the visualiza-
tion/maps folder of your duckietown-world repository and the linus_loop yaml file into
the src/duckietown_world/data/gd1/maps folder of your duckietown-world repository.
Then place at least 8 Ground April Tags roughly as seen in the images such that each
watchtower sees at least 2 Apriltags. After follow the instructions found here to add
their exact position to the map.

2.4.2.4. Localization Set upLocalization Set up
Set up the offline localization following the instructions found here (Steps 3.1-3.5).

2.5.2.5. SoftwSoftwarare pre prepareparationation
• Make sure your duckietown shell is set to the version daffy for the upcoming pro-
cedure, even when you flashed you Duckiebot on Master19. Run the command:

◦ dts --set-version daffy

LANE FOLLOWING - PROCEDURE 75

https://github.com/duckietown/duckietown-world
https://docs.duckietown.org/daffy/opmanual_autolab/out/autolab_map_making.html
/linus_loop_data/linus_loop
/linus_loop_data/linus_loop_no_at.yaml
https://docs.duckietown.org/daffy/opmanual_autolab/out/localization_apriltags_specs.html
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/10_LF/10_procedure.md
https://docs.duckietown.org/daffy/opmanual_autolab/out/localization_demo.html
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/10_LF/10_procedure.md

• On your local computer create a folder called bag

• (Fork and) clone the behaviour-benchmarking repository
• Be sure that dt-core , dt-car-interface , dt-duckiebot-interface , dt-ros-com-
mons images are updated according to the version you are using.
If not, for daffy pull:

* `docker -H BOTNAME.local pull duckietown/dt-core:daffy-
arm32v7@sha256:4c7633c2041f5b7846be2346e0892c9f50987d2fd98d3479ec1a4cf378f52ee6`
* `docker -H BOTNAME.local pull duckietown/dt-car-interface:daffy-
arm32v7@sha256:e3db984157bf3a2b2d4ab7237536c17b37333711244a3206517daa187c143016`
* `docker -H BOTNAME.local pull duckietown/dt-duckiebot-interface:daffy-
arm32v7@sha256:94a9defa553d1e238566a621e084c4b368e6a9b62053b02f0eef1d5685f9ea73`
* `docker -H BOTNAME.local pull duckietown/dt-ros-commons:daffy-
arm32v7@sha256:20840df4cd5a8ade5949e5cfae2eb9b5cf9ee7c0`

If not, for Master19 pull:

* `docker -H BOTNAME.local pull duckietown/dt-core:daffy-
arm32v7@sha256:4c7633c2041f5b7846be2346e0892c9f50987d2fd98d3479ec1a4cf378f52ee6`
* `docker -H BOTNAME.local pull duckietown/dt-car-interface:daffy-
arm32v7@sha256:e3db984157bf3a2b2d4ab7237536c17b37333711244a3206517daa187c143016`
* `docker -H BOTNAME.local pull duckietown/dt-duckiebot-interface:daffy-
arm32v7@sha256:94a9defa553d1e238566a621e084c4b368e6a9b62053b02f0eef1d5685f9ea73`
* `docker -H BOTNAME.local pull duckietown/dt-ros-commons:daffy-
arm32v7@sha256:20840df4cd5a8ade5949e5cfae2eb9b5cf9ee7c0`

Please note, that you do not have to pull the specific tags above if you want to test a new
version of any of the containers. However if you want to test a contribution to dt-core
which you wrote (for example a new line_detector) it is recommended to pull the ac-
cording images above.
• If all the images are at the right version you can start the following steps:
For daffy:

76 LANE FOLLOWING - PROCEDURE

https://github.com/llingg/behaviour-benchmarking

✎

1. Make sure all old containers from the images `dt-duckiebot-inter-
face`, `dt-car-interface`, and `dt-core` are stopped. These containers
can have different names, instead look at the image name from which
they are run.

2. Start all the drivers in `dt-duckiebot-interface`:

* `dts duckiebot demo --demo_name all_drivers --duckiebot_name BOT-
NAME --package_name duckiebot_interface --image duckietown/dt-duckiebot-
interface:daffy`

and the glue nodes that handle the joystick mapping and the kinemat-
ics:

* `dts duckiebot demo --demo_name all --duckiebot_name BOTNAME --
package_name car_interface --image duckietown/dt-car-interface:daffy`

Make sure that this worked properly.

3. Within the folder _packages/light_lf_ of the behaviour-benchmarking
repository:

1. You can **build** the docker container as follows:

- `docker -H BOTNAME.local build --no-cache -t light_lf:v1 .`

2. After that, if there were no errors, you can **run** the
light_lf:

- `docker -H BOTNAME.local run -it --name behaviour_benchmark-
ing --rm -v /data:/data --privileged --network=host light_lf:v1`

For Master19:

Follow the instructions found [here](https://docs.duckietown.org/DT19/
opmanual_duckiebot/out/demo_lane_following.html) to start lane follow-
ing, or the instructions found [here](https://docs.duckietown.org/DT19/
opmanual_duckiebot/out/demo_indefinite_navigation.html) to start the in-
definite navigation.

2.6.2.6. AAdd ydd your contribution in daffyour contribution in daffy
To see if you contribution has improved the Lane following just add your contribution
into the packages/light_lf/packages folder and build the container again:
• docker -H BOTNAME.local build --no-cache -t light_lf:BRANCH_NAME .

Then run your version of dt-core:
• docker -H BOTNAME.local run -it --name behaviour_benchmarking --rm -v /da-
ta:/data --privileged --network=host light_lf:BRANCH_NAME

LANE FOLLOWING - PROCEDURE 77

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/10_LF/10_procedure.md

✎

✎

For example, when you have worked one the lane_filter, then simply add your entire
lane_filter folder into the folder packages/light_lf/packages. Please make sure that you
use the precise name, as then the default version of whatever package is automatically
replaced by yours. To get all the different packages in which you can make changes or
work in please check here.
If you would like to run indefinite_navigation instead of just lane_following, just un-
comment line 3 in the light_lf.launch file found in light_lf/packages/light_lf/launch
folder and comment out line 2.
In the end it is the same as if you would simply clone the dt-core repository and build-
ing and running this on your Duckiebot. However, it is suggested to develop as you
wish and then for the actual Benchmarking to use the way explained above which uses
a lighter version of the launch files. This guarantees the benchmarks to be comparable.

2.7.2.7. HarHardwdwarare Check:e Check:
First of all, for each Duckiebot involved, run the hw_check you can find within the
cloned behaviour-benchmarking repository. Therefor, follow the following steps:
• Go into the folder hw_check by running:

◦ cd ~/behaviour-benchmarking/packages/hw_check

• Build the container by running:
◦ docker -H BOTNAME.local build --no-cache -t hw_check:v1 .

• Then run it by running:
◦ docker -H BOTNAME.local run -it --network host -v /data:/data -v /sys/
firmware/devicetree:/devfs:ro hw_check:v1

Then follow the instructions within the terminal.
• When the Docker Container has finished, visit: http://BOTNAME.local:8082/config
and download the .yaml file with your information in the name.
• Place the .yaml file within the data/BenchmarkXY folder of your behaviour-bench-
marking repository.
• Furthermore, it is suggested that you set up your own autolab fleet rooster. However,
this is not necessary.

2.8.2.8. Duckiebot prDuckiebot prepareparation:ation:
To be able to record a rosbag on your Duckiebot please follow the steps below. This ros-
bag records all messages publisher to the for the specific Benchmark important nodes.
The steps below prepare Terminal 4 of the four terminals mentioned below. Please note
that the rosbag that will be recorded will automatically be saved on your USB drive.
• Plug a USB drive (of at least 32 Gb) into your Duckiebot
• Ssh into your Duckiebot by running:

◦ ssh AUTOBOT_NAME

◦ Within your Duckiebot, create a folder with the name bag by running the com-
mand:

78 LANE FOLLOWING - PROCEDURE

https://github.com/duckietown/dt-core/tree/daffy/packages
https://github.com/duckietown/dt-core
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/10_LF/10_procedure.md
https://docs.duckietown.org/daffy/opmanual_autolab/out/autolab_fleet_roster.html
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/10_LF/10_procedure.md

✎

◦ sudo mkdir /data/bag

◦ Use the command lsblk to see where your USB drive is located. Under name
you should see sda1 or sdb1 and the size should be a bit less then the actual size of
your drive (about 28.7 Gb for a 32 Gb drive)
◦ Then mount the folder created above to your USB drive by running:
◦ sudo mount -t vfat /dev/sdb1 /data/bag/ -o uid=1000,gid=1000,umask=000

◦ Then exit your Duckiebot by pressing Crtl + d

• Then start and enter a container on your Duckiebot by running:
◦ dts duckiebot demo --demo_name base --duckiebot_name AUTOBOT_NAME

• Then prepare the command to record a rosbag within that container:
◦ rosbag record -O /data/bagrec/BAGNAME_duckiebot.bag --duration 50 /AU-
TOBOT_NAME/line_detector_node/segment_list /AUTOBOT_NAME/lane_filter_node/
lane_pose /rosout

Please note that if you are using Master19 you should subscribe to /AUTOBOT_NAME/
lane_controller_node/lane_pose instead of /AUTOBOT_NAME/lane_filter_node/
lane_pose

2.9.2.9. Place yPlace your Duckiebot within the map:our Duckiebot within the map:
Place your Duckiebot in the beginning of the straight part that is on the bottom of the
loop relative to the origin of the coordinate system (see image below) of the loop on the
outer line such that the Duckiebot drives around the the loop counter-clockwise. Below
you see an image on where you should place the Duckiebot, in this image the origin
of the global coordinate frame of the map (so the point from where you measured the
distances of the April Tags when you added them to the map) lies in the bottom right
(in the corner near the Duckiebot).

LANE FOLLOWING - PROCEDURE 79

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/10_LF/10_procedure.md

✎2.10.2.10. PrPreparepare 4 te 4 terminals:erminals:
Make sure that you carefully read through the steps and the note section below before
starting up everything. It is important that you start recording the bags at roughly the
same time and press a to start lane following or indefinite navigation straight after.
Therefor first starting the diagnostic toolbox, then start recording both the bags and
straight after start lanefollowing by pressing ‘a’.
• Terminal 1: Run the diagnostic toolbox on your Duckiebot:

◦ dts diagnostics run -G Name_BehBench_LF -d 70 --type duckiebot -H BOT-
NAME.local

• Terminal 2: Start the keyboard control on your Duckiebot:
◦ dts duckiebot keyboard_control BOTNAME To start lane_following press ‘a’ on
your keyboard

• Terminal 3: Open a Docker container ros being pre-installed by running the com-
mand below oror record a rosbag directly on your computer if you have the necessary set-
up installed:

◦ dts cli
Then within this container record a rosbag that subscribes everything published by the
localization system by running:

◦ rosbag record -a --duration=50 -O BAGNAME_localization.bag

• Terminal 4: Run the command already prepared above to record a rosbag that sub-
scribes to the needed topics.
• Note:

◦ If your Duckiebot crashes, you can stop lane following by pressing s , butbut please

80 LANE FOLLOWING - PROCEDURE

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/10_LF/10_procedure.md

✎

let the recordings of the bags as well as the Diagnostic Toolbox finish normally.
◦ If your Duckiebot leaves the loop, make sure that you do notnot stop lanefollowing
until the Duckiebot was out of sight of the watchtowers for at least 3 seconds oror just
go and grab the Duckiebot when it left the loop and take it completely out of sight
manually, then stop the lanefollowing.
◦ For the BAGNAME please use the following convention:
◦ Country_Autolab_LoopName_Date_GithubUserName_HWConfig_SWConfig

◦ Where:
◦ Country : is the country you ran your benchmark (Ex. CH, USA, DE etc.)
◦ Autolab : is the Autolab you ran your benchmark in (Ex. ETHZ etc.)
◦ LoopName : is the name of the loop on which you recorded your benchmark, at
the moment this should be linus_loop

◦ Date : is the date on which you ran the benchmark in the format DDM-
MYEAR(Ex. 17022020)
◦ GithubUserName : is your github username (Ex. duckietown)
◦ HWConfig : is the hardware configuration of the Duckiebot you used (Ex. DB18,
DB19 etc.)
◦ SWConfig : is the software configuration used on the Duckiebot (Ex. Daffy, Mas-
ter19 etc.)

2.11.2.11. File gFile gathering:athering:
After the rosbag recording as well as the Diagnostic Toolbox have finished you can stop
the Duckiebot by pressing ‘s’ on your keyboard. Then do the following steps:
• Exit the container of Terminal 4 by pressing: crt+d
• Ssh into your Duckiebot again by running:

◦ ssh AUTOBOT_NAME

• Within your Duckiebot, unmount the folder by running:
◦ sudo umount /data/bag

• Then remove the USB drive from your Duckiebot and plug it into your local Com-
puter. Copy the BAGNAME_duckiebot.bag that should be on your USB drive into the
folder bag on your local computer.
• Copy the recorded rosbag of the localization system from the Docker container onto
your local computer into the path_to_bag_folder (should be simply bag) by running:

◦ sudo docker cp dts-cli-run-helper:/code/catkin_ws/src/dt-gui-tools/
BAGNAME_localization.bag ~/path_to_bag_folder or generally:
◦ sudo docker cp Docker_Container_Name:/place_within_container/
where_bag_was_recorded/BAGNAME_localization.bag ~/path_to_bag_folder

• Make sure that both the bags are readable by opening the bag folder in a terminal
and running:

◦ sudo chmod 777 BAGNAME_localization.bag

LANE FOLLOWING - PROCEDURE 81

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/10_LF/10_procedure.md

✎

◦ sudo chmod 777 BAGNAME_duckiebot.bag

• To get the information recorded by the diagnostic toolbox, visit dashboard and login
using your Duckietown token. Then navigate to Diagnostics and in the drop down
menu Group select Name_BehBench_LF and in the drop down menu Time the corre-
sponding time when you ran the Benchmark. After add the data by pressing onto the
green plus and download the .json file by pressing the Download log button.
• Place the download .json file within you bag folder and rename it to BAGNAME_di-
agnostics.json .
• To help the Duckietown community to gather the logs of the recorded bags, please
create a folder, named BAGNAME, containing the two bag files as well as the .json file.
Make zip of this folder and upload it to the bag folder found under this link.

2.12.2.12. PrProcessing the rocessing the recorecorded bags:ded bags:
You need to know where your bag is. The folder containing it is referred as
path_to_bag_folder in the command below. It is recommended to create new separate
folders for each Benchmark (with date and/or sequence number). If you followed
the instructions above, your bags are located in the folder bag . Example for
path_to_bag_folder is /home/linus/bag.
• Cd into the package 08-post-processing found in your behaviour-benchmarking
repository by running:

◦ cd behaviour-benchmarking/packages/08-post-processing

• Then build the repository by running:
◦ docker build -t duckietown/post-processing:v1 .

• Then run the post_processor for the rosbag of the localization system by running:
◦ docker run --name post_processor -it --rm -e INPUT_BAG_PATH=/data/
BAGNAME_localization -e OUTPUT_BAG_PATH=/data/processed_BAGNAME_localiza-
tion.bag -e ROS_MASTER_URI=http://192.168.1.97:11311 -v path_to_bag_fold-
er:/data duckietown/post-processing:v1

This runs a slightly modified version of the original found here. (To run the original use
the following command:

◦ docker run --name post_processor -dit --rm -e INPUT_BAG_PATH=/data/
BAGNAME_localization -e OUTPUT_BAG_PATH=/data/processed_BAGNAME_localiza-
tion.bag -e ROS_MASTER_URI=http://YOUR_IP:11311 -v PATH_TO_BAG_FOLDER:/da-
ta duckietown/post-processor:daffy) Note that when running the original post-
processor there won’t be a file created called BAGNAME_db_estimation.yaml which is
necessary for the some of the Benchmarks (Ex. Lane Following)

When the container stops, you should have a new bag called processed_BAGNAME_lo-
calization.bag as well as a new .yaml file called BAGNAME_db_estimation.yaml inside
of your path_to_bag_folder . (This can take more than a minute, please be patient)

◦ Make sure that those files are readable by opening the path_to_bag_folder in a
terminal and running:

◦ sudo chmod 777 BAGNAME_db_estimation.yaml
◦ Then place the file called BAGNAME_db_estimation.yaml into the folder ~/behav-

82 LANE FOLLOWING - PROCEDURE

https://dashboard.duckietown.org/
https://drive.google.com/drive/folders/1pkjvPl8VyOj8K6jeUHXSE0XNPyVqgQDg?usp=sharing
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/10_LF/10_procedure.md
https://github.com/duckietown/duckietown-cslam/tree/master/08-post-processing

iour-benchmarking/data/BenchmarkXY/yaml/post_processor .
• Remember from Unit B-4 - Autolab map, that you created a map. Now is the
time to remember on which fork you pushed it (the default is duckietown), and what
name you gave to your map (for this Benchmark this should be linus_loop). The map
file needs to be in the same folder as the rest of the maps. They are respectively the
YOUR_FORK_NAME and YOUR_MAP_NAME arguments in the following command
line. Please run the graph-optimizer by running:

◦ docker run --rm -e ATMSGS_BAG=/data/processed_BAGNAME_localization.bag
-e OUTPUT_DIR=/data -e ROS_MASTER=YOUR_HOSTNAME -e ROS_MASTER_IP=YOUR_IP
--name graph_optimizer -v path_to_bag_folder:/data -e DUCKI-
ETOWN_WORLD_FORK=YOUR_FORK_NAME -e MAP_NAME=YOUR_MAP_NAME duckietown/
cslam-graphoptimizer:daffy

This will generate at least one .yaml file that will be stored in the folder
path_to_bag_folder . If you followed the instructions and placed an April Tag with a
different name than you Duckiebot on your localization standoff, you should find two
.yaml files. One will be named like your Duckiebot, and the other one like the name
of the April Tag on you Duckiebot (Ex. autobot01.yaml). For the benchmarking we are
only interested in the .yaml file that has the same name as the April Tag on top of your
Duckiebot has.

◦ Make sure that those files are readable by opening the path_to_bag_folder in a
terminal and running:

◦ sudo chmod 777 APRILTAGID.yaml

◦ Then place this file in the folder ~/behaviour-benchmarking/data/Bench-
markXY/yaml/graph_optimizer

• For the rosbag recorded on the Duckiebot, run analyze-rosbag by:
◦ cd into the analyze_rosbag folder found in behaviour-benchmarking repository
by running cd behaviour-benchmarking/packages/analyze_rosbag

◦ Build the repository by running:
◦ dts devel build -f --arch amd64

◦ Then run it with:
◦ docker run -v path_to_bag_folder:/data -e DUCKIEBOT=AUTOBOT_NAME
-e BAGNAME=BAGNAME_duckiebot -it --rm duckietown/behaviour-benchmark-
ing:v1-amd64

◦ This will create five .jsonfiles within the bag folder that will be used for the
Benchmarking later. The .json files are named:

◦ BAGNAME_duckiebot_constant.json : containing the value of each of the con-
stants that was used for the experiment
◦ BAGNAME_duckiebot_lane_pose.json : containing the information about the
relative pose estimation of the Duckiebot
◦ BAGNAME_duckiebot_node_info.json : containing information about the up-
date frequency of the different nodes, the number of connections etc)
◦ BAGNAME_duckiebot_segment_count.json : containing information about the
number of segments detected at each time stamp

LANE FOLLOWING - PROCEDURE 83

https://docs.duckietown.org/daffy/opmanual_autolab/out/autolab_map_making.html

✎

◦ BAGNAME_duckiebot_latencies.json : contains information about the latency
measured from the very beginning up to and including the detector node

◦ Make sure that those files are readable by opening the bag folder in a terminal
and running:

◦ sudo chmod 777 FILENAME.json

◦ Then place all those files in the folder ~/behaviour-benchmarking/data/Bench-
markXY/json

2.13.2.13. RResult analysis presult analysis prepareparation:ation:
• Place the .yaml file created by the graphoptimizer with the name of the April Tag
that is on top of your Duckiebot into the data/BenchmarkXY/yaml/graph_optimizer
folder (please note that it is important that you take the correct .yaml file as the one
named after your actual Duckiebot should notnot be placed within the mentioned fold-
er). Then place the .yaml file created by the post_processor called BAGNAME_db_esti-
mation.yaml into the data/BenchmarkXY/yaml/post_processor folder. Also place all
the .json files (the one downloaded from the dashboard as well as the 5 created by
the analyze_rosbag container) into the data/BenchmarkXY/json folder of your behav-
iour_benchmarking repository.
• Note that XY stands for a number, so for your first Benchmark name the folder
Benchmark01.
• Create a virtual environment as you already did for when you added the map
to your duckietown-world repository or when you added the exact position of the
ground april tags. However, this time, please create this virtual environment within
your cloned behaviour_benchmarking repository by following the instructions below:

a. First, if not already done, install venv by running:
◦ sudo apt install -y python3-venv

b. Then, cd into your behaviour_benchmarking repository, and create the venv:
◦ cd ~/behaviour_benchmarking

◦ python3.7 -m venv duckietown-world-venv

◦ source duckietown-world-venv/bin/activate

c. Now, you can setup duckietown-world. Inside of the virtual environment (you
should see “(duckietown-worl-venv)” in front of your prompt line), please run:

◦ python3 -m pip install --upgrade pip

◦ python3 -m pip install -r requirements.txt

◦ python3 -m pip install jupyter

◦ python3 setup.py develop --no-deps

d. Then start the notebook:
◦ jupyter notebook

If you encounter any issues with the steps above, please click here for more detailed
instructions.
e. Navigate to the notebooks

84 LANE FOLLOWING - PROCEDURE

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/10_LF/10_procedure.md
https://docs.duckietown.org/daffy/opmanual_autolab/out/autolab_map_making.html

✎2.14.2.14. RResult computation:esult computation:
In the following it is briefly explained how to achieve some actual results based on the
recorded data. The first two steps have to be repeated for each experiment you ran for
this Benchmark. They will extract and analyze the engineering data as well as the ac-
tual behaviour. The further steps then will help you decide weather you ran enough
experiments or not and then finally let you compare your Benchmark to others. Please
note, that detailed explanation on what exactly is calculated and how it is analyzed is
explained in the notebooks directly. So if you are interested in more detail what exact-
ly happens, please have a detailed look at them and read the comment when running
them. Within the final report which will be the end result, you will also fined some de-
tailed information on what is taken into account ect. There are some instructions with-
in the notebooks, however, they are mostly designed to be ran without having to do
much, so the following steps won’t take long. But please read the instructions carefully.
If you followed the instructions above you ran at least two experiments. Please run for
each experiment you have already done the first steps before continuing.
• First open the notebook called 95-Trajectory-statistics and follow the in-
structions there. To run this Notebook, you will need the file called AutobotAPRIL-
TAGNB.yaml found in the folder ~/behaviour-benchmarking/data/BenchmarkXY/yaml/
graph_optimizer (where APRILTAGNR is the number of the April Tag that is placed
on top of your Duckiebot) and the file BAGNAME_db_estimation.yaml found within the
folder ~/behaviour-benchmarking/data/BenchmarkXY/yaml/post_processor . It will
result in a .yaml file called BAGNAME__benchmark_results_test_XY.yaml where XY
is the number of the test run. In this file you will find all kind of results considering the
actual performance of the behaviour. The file will be stored within the folder ~/behav-
iour-benchmarking/data/BenchmarkXY/benchmarks/same_bm and will be further ana-
lyzed below. This notebook extracts all kind of data measured by the localization sys-
tem like the actual trajectory, the absolute mean lane offset of the Duckiebot, the num-
ber of tiles the Duckiebot covered etc. For more details on what exactly is analyzed and
how the analysis is done, please have a look at the Notebook itself. However, below see
below for a list of all computed measurements:

◦ The mean of the offset (distance and angle) of the Duckiebot in respect to the cen-
ter of the lane [m]
◦ The number of rounds completed (entirely completed by the center of the April
Tag placed on the localization standoff on your Duckiebot
◦ The number of tiles covered (center of April Tag completely passed the tile)
◦ Avg time needed per tile in seconds
◦ Length of the Benchmark in seconds
◦ Actual length of the benchmark in seconds
◦ Mean absolute lane offset measured by Watchtowers (ground truth) [m]
◦ Std of the absolute lane offset measured by Watchtowers (ground truth) [m]
◦ Mean absolute relative angle measured by Watchtowers (ground truth) [deg]
◦ Std of the absolute relative angle measured by Watchtowers (ground truth) [deg]
◦ Mean absolute lane offset measured by the Duckiebot [m]
◦ Std of the absolute lane offset measured by the Duckiebot [m]

LANE FOLLOWING - PROCEDURE 85

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/10_LF/10_procedure.md

◦ Mean absolute relative angle measured by the Duckiebot [deg]
◦ td of the absolute relative angle measured by the Duckiebot [deg]
◦ Mean of the absolute difference between lane offset measured by the Duckiebot
and by the Watchtowers (ground truth) [m]
◦ Std of the absolute difference between lane offset measured by the Duckiebot and
by the Watchtowers (ground truth) [m]
◦ Mean of the absolute difference between the relative angle measured by the
Duckiebot and by the Watchtowers (ground truth) [deg]
◦ Std of the absolute difference between the relative angle measured by the Duck-
iebot and by the Watchtowers (ground truth) [deg]

• Now it is time to see if you have collected enough data, for this, please open and run
the notebook 97-compare_calc_mean_benchmarks . This will open all your result .yaml
files you produced above and check if the data is meaningful. This means that it cal-
culates the standard deviation of some of the measurements over the different experi-
ments and puts it in relation with the mean. If the standard deviation for all of the con-
sidered measurements is small enough it will then produce a BAGNAME_benchmark_fi-
nal_results.yaml file which includes the mean values over all the experiments ran
and saves it in the folder ~/behaviour-benchmarking/data/BenchmarkXY/benchmarks/
final . The Notebook produces some nice visualizations that show the user if its data
is stable enough or not and why it is important to have stable data. The user literally
gets a green or a red light weather he is ready to actually run the evaluation of the per-
formance or if more data needs to be collected. If the standard deviation is too high,
please run another experiment, complete the first step of the result computation and
run this notebook again. If not, please upload the resulting yaml file in the Results
folder found here The .yaml file produced holds the following information:

◦ Software information of all the containers like: container name, image name and
tag, the base image of the container, the architecture of the container, the branch etc.
as well as the constants that were set within the Duckiebot for example the gain, the
trim factor etc. These things do not change within the same Benchmark, this means
for all the tests you are running with the specific software version all this informa-
tion remains the same. Therefore, this data is called static .
◦ Engineering data analysis like the update frequency of the different nodes, the
number of segments detected over time, the latency up to and including the de-
tector_node , as well as the total overall performance information (CPU usage, the
Memory usage and the NThreads). Moreover it includes total performance informa-
tion of each node of container dt-core. This data changes (at least slightly) between
two different tests of the same Benchmark which is why the mean of this data of all
the tests ran for one Benchmark is calculated later.
◦ Engineering data analysis like the update frequency of the different nodes, the
number of segments detected over time, the latency up to and including the de-
tector_node , as well as the total overall performance information (CPU usage, the
Memory usage and the NThreads). Moreover it includes total performance informa-
tion of each node of container dt-core. This data changes (at least slightly) between
two different tests of the same Benchmark which is why the mean of this data of all
the tests ran for one Benchmark is calculated later.

86 LANE FOLLOWING - PROCEDURE

https://drive.google.com/drive/folders/1pkjvPl8VyOj8K6jeUHXSE0XNPyVqgQDg?usp=sharing

✎

✎

◦ Number of experiments ran
◦ Run-times of different experiments
◦ Info about if enough data collected
◦ Analysis of all data from Notebook 95 (Mean, Median, Std, CV etc.)
◦ Information about the trajectories

• Then you are finally ready to compare your Benchmark with another one of the
same type. For this please run the notebook ´ 96-compare_2_benchmarks´. This note-
book will guide you through the analysis and show you the comparison of the two
Benchmarks you are comparing. In there you find a nice summary of all the measured
results, the metric used and the final results. Please have a look at the notebook 96 ex-
ample for further details about what the final report includes.

1)1) TTest the code stabilityest the code stability

You can test the stability of your code when running some experiments under some
specific conditions and comparing the result to the original one. For example you can
cover the right white line, or the yellow middle line etc.

2.15.2.15. FuturFuture we workork
• Improve the out_of_sight condition such that the Watchtowers can still see the
Duckiebot but it counts as out of sight if he is on a tile which is not part of the loop for
longer then 5 seconds.
• Also improve the offset calculation and punish the score of the Benchmark if the
Duckiebot takes for example a huge shortcut, or give a bigger punishment if he drives
on the other lane for too long
• improve the calculation of time needed per tile and make a difference between
straight, left and right curved tiles
• save the data online automatically (not up to user) -> Automate data storage
• Automate the Benchmarks. This can be done as soon as the localization system
works more reliable and efficient.
• set up remaining Benchmarks. This should not take long at all.
• Set up rest of Benchmarks
• Data collection
• Calculate position of center of mass based on position of April Tag
• Spit out type of tile where Benchmark was stopped in case of an early termination

LANE FOLLOWING - PROCEDURE 87

https://github.com/llingg/behaviour-benchmarking/blob/v1/notebooks/96-compare_2_benchmarks-Example.ipynb
https://github.com/llingg/behaviour-benchmarking/blob/v1/notebooks/96-compare_2_benchmarks-Example.ipynb
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/10_LF/10_procedure.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/10_LF/10_procedure.md

✎

✎

✎

✎

✎

UUNITNIT FF-3-3

Benchmarks for other BehaBenchmarks for other Behavioursviours

3.1.3.1. Distance kDistance keepingeeping
Prepare two Duckiebots, one dummy and one that is used for the testing. Then set the
gain of the ‘dummy’ Duckiebot to 0.6 and make sure the gain of the autobot is at 1.0.
Place the two Duckiebots behind each other and and start lane_following on both of
them. Let them drive for half a round and then increase the gain of the ‘dummy’ Duck-
iebot to 0.8. Half a round later increase the gain to 1.0. During this time record the bags
on both the Duckiebot and the localization system. For the Duckiebot please record the
following nodes:
• /AUTOBOTNAME/vehicle_avoidance_control_node/car_cmd
• /AUTOBOTNAME/vehicle_avoidance_control_node/switch
• /AUTOBOTNAME/vehicle_avoidance_control_node/vehicle_detected
• /AUTOBOTNAME/vehicle_detection_node/detection
• /AUTOBOTNAME/vehicle_detection_node/detection_time
• /AUTOBOTNAME/vehicle_detection_node/switch
• /AUTOBOTNAME/vehicle_filter_node/switch Note that the Duckiebot used as a
‘dummy’ that drives in front does not need to have the acquisition bridge running.
Then with the bags recorded run the notebook that analysis the engineering data, this
is compatible for any kind of benchmark. Within the notebook 95 add some analysis
that compares the distance between the two Duckiebots to the reference distance the
Duckiebot in the back was supposed to keep. This can be done very easily by compar-
ing the relative pose of the two Duckiebots. At the same time analyze the calculation
the Duckiebot in the back has made and compare its estimated relative distance to the
ground truth measured by the watchtowers. Also check how well lane following is do-
ing when having a Duckiebot in front. Please note that you will have to add some lines
into the lane_following.launch file to start the vehicle detection.
As a metrics use: for the engineering data the same as for Lane Following, and for the
benchmarking the mean difference between the actual distance and the reference dis-
tance, the mean difference between the estimated distance by the Duckiebot and the
actual distance measured by the watchtowers.

3.2.3.2. RRed line deted line detectionection

3.3.3.3. LF with VLF with Vehicles on same laneehicles on same lane

3.4.3.4. LF with VLF with Vehicles on oppositehicles on opposite lanee lane

88

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/80_other_behaviors.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/80_other_behaviors.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/80_other_behaviors.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/80_other_behaviors.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/80_other_behaviors.md

✎

✎

✎

✎

✎

✎

3.5.3.5. LF with IntLF with Intersection naersection navigvigationation

3.6.3.6. IntIntersection Nersection Naavigvigationation

3.7.3.7. VVehicle Aehicle Avvoidanceoidance

3.8.3.8. LED detLED detectionection

3.9.3.9. OvOvertakingertaking

3.10.3.10. April TApril Tag detag detectionection

BENCHMARKS FOR OTHER BEHAVIOURS 89

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/80_other_behaviors.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/80_other_behaviors.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/80_other_behaviors.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/80_other_behaviors.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/80_other_behaviors.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/60_sw_benchmarking/80_other_behaviors.md

✎

PPARARTT GG

HarHardwdwarare Benchmarkinge Benchmarking

In this section the setup and usage of the hardware benchmark infrastructure as well
as the benchmark procedure will be explained. In order to facilitate the benchmarking
procedure a CLI tool is provided, automating the process.

ContContentsents
UnitUnit G-1G-1 - IntrIntroductionoduction ..9191
UnitUnit G-2G-2 - PrProceduroceduree ..9292
UnitUnit G-3G-3 - DemoDemo..100100
UnitUnit G-4G-4 - SoftwSoftwarare Are Architchitecturecturee ..102102
UnitUnit G-5G-5 - SetSettingstings ..106106
UnitUnit G-6G-6 - TTrroubleshootingoubleshooting..107107
UnitUnit G-7G-7 - FuturFuture impre improvovementsements ..108108

90

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/00_hw_benchmarking.md

✎

✎

✎

✎

✎

UUNITNIT G-1G-1

IntrIntroductionoduction

In this section the Hardware Benchmark used in my Bachelor Thesis will be intro-
duced. The associated repos are the following:
• Duckietown shell used for the Benchmark CLI tool
• Benchmark Backend, REST API to process data
• Benchmark Frontend, display results
Unless developing, the repos aren’t needed as everything is installed via a docker con-
tainer or the dts.

ContContentsents
Section 1.1 - Motivation ..9191
Section 1.2 - Experiment ..9191

1.1.1.1. MotivMotivationation
In order to assess performance of different software and hardware configurations a
standardized benchmarking procedure is needed. Such a benchmark helps do detect
inefficiencies as well potential defects in the hardware and will help to troubleshoot
nonfunctional Duckiebots. In the development of new software it is crucial to have per-
formance metrics in order to compare the new release against the status quo.

1.2.1.2. ExperimentExperiment
The benchmark uses a standardized sequence of commands and docker images in or-
der to benchmark the performance of the Duckiebot.

1)1) MatMaterialerial

In order to perform a benchmark the following material is needed:
• Duckiebot to be tested
• A 3x3 Loop (4 Curves, 4 straights)
• optionally 4 Watchtowers and apriltags

2)2) GenerGeneral pral proceduroceduree

1. start diagnostics
2. start lane following
3. record a bag containing latency information
4. process data and compare against an overall average

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/05_hw_bm_introduction.md
https://github.com/duckietown/duckietown-shell-commands
https://github.com/duckietown/dt-hardware-benchmark-backend
https://github.com/duckietown/dt-hardware-benchmark-frontend
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/05_hw_bm_introduction.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/05_hw_bm_introduction.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/05_hw_bm_introduction.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/05_hw_bm_introduction.md

✎

✎

✎

✎

✎

UUNITNIT G-2G-2

PrProceduroceduree

AAuthor:uthor: Luzian Bieri
Maintainer: Luzian Bieri

ContContentsents
Section 2.1 - Environment..9292
Section 2.2 - Setup..9292

2.1.2.1. EnEnvirvironmentonment
The environmental requirements are minimal. Use at minimum a 3x3 Loop without
intersections. Ensure that the map is exclusively illuminated from the ceiling, block all
light coming from the side. Use a dark, neutral surrounding for all tiles in order to no
disturb the lane detection.

2.2.2.2. SetupSetup
If a setup (especially the Duckiebot) is already prepared, yyou might continue with theou might continue with the
nenext chaptxt chapterer. See 2.2.2. Please mind that the hardware benchmark results aren’t fully
comparable, as the benchmark aims to compare different hardware setups using the
same software.

1)1) DuckietDuckietown shellown shell

If not installed yet install the newest version of dts (duckietown shell) via the instruc-
tions provided by the docs Currently we are using a custom stack of the duckietown
shell commands, which fix all software to fixed versions to ensure comparability among
different hardware configurations. As they are not in the original repo (yet) they have
to be cloned from this fork. We are interested in the benchmarking branch.
Installing:
Use the following commands in a directory of your choice, recommended /home/user/
Documents/benchmarking .

$ cd /path/to/commands/dir
$ git clone git@github.com:lujobi/duckietown-shell-commands.git
$ git checkout benchmark

Export the path to the local version of duckietown shell commands

$ export DTSHELL_COMMANDS= /path/to/commands/dir duckietown-shell-com-
mands/

92

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/07_hw_bm_procedure.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/07_hw_bm_procedure.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/07_hw_bm_procedure.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/07_hw_bm_procedure.md
https://github.com/duckietown/duckietown-shell
https://github.com/lujobi/duckietown-shell-commands-fixed-images
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/07_hw_bm_procedure.md

✎

✎

✎

✎

✎

Set dts to any version:

$ dts --set-version RELEASE

In order to test whether the installation was successful enter dts . The output should
look something like:

INFO:dts:Commands version: daffy
INFO:dts:Using path '/path/to/commands/dir/duckietown-shell-commands/'
as prescribed by env variable DTSHELL_COMMANDS.
INFO:dts:duckietown-shell-commands 5.0.2
INFO:duckietown-challenges:duckietown-challenges 5.1.5
INFO:zj:zuper-ipce 5.3.0

Enable the benchmark command via:

$ dts install benchmark

Add your dts token via:

$ dts tok set

Explanation benchmark commands:
The branch benchmarking fixes all software versions to a specific one in order to ensure
reproducibility. Additinally the command group benchmark is added. This is used to
specify the version of benchmarking software.

2)2) DuckietDuckietown wown worldorld

In principal this step can be skipped as well if no localization system is around. Please
continue with 2.2.3.
Tiles:
For the first benchmark we need the “normal” 3x3 circle circuit. Please ensure that the
tiles are cleaned and assembled to specifications. Especially make sure that the road
has the correct width.
Lighting:
In order to ensure reproducibility use a well illuminated room. Ensure that the light
comes down from the ceiling, such that the bots are not dazzled. EnsurEnsure that no nature that no naturalal
light hits the bot.light hits the bot.
Watchtowers:
For the 3X3 circuit use 4 watchtowers in the middle of the circuit. One per corner. En-
sure a proper connection and that the watchtowers are close to the corners.
SetupSetup
As of now we use the standard procedure of setting up a loclization system and setting
up the the watchtowers. Thus makThus make sure sure te to use a new To use a new Terminal whererminal where thee the export DT-

PROCEDURE 93

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/07_hw_bm_procedure.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/07_hw_bm_procedure.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/07_hw_bm_procedure.md
https://docs.duckietown.org/DT18/opmanual_duckietown/out/dt_ops_appearance_specifications.html
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/07_hw_bm_procedure.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/07_hw_bm_procedure.md

✎

SHELL_COMMANDS has not been ehas not been exxecutecuted.ed. Detailed instructions can be found here. All in
all use the following command to initialize the sd card:

$ dts init_sd_card --hostname WT_HOST_NAME --linux-username mom
--linux-password MomWatches --country COUNTRY --type watchtower --ex-
perimental

CalibrCalibrationation
Use the same calibration procedure as for a standard duckiebot. But only the intrinsicBut only the intrinsic
part.part. Instructions.
Starting the camera demo:

$ dts duckiebot demo --demo_name camera --duckiebot_name
WT_HOST_NAME --package_name pi_camera --image

duckietown/dt-core:daffy
Start the calibration:

$ dts duckiebot calibrate_intrinsics WT_HOST_NAME

Start collecting data for the calibration. Press on the calibrate button as soon as all
bars are green. Click Commit and check under WT_HOST_NAME.local:8082/data/con-
fig/calibrations/camera_intrinsic/ that a file named WT_HOST_NAME.yaml exists.
World:
Use the instructions found here to set up the jupyter notebook in order to generate a
new map. Note you will have to create your own fork of the duckietown-world. Make
sure to leave the repo name as is!
MapMap
The yaml for a loop with floor around the map and in the center is the following:

94 PROCEDURE

https://docs.duckietown.org/daffy/opmanual_autolab/out/watchtower_initialization.html
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/camera_calib.html
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/07_hw_bm_procedure.md
https://docs.duckietown.org/daffy/opmanual_autolab/out/autolab_map_making.html

✎

tile_size: 0.585
tiles:
- - floor

- floor
- floor
- floor
- floor

- - floor
- curve_left/W
- straight/W
- curve_left/N
- floor

- - floor
- straight/S
- floor
- straight/N
- floor

- - floor
- curve_left/S
- straight/E
- curve_left/E
- floor

- - floor
- floor
- floor
- floor
- floor

Verify the that the map is displayed in the notebook under the name you gave to the
file.
ApriltagsApriltags
We use 4 ground Apriltags placed outside of each corner, moved in 10 cm from both
borders. Use this link in order to fill the map with april tags. As such use the command.

$ python3 src/apriltag_measure/measure_ground_apriltags.py
MAP_NAME

Ensure that you enter your measurements in Metin Metersers. If you go back to the notebook
you should see your map now rendered correctly with Apriltags.
Localization:
In order to set up the basic localization use the following commands on every watch-
tower:

PROCEDURE 95

https://docs.duckietown.org/daffy/opmanual_autolab/out/localization_apriltags_specs.html
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/07_hw_bm_procedure.md

✎

✎

✎

$ docker -H WT_HOST_NAME .local rm -f dt18_03_roscore_duckiebot-
interface_1

$ docker -H WT_HOST_NAME .local pull duckietown/dt-duckiebot-in-
terface:daffy-arm32v7

$ docker -H WT_HOST_NAME .local run --name duckiebot-interface --
privileged -e ROBOT_TYPE=watchtower --restart unless-stopped -v /da-
ta:/data -dit --network=host duckietown/dt-duckiebot-interface:daffy-
arm32v7

It might be that the last command fails. Use portainer to remove the dt-duckiebot-in-
terface -Container.
Start the acquisition-bridge on all watchtowers:

$ docker -H WT_HOST_NAME .local run --name acquisition-bridge --
network=host -e ROBOT_TYPE=watchtower -e LAB_ROS_MAS-
TER_IP= YOUR_PC_IP -dit duckietown/acquisition-bridge:daffy-arm32v7

3)3) DuckiebotDuckiebot

Hardware Setup:
Assemble the Duckiebot as prescribed in the manual of the respective version of the
Kit. Ensure that no wires are touching the wheels, or hinder the benchmark in any oth-
er way. Clearly mark the different Duckiebots. Add an Apriltag to your Duckiebot and
enter the name below. All in lowercase without whitespaces.
EnsurEnsure that no hare that no hardwdwarare ge gets mixets mixed betwed between differeen different confent configurigurations. Otherwise theations. Otherwise the
whole benchmark will be inwhole benchmark will be invvalidatalidated.ed.
Init SD Card:
This procedure only works if the special dt-shell-commands is installed. otherwise Pro-
ceed with the normal setup.
Decide which software version (e.g. master19, daffy, ente) you want to run. Set the
benchmark version to said software version using dts:

$ dts benchmark set [!SOFTWARE_VERSION]

If the set version should be checked use the following command:

$ dts benchmark info

Use the init_sd_card command as known. (Some options which could change the soft-
ware version are disabled) Use said hostname: ![HOST_NAME]

96 PROCEDURE

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/07_hw_bm_procedure.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/07_hw_bm_procedure.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/07_hw_bm_procedure.md

✎

✎

✎

✎

$ dts init_sd_card --hostname HOST_NAME --country CH --wifi [!NET-
WORKS]

If yIf you arou are using a 16GB SDe using a 16GB SD-Car-Card, use thed, use the --compress flagflag..

4)4) Initial SetupInitial Setup

If you have a complete set up and calibrated bot you might want to move to the next
Unit G-3
After the init_sd_card procedure ist over, take any charged battery (which doesn’t be-
long to one of the bots to be tested) and plug the Duckiebot in. After some time the bot
should be pingable, then ssh-ing into it should be possible.
Portainer and compose:
Open HOST_NAME.local:9000 in a browser. As soon as portainer is running, there
should be 4 containers one of which is not running (duckietown/rpi-duckiebot-dash-
board), start that one via portainer. After a short time HOST_NAME.local should be
reachable. Further progress of the installation can be see there after skipping the login.
Finished setting up, enter the your duckietown-token.
Verification TODO delete:
Use this command to test the setup

$ dts duckiebot keyboard_control HOST_NAME

and this command to test the camera:

$ dts start_gui_tools HOST_NAME

then use:

$ rqt_image_view

this should display the live camera feed.
Calibration:
To calibrate the bot we use the same command as is used in the docs.
CamerCamera intrinsica intrinsic
As the duckiebot-interface should be already running use the following command:
Daffy

$ dts duckiebot demo --demo_name camera --duckiebot_name HOST_NAME --pack-
age_name pi_camera --image duckietown/dt-
core:daffy@sha256:4c7633c2041f5b7846be2346e0892c9f50987d2fd98d3479ec1a4cf378f52ee6

Master19

PROCEDURE 97

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/07_hw_bm_procedure.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/07_hw_bm_procedure.md
http://host_name.local:9000/
/tmp/mcdp_tmp_dir-root/prince_render_qddkvl1/HOST_NAME.local
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/07_hw_bm_procedure.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/07_hw_bm_procedure.md
https://docs.duckietown.org/daffy/opmanual_duckiebot/out/camera_calib.html

✎

$ dts duckiebot demo --demo_name camera --duckiebot_name HOST_NAME --image ducki-
etown/rpi-duckiebot-base:mas-
ter19@sha256:80f23a1835e6b3f9d2606aae54ce824dd13085e3e7491e87c7f0216797964b5c

Then run the calibration using the command:
Daffy

$ dts duckiebot calibrate_intrinsics HOST_NAME --base_image duckietown/
dt-core:daffy-
amd64@sha256:d72e8a8c3191c146ecc2a812bdd036aaf15076e6c1cb9467304e0e54f9a39a10

Master19

$ dts duckiebot calibrate_intrinsics HOST_NAME --base_image ducki-
etown/rpi-duckiebot-base:master19-no-arm@sha256:bce-
fefe0e249b8b1fcde21b3eaa6c7af5737fbf92003854376be9541a97257a2

info it may take some time until the image is completely downloaded
CamerCamera ea extrinsicxtrinsic
Then run the calibration using the command:
Daffy

$ dts duckiebot calibrate_extrinsics HOST_NAME --base_image duckietown/
dt-core:daffy-
amd64@sha256:d72e8a8c3191c146ecc2a812bdd036aaf15076e6c1cb9467304e0e54f9a39a10

Master19

$ dts duckiebot calibrate_intrinsics HOST_NAME --base_image ducki-
etown/rpi-duckiebot-base:master19-no-arm@sha256:bce-
fefe0e249b8b1fcde21b3eaa6c7af5737fbf92003854376be9541a97257a2

Wheels:
Use thew more detailed explaination https://docs.duckietown.org/daffy/opmanu-
al_duckiebot/out/wheel_calibration.html
Use the gui_tools to connect to the ROS:

$ dts start_gui_tools HOST_NAME

the use (in a different terminal) the description from the verification paragraph in order
to start the keyboard control.
Then use this command in the gui_tools in order to calibrate the bot. Adjust the
TRIM_VALUE in order to do so. MakMake sure sure thee the wweels can run freels can run freelyeely and that the bot drivand that the bot driveses
strstraight within 10 cm on 2m.aight within 10 cm on 2m.

98 PROCEDURE

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/07_hw_bm_procedure.md
/tmp/mcdp_tmp_dir-root/prince_render_qddkvl1/here
/tmp/mcdp_tmp_dir-root/prince_render_qddkvl1/here

daffy

$ rosparam set / HOST_NAME /kinematics_node/trim TRIM_VALUE

master19

$ rosservice call / HOST_NAME /inverse_kinematics_node/set_trim --
TRIM_VALUE

PROCEDURE 99

✎

✎

✎

✎

✎

UUNITNIT G-3G-3

DemoDemo

This section presents a demo of the hardware benchmark where all is run on your own
machine.

ContContentsents
Section 3.1 - Start the API ..100100
Section 3.2 - Start the Frontend ..100100
Section 3.3 - Run the benchmark ..101101

3.1.3.1. Start the APIStart the API
The DT_APP_SECRET and APP_ID can be retrieved by either asking via the Slack
or by using the Web-Debugger in the Duckietown Diagnostics within a (GET-)request
header.

1)1) SaSaving data locallyving data locally

In order to start the API which saves data on your local machine use the following com-
mand:

$ docker run -v /PATH/TO/DATA/DIR/ :/data/ -it -e LOCAL=True -p
5000:5000 -e APP_SECRET= DT_APP_SECRET -e APP_ID= APP_ID --rm duck-
ietown/dt-hardware-benchmark-backend:daffy

2)2) SaSaving data onlineving data online

CarCareful the API addreful the API address in the fress in the frontontend is harend is hardcoded and thus needs tdcoded and thus needs to be adjusto be adjusteded
In order to start the API which saves data on S3 and a MySQL database use the follow-
ing command:

$ docker run -dit -p 5000:5000 -e MYSQL_USER= DB_USER -e
MYSQL_PW= DB_PW -e MYSQL_URL= DB_URL -e MYSQL_DB= DB_NAME -e
AWS_SECRET_ACCESS_KEY= AWS_SECRET_ACCESS_KEY -e AWS_AC-
CESS_KEY_ID= AWS_ACCESS_KEY_ID -e APP_SECRET= DT_APP_SECRET -e
APP_ID= APP_ID --rm duckietown/dt-hardware-benchmark-backend:daffy

3.2.3.2. Start the FStart the Frrontontendend
AAdjust the API addrdjust the API address if wess if wantanted ted to run onlineo run online

$ docker run -it -p 3000:80 --rm duckietown/dt-hardware-benchmark-
frontend:daffy

100

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/08_hw_bm_demo.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/08_hw_bm_demo.md
https://dashboard.duckietown.org/diagnostics
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/08_hw_bm_demo.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/08_hw_bm_demo.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/08_hw_bm_demo.md

✎

It then is reachable under localhost:3000

3.3.3.3. RRun the benchmarkun the benchmark
Ensure that Lane following runs on your duckiebot, if necessary consult the resp. doc-
umentation.
You need two terminals, another one to prepare the start of lane following as described
in the output of the CLI. Plug in a USB Stick int the ttop leftop left port of the Duckiebot.
Now it is time to run the benchmark you can use the dts :

$ dts benchmark BOTNAME -a YOUR_LOCAL_IP_ADDRESS :5000

If your API is running online, enter the API_URL including the protocol (i.e. https://).

DEMO 101

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/08_hw_bm_demo.md
https://docs.duckietown.org/
https://docs.duckietown.org/

✎

✎

UUNITNIT G-4G-4

SoftwSoftwarare Are Architchitecturecturee

This section introduces the hardware benchmark software architecture. It is not re-
quired to read in order to conduct the benchmark. It generally consists of three small
programs communicating with each other:

Figure 4.1. Hardware benchmark tools

ContContentsents
Figure 4.1 - Hardware benchmark tools
Section 4.1 - Communication ..102102
Section 4.2 - API / Backend ..103103
Section 4.3 - Frontend ..104104
Section 4.4 - CLI..105105

In order to facilitatfacilitate and unifye and unify the benchmark procedure the above mentioned tools
have been created. The optimal setup would be similar to the dts diagnostic tool. One
command that starts the benchmark and then uploads all files and displays the data
online. Once the API and frontend are online resp. incorporated in the dashboard, this
will almost be possible. Only the lane following has to be started by hand.

4.1.4.1. CommunicationCommunication

102

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/10_hw_bm_software_arch.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/10_hw_bm_software_arch.md

✎

✎

✎

Figure 4.2. Hardware benchmark software communication diagram

The above diagram summarizes the communication between different services. It is ob-
vious that the API is central for the benchmarking procedure.

4.2.4.2. API / BackAPI / Backendend

1)1) EndpointsEndpoints

Once the API is running it offers a Swagger UI which describes all endpoints. It can
be accessed at the address of the API (running locally, normally at (localhost:5000)[lo-
calhost:5000])

2)2) Data stData stororagagee

The API provides two different ways to store data:
• Locally on the machine using SQLite and writing files in the specified directory
• Using S3 and a mySQL Database hosted separately

SOFTWARE ARCHITECTURE 103

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/10_hw_bm_software_arch.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/10_hw_bm_software_arch.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/10_hw_bm_software_arch.md

✎

✎

✎

✎

3)3) FunctionalityFunctionality

The API offers two endpoints where the benchmark files can be uploaded via POST re-
quest. Once the files, consisting of:
• meta , JSON string containing manually written metadata
• meta_json , JSON file containing Metadata
• sd_card_json , JSON file containing SD Speeds
• latencies_bag , Bag containing Latencies, recorded on the bot
• evt. diagnostics_json , JSON containing the diagnostic data
• evt. localization_bag , Localization bag
are uploaded. The API retrieves all benchmarking measurements from those files, saves
them to a file as well as a summary to the Database. If no diagnostics_json but the
diagnostics_id is provided in the request url, the API retrieves the diagnostic data
from the dt-diagnostics tool.

4.3.4.3. FFrrontontendend
The frontend is used to display the benchmark data. As well as a synthetically calculat-
ed score.

1)1) File UploadFile Upload

The frontend provides an interface to upload data manually, as one may make the
benchmark as well “by hand”.

Figure 4.3. Benchmark Upload

2)2) ScorScore Displae Displayy

All scores are displayed on the web interface including the possibility to download the
saved data and the

104 SOFTWARE ARCHITECTURE

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/10_hw_bm_software_arch.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/10_hw_bm_software_arch.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/10_hw_bm_software_arch.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/10_hw_bm_software_arch.md

✎

Figure 4.4. Score Display

4.4.4.4. CLICLI
The CLI is part of the Duckietown shell dts benchmark command. More explanation
can be found in the section Demo.

SOFTWARE ARCHITECTURE 105

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/10_hw_bm_software_arch.md

✎

✎

✎

✎

✎

UUNITNIT G-5G-5

SetSettingstings

Possible Settings for calculating the BM score

ContContentsents
Section 5.1 - Weighting Function ..106106
Section 5.2 - Weights of single element in benchmark score ..106106
Section 5.3 - New Score Categories ..106106
Section 5.4 - New measurements ..106106

RRemark:emark: In order to edit any function one needs the API in the developer mode, e.g.
clone git repo and run from there. Instructions can be found in the repo.

5.1.5.1. WWeighting Functioneighting Function
In order to adjust the weight function, edit the function weight_function in the file
logic/utils/data_collection.py .

5.2.5.2. WWeights of single element in benchmark scoreights of single element in benchmark scoree
Adjustments of weights are made in the dict averages in the file logic/config/con-
fig.py

5.3.5.3. NNew Scorew Score Cate Categegoriesories
Add another entry to the dict averages in the file logic/config/config.py

5.4.5.4. NNew measurew measurementsements
In order to add another measurement which is calculated during the benchmark file
analysis edit the function measurements in the file logic/config/config.py . If more ex-
ternal data is needed to display, the functions calling measurements need to be edited.
For further information consult the README.md in the repo.

106

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/30_hw_bm_settings.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/30_hw_bm_settings.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/30_hw_bm_settings.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/30_hw_bm_settings.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/30_hw_bm_settings.md

✎

✎

✎

✎

UUNITNIT G-6G-6

TTrroubleshootingoubleshooting

Troubleshooting section

ContContentsents
Section 6.1 - Init_sd_card..107107
Section 6.2 - Render Apriltags ..107107
Section 6.3 - Run Lane following ..107107

6.1.6.1. Init_sd_carInit_sd_cardd
Should an error like the one below appear:

subprocess.CalledProcessError: Command '['sudo', 'e2fsck', '-f', '/dev/
sdb2']' returned non-zero exit status 8.

use

$ sudo fdisk /dev/ device

to delete all partitions on the device. (d to delete, w to write) MakMake sure sure te to edit the cor-o edit the cor-
rrect device, otherwise data will be lost!ect device, otherwise data will be lost!

6.2.6.2. RRender Apriltagsender Apriltags
If your map is rendered really tiny. You probably entered the measurements of the april
tags in another unit than meters.

6.3.6.3. RRun Lane followingun Lane following
If the lane following can’t be run after the Pre benchmark. Restart the Lane following
Container.

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/80_Troubleshooting.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/80_Troubleshooting.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/80_Troubleshooting.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/80_Troubleshooting.md

✎

✎

✎

✎

UUNITNIT G-7G-7

FuturFuture impre improvovementsements

The chapter of benchmarking performance of the Duckiebots is by far not over. This
thesis sets a baseline for benchmarking the hardware behaviour. Still all used software
plus the applied measurements have room for improvement. Some ideas are presented
in this chapter.

ContContentsents
Section 7.1 - Measurements: ..108108
Section 7.2 - API:..108108
Section 7.3 - CLI..108108
Section 7.4 - Frontend ..109109

7.1.7.1. MeasurMeasurements:ements:
• Collect more data
• Include localization system data
• Incorporate Battery measurements
• Run benchmark using \verb+daffy+ as software release

7.2.7.2. API:API:
• Incorporate other benchmark procedures e.g. Software Benchmark
• Add authentication via the Duckietown token
• Upload the data to an external host data storage
• Cache overall score in order to reduce response time for resp. endpoint
• Incorporate localization info
• Use \verb+bjoern+ or similar as production \verb+WSGI+ (Web Server Gateway
Interface) server, as the Flask development server is technically not save to run in a pro-
duction environment.
• Save graphs, further reducing the response time

7.3.7.3. CLICLI
• Adjust docker digests for \verb+daffy+, resp. \verb+daffy_new_deal+ container
once it is released
• Automated hardware compliance check
• Invoke callbacks in separate threads
• Display link to the new diagnostic result

108

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/90_Improvements.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/90_Improvements.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/90_Improvements.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/90_Improvements.md

✎7.4.7.4. FFrrontontendend
• Improve frontend, enable direct comparison between average and newly supplied
benchmark
• Include frontend into the dashboard
• Frontend make responsive

FUTURE IMPROVEMENTS 109

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/70_hw_benchmarking/90_Improvements.md

✎

PPARARTT HH

Continuous IntContinuous Integregrationation

AAuthor:uthor: Andrea F. Daniele
Maintainer: Andrea F. Daniele

This section of the book focuses on the Duckietown CI Infrastucture. This is clearly not
something that every Duckietown developer has to be knowledge about but definitely
something they should be aware of.

ContContentsents
UnitUnit H-1H-1 - CI InfrCI Infrastructurastructuree..111111
UnitUnit H-2H-2 - CI Builder NCI Builder Nodesodes ..112112

110

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/80_continuous_integration/00_ci.md

✎

✎

✎

✎

UUNITNIT H-1H-1

CI InfrCI Infrastructurastructuree

ContContentsents
Section 1.1 - CI Infrastructure ..111111

1.1.1.1. CI InfrCI Infrastructurastructuree
Our CI Infrastructure is comprised of two types of nodes, i.e., mastmasterer and builderbuilder nodes.
We currently have three nodes, one mastmasterer and two builderbuilder nodes. The amd64 builder
node is responsible for building artifacts natively on amd64 architecture. The arm32/64
builder node builds artifacts for the architectures arm32v7 and arm64v8 instead.
The following picture depicts how these nodes are connected to each other.

Figure 1.1. CI Infrastructure

1)1) MastMaster nodeer node

The Master node receives notifications from our Git host (github.com) about push
events against monitored repositories. Push events are tuples of shape (repository,
branch, commit, author) . When a push event occurs, the CI master node kicks in and
spawns a new build jobbuild job. A build jobbuild job is performed on a builderbuilder node and has the objec-
tive of building a collection of artifacts from the corresponding source code. The event’s
repository , branch and commit identify the source code version to use.

NNotote:e: Even though repository and commit are in theory enough to identify the ver-
sion of the source code, we need the branch as well as the artifacts will take its name.

2)2) Builder nodeBuilder node

A builder node is simply a Docker endpoint accessible through the TCP port 2375 .
Build jobs are always run inside a Docker container. Some build jobs consists of Docker
image builds (and subsequent push to DockerHub).

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/80_continuous_integration/05_infrastructure.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/80_continuous_integration/05_infrastructure.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/80_continuous_integration/05_infrastructure.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/80_continuous_integration/05_infrastructure.md

✎

✎

✎

✎

✎

✎

✎

UUNITNIT H-2H-2

CI Builder NCI Builder Nodesodes

A builder node is simply a Docker endpoint accessible through the TCP port 2375 .

ContContentsents
Section 2.1 - Setup a new Ci Builder Node ..112112

2.1.2.1. Setup a new Ci Builder NSetup a new Ci Builder Nodeode
CI Builder nodes are implemented on AWS EC2 instances. To setup a new builder node,
you need to:

1)1) CrCreateate a new Ee a new EC2 instance on AC2 instance on AWSWS

You can create a new instance by visiting the AWS EC2 Dashboard.
We suggest the following AMIs:
• arm32/64arm32/64: ubuntu/images/hvm-ssd/ubuntu-bionic-18.04-arm64-server-20181120
(ami-01ac7d9c1179d7b74)

• amd64amd64: ubuntu/images/hvm-ssd/ubuntu-bionic-18.04-amd64-server-20191113
(ami-00a208c7cdba991ea)

2)2) Setup passwSetup passworordless SSH using thedless SSH using the ci-nodes RSRSA kA keypaireypair

On the Duckietown AWS account, a key-pair called ci-nodes holds the public key used
to login into any CI-related node.
The private key is neither shared here nor stored on AWS for obvious reasons. If you
need it, ask Duckietown administrators.

3)3) Assign an Elastic IP tAssign an Elastic IP to yo your instance.our instance.

By assigning an AWS Elastic IP to your instance, you make sure that the IP never
changes, so that we can configure other tools with static IPs pointing at each builder
node.

4)4) SSH in and install DockSSH in and install Dockerer

SSH into your newly created node and install Docker.

sudo apt install docker.io

5)5) Setup crSetup crontabontab

Builder nodes will build many Docker images over the course of a few days. If we don’t
have a way to keep them clean, they will run out of space in less than a week.

112

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/80_continuous_integration/10_builder_nodes.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/80_continuous_integration/10_builder_nodes.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/80_continuous_integration/10_builder_nodes.md
https://console.aws.amazon.com/ec2/
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/80_continuous_integration/10_builder_nodes.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/80_continuous_integration/10_builder_nodes.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/80_continuous_integration/10_builder_nodes.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/80_continuous_integration/10_builder_nodes.md

✎

✎

For this reason, we setup two cron jobs. The first one runs every day at 2AM and re-
moves all stopped containers and frees any unused resources (e.g. volumes). The sec-
ond kicks in 1 hour later, at 3AM and removes all unused images. In both jobs, only
resources that are not used for more than 24 hours are freed.
You can setup the two cronjobs by running crontab -e and pasting the following lines
at the end of the file.

00 02 * * * docker system prune --filter until=24h --force
00 03 * * * docker image prune --filter dangling=true --filter un-
til=24h --force

6)6) AAdd the userdd the user ubuntu tto the gro the groupoup docker
Use the following command to add the user ubuntu to the group docker . This will give
your user access to the local Docker engine.

sudo usermod -aG docker ubuntu

NNotote:e: You need to log out and back in for the changes to have an effect.

7)7) Setup DockSetup Docker Ter TCP sockCP socketet

The Master node is the one triggering builds on builder nodes. For this to happen, each
builder node has to make the Docker engine available on a TCP port.
In order to enable the Docker TCP socket, open the Docker service configuration file.

sudo nano /lib/systemd/system/docker.service

Navigate to the [Service] section of the file and find the line

ExecStart=/usr/bin/dockerd -H fd:// --containerd=/run/containerd/con-
tainerd.sock

and replace it with the following

ExecStart=/usr/bin/dockerd -H fd:// -H tcp://0.0.0.0:2375 --contain-
erd=/run/containerd/containerd.sock

This will give anybody access to your Docker engine over the internet. Do not worry
about possible intruders, we will configure the EC2 instance to only accept connections
on the port 2375 from the master node.
Save the file and reload (then restart) the Docker service with the following commands:

sudo systemctl daemon-reload
sudo service docker restart

CI BUILDER NODES 113

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/80_continuous_integration/10_builder_nodes.md
https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/80_continuous_integration/10_builder_nodes.md

✎

Test that your change had an effect by executing the command

curl http://localhost:2375/version

You should get a JSON string with info about the Docker engine. If you get an error,
redo this step.

8)8) ConfConfigurigure Ee EC2 instance tC2 instance to accept connections fro accept connections from the Mastom the Master node onlyer node only

Navigate to the AWS EC2 Dashboard page. Then click on Instances to the left. Select
the newly created builder node and select Networking -> Change Security Groups
from the Actions menu at the top of the list. Add the group [in]-Docker-API to the
security groups of your instance. This allows your instance to accept connections from
the Master node.

114 CI BUILDER NODES

https://github.com/duckietown/docs-opmanual_developer/edit/daffy/book/opmanual_developer/80_continuous_integration/10_builder_nodes.md

	Duckietown Developer
	What to look for throughout the book

	Developer Basics
	Developer Basics: ISO/IEC 9126
	Hands on
	Ask the community

	Developer Basics: Linux
	Linux
	Ubuntu
	Installation
	Dual Boot
	Virtual Machine

	Terminal
	Hands on
	Ask the community

	Developer Basics: Git
	Monolithicity VS Modularity
	Git
	Terminology
	Repository
	Branch
	Commit
	Tag
	Fork
	Remote
	Merging branches
	Pull Requests

	Common operations
	Fork a repository on GitHub
	Clone a repository
	Create a new branch
	Working tree
	Create a new commit
	Push changes

	Fetch changes
	Delete branches
	Open a GitHub Issue

	Hands on
	Git
	GitHub

	Ask the community

	Developer Basics: Docker
	What is Docker?
	Containers VS. Virtual Machine
	How does Docker work?
	Different CPU architectures
	Working with images
	Working with containers
	Running images
	Examples

	Other useful commands
	Pruning images
	Portainer

	Hands on
	Ask the community

	Developer Basics: Duckietown Shell
	Brief History
	Get Started
	Installable commands
	Hands on
	Ask the community

	Developer Basics: ROS
	Hands on
	Ask the community

	Modules
	Introduction
	What is a module
	Module Templates
	Create your own module
	Build a module
	Run a module
	Hands on
	Ask the community

	Module Types
	Module Type: Basic
	Hands on
	Ask the community

	TEMPLATE
	Hands on
	Ask the community

	The Duckietown Code-Fu
	Structuring a Duckietown repository
	Ask the community

	Structuring ROS Packages
	Ask the community

	Structuring ROS Nodes
	General structure
	Node initialization
	Node Creation
	Node Parameters
	Generic attributes
	Publishers and Subscribers

	Naming of variables and functions
	Switching nodes on and off
	Custom behavior on shutdown
	Handling debug topics
	Timed sections
	Config files
	Launch files
	Ask the community

	Documenting your code
	Basics about inline code documentation
	What should be documented and where?
	Style guide
	Basic styles
	Referencing other objects
	Custom sections
	Using autodoc

	Ask the community

	Building the documentation of your code
	Ask the community

	Software Diagnostics
	Introduction
	Running example
	When do I need it?
	When do I run it?

	Get Started
	Run a (single test) diagnostics experiment
	Visualize the results
	One experiment, many tests

	Reference
	Usage
	Options

	Projects
	Benchmarking
	Introduction
	General Architecture
	General Information
	Goal
	Future development

	Lane Following Benchmark Introduction
	Environment Definition
	Experiment Definition
	Mathematical Metrics Definitions
	Repetition Criteria
	Termination Criteria
	Scoring
	General information

	Lane Following - Procedure
	Requires
	Duckiebot Hardware set up
	Loop Assembly and map making
	Localization Set up
	Software preparation
	Add your contribution in daffy
	Hardware Check:
	Duckiebot preparation:
	Place your Duckiebot within the map:
	Prepare 4 terminals:
	File gathering:
	Processing the recorded bags:
	Result analysis preparation:
	Result computation:
	Test the code stability

	Future work

	Benchmarks for other Behaviours
	Distance keeping
	Red line detection
	LF with Vehicles on same lane
	LF with Vehicles on opposite lane
	LF with Intersection navigation
	Intersection Navigation
	Vehicle Avoidance
	LED detection
	Overtaking
	April Tag detection

	Hardware Benchmarking
	Introduction
	Motivation
	Experiment
	Material
	General procedure

	Procedure
	Environment
	Setup
	Duckietown shell
	Installing
	Explanation benchmark commands

	Duckietown world
	Tiles
	Lighting
	Watchtowers
	Setup
	Calibration

	World
	Map
	Apriltags

	Localization

	Duckiebot
	Hardware Setup
	Init SD Card

	Initial Setup
	Portainer and compose
	Verification TODO delete
	Calibration
	Camera intrinsic
	Camera extrinsic

	Wheels

	Demo
	Start the API
	Saving data locally
	Saving data online

	Start the Frontend
	Run the benchmark

	Software Architecture
	Communication
	API / Backend
	Endpoints
	Data storage
	Functionality

	Frontend
	File Upload
	Score Display

	CLI

	Settings
	Weighting Function
	Weights of single element in benchmark score
	New Score Categories
	New measurements

	Troubleshooting
	Init_sd_card
	Render Apriltags
	Run Lane following

	Future improvements
	Measurements:
	API:
	CLI
	Frontend

	Continuous Integration
	CI Infrastructure
	CI Infrastructure
	Master node
	Builder node

	CI Builder Nodes
	Setup a new Ci Builder Node
	Create a new EC2 instance on AWS
	Setup passwordless SSH using the ci-nodes RSA keypair
	Assign an Elastic IP to your instance.
	SSH in and install Docker
	Setup crontab
	Add the user ubuntu to the group docker
	Setup Docker TCP socket
	Configure EC2 instance to accept connections from the Master node only

